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1 Observables and Hermitian operators

ˆLet’s begin by recalling the definition of a Hermitian operator. The operator Q is Hermitian if for the

class of wavefunctions Ψ we work with,
∫

dx Ψ∗ Q̂1 Ψ2 =

∫

dx ˆ(QΨ ∗

1) Ψ2 . (1.1)

We will sometimes use a briefer notation for the integrals of pairs of functions:

(Ψ1 , Ψ2) ≡
∫

dxΨ∗

1(x)Ψ2(x) . (1.2)

Note that for any constant a

(

aΨ1,Ψ2) = a∗
(

Ψ1,Ψ2) ,
(

Ψ1, aΨ2) = a
(

Ψ1,Ψ2) . (1.3)

With this notation the condition of Hermiticity is more briefly stated

Q̂ is Hermitian:
(

Ψ1, QΨ2) =
(

QΨ1,Ψ2) . (1.4)

ˆThe expectation value of Q was defined by

〈Q〉Ψ =

∫

dx Ψ∗ Q̂Ψ =
(

Ψ , Q̂Ψ
)

. (1.5)

For this formula to make sense, the state Ψ must be normalized.

Claim 1. The expectation value of a Hermitian operator is real. To prove this we complex conjugate

the above definition. The complex conjugate of the integral is the integral of the complex conjugate

of the integrand, therefore

(

〈Q〉
)

∗ ˆ ˆ ˆ
Ψ =

∫

dx
(

Ψ∗QΨ
)

∗

=

∫

dx Ψ(QΨ)∗ =

∫

dx (QΨ)∗Ψ . (1.6)

Q̂Note that Ψ is a wavefunction, so it makes sense to take its complex conjugate (we never have to
ˆthink of conjugating Q). Using the Hermiticity of the operator, we move it into Ψ to get

(

〈Q〉
)

∗ ∗

Ψ =

∫

dx ˆΨ QΨ = 〈Q〉Ψ , (1.7)
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thus showing that the expectation value is indeed real.

Claim 2. The eigenvalues of a Hermitian operator are real. Q̂Assume the operator has an eigenvalue

q1 associated with a normalized eigenfunction ψ1(x):

Q̂ψ1(x) = q1ψ1(x) . (1.8)

ˆNow compute the expectation value of Q in the state ψ1:

〈Q̂〉ψ1
= (ψ1 , Q̂ψ1) = (ψ1 , q1 ψ1) = q1(ψ1 , ψ1) = q1 . (1.9)

By claim 1, the expectation value is real, and so is the eigenvalue q1, as we wanted to show. Note the

Q̂interesting fact that the expectation value of on an eigenstate is precisely given by the corresponding

eigenvalue.

ˆConsider now the collection of eigenfunctions and eigenvalues of the Hermitian operator Q:

Q̂ ψ1(x) = q1ψ1(x) , (1.10)

Q̂ ψ2(x) = q2ψ2(x) , (1.11)

...

The list may be finite or infinite.

Claim 3. The eigenfunctions can be organized to satisfy orthonormality:

(ψi, ψj) =

∫

dx ψ∗

i (x)ψj(x) = δij . (1.12)

For i = j, this is just a matter of normalizing properly each eigenfunction, which we can easily do.

The equation also states that different eigenfunctions are orthogonal, or have zero overlap. We now
ˆexplain why this is so for i 6= j with qi 6= qj. Indeed, for this we evaluate (ψi, Qψj) in two different

ways. First

(ψi, Q̂ψj) = (ψi, qjψj) = qj(ψi, ψj) , (1.13)

ˆand second, using Hermiticity of Q, and the reality of the eigenvalues

(ψi, Q̂ψ ˆ
j) = (Qψi, ψj) = (qiψi, ψj) = qi(ψi, ψj) . (1.14)

Equating the final right-hand sides in the two evaluations we get

(qj − qi) (ψi , ψj) = 0. (1.15)

Since the eigenvalues were assumed different, this proves that (ψi, ψj) = 0, as claimed. This is not yet

a full proof of (1.12) because it is possible to have degeneracies in the spectrum, namely, different

eigenfunctions with the same eigenvalue. In that case the above argument does not work. One must

then show that it is possible to choose linear combinations of the degenerate eigenfunctions that

are mutually orthogonal (the orthogonality with the eigenfunctions beyond the degenerate space is

automatic). This is done in 8.05!
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Claim 4. The eigenfunctions of Q̂ for a complete set of basis functions. Any reasonable Ψ can be

written as a superposition of Q̂ eigenfunctions. (This is the so-called spectral theorem, which is proven

in 8.05 in the finite-dimensional case.) This means that

Ψ(x) = α1ψ1(x) + α2ψ2(x) + · · · =
∑

αiψi(x) ,
i

(1.16)

with calculable coefficients αi. Indeed, if we know the eigenfunctions we have that αi is calculated

doing the integral of ψ∗

i against Ψ:

αi = (ψi,Ψ) . (1.17)

We quickly prove this by doing the integral
∫

dx ψ∗

i (x)Ψ(x) =

∫

dx ψ∗

i (x)
∑

αjψj(x) =
∑

αj

∫

dx ψ∗

i (x)ψj(x) =
∑

αjδij = αi . (1.18)
j j j

The condition that Ψ is normalized implies a condition on the coefficients αi. We have
∫

dxΨ∗(x)Ψ(x) =

∫

dx
∑

α∗

iψ
∗

i (x)
∑

αjψj(x)
i j

=
∑

α∗ xψ∗

iαj

∫

d i (x)ψj(x) (1.19)
i,j

=
∑

α∗

iαjδij =
i,j

∑

α∗

iαi ,

i

so that the normalization of Ψ implies that
∑

i

|αi|2 = 1 . (1.20)

We are finally in the position to state the measurement postulate. This is the way in which we

understand that Hermitian operators represent observables and learn the rules that they follow.

Measurement Postulate: If we measure the Hermitian operator Q̂ in the state Ψ, the possible

outcomes for the measurement are the eigenvalues q1, q2, . . .. The probability pi to measure qi is given by

p = 2
i |αi| , (1.21)

where Ψ(x) =
∑

αiψi(x). After the outcome qi, the state of the system becomesi

Ψ(x) = ψi(x) . (1.22)

This is called the collapse of the wavefunction.

The collapse of the wavefunction implies that immediately after the measurement that yielded qi
ˆa repeated measurement of Q will yield qi with no uncertainty. A small subtlety occurs if we have

degenerate eigenstates. Suppose the wavefunction contains a piece

Ψ = (αiψi + αkψk) + . . . (1.23)
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where ψi and ψk happen to have the same eigenvalue q and the dots represent other terms. Then if

we measure q the state after the measurement collapses to the sum of those two terms

αiψi + αkψk
Ψ = √ , (1.24)

|αi|2 + |αj |2

with the square root denominator included to provide the proper normalization to Ψ. As a consistency

check note that the probabilities pi to find the various eigenvalues as outcomes properly add to one:

∑

2pi =
i

∑

i

|αi| = 1 , (1.25)

by the normalization condition for Ψ given in (1.20). The measurement postulate follows the Copen-

hagen interpretation of quantum mechanics.

Note that the measurement postulate uses the property that any vector in a vector space can be
ˆwritten as a sum of different vectors in an infinite number of ways. If we are to measure Q1 we expand

the state in Q̂ ˆ ˆ
1 eigenstates, if we are to measure Q2 we we expand the state in Q2 eigenstates, and so

on and so forth. Each decomposition is suitable for a particular measurement. Each decomposition

reveals the various probabilities for the outcomes of the specific observable.

Exercise: Use the expansion Ψ =
∑

α ψ Qi i i to compute the expectation value 〈 〉. We find

〈Q̂〉 =
∫

dx
∑

α∗

iψ
∗

i (x ˆ)Q
i

∑

αjψj(x)
j

=
∑

α∗

iαj

∫

dx ψ∗

i (x ˆ)Qψj(x)
i,j

(1.26)

=
∑

α∗

iαjqj

∫

dx ψ∗

i (x)ψj(x)
i,j

=
∑

∗ 2αiαjqjδij =
∑

i

|αi
i

| qi =
,j

∑

piqi.

i

ˆThis matches our expectations: the expectation value of Q is the sum of the possible outcomes qi
multiplied by the corresponding probabilities pi. This is a nice consistency check on our definition of

expectation values.

Example. Free particle on the circle x ∈ [0, L].

We imagine the points x = 0 and x = L identified to form a circle of circumference L. A wavefunction

Ψ(x) on the circle must satisfy the periodicity condition

Ψ(x+ L) = Ψ(x) , (1.27)

Assume that at some fixed time we have the wavefunction

Ψ(x) =

√

2

L

( 1√
3
sin

2πx

L
+

√

2

3
cos

6πx
.

L

)

(1.28)

This wavefunction satisfies the periodicity condition, as you should check. We want to know what are

the possible values of the momentum and their corresponding probabilities.
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Given our discussion, we must find the set of momentum eigenstates and rewrite the wavefunction

as a superposition of such states. Momentum eigenstates are exponentials of the form eikx. Two

things happen on the circle that do not happen in free space. First the momentum will be quantized

as a consequence of the periodicity condition (1.27). Second, since space here is of finite length, the

momentum wavefunctions will be normalizable. Consider the periodicity condition as applied to eikx.

We need

eikx = eik(x+L) → eikL = 1 → kL = 2πm , m ∈ Z . (1.29)

Note that m can be any integer, positive, negative, or zero. We thus write for the momentum eigen-

states, labeled by m
2πimx

ψm(x) = N e L , (1.30)

with N a real normalization constant. The normalization condition gives

L

1 =

∫ L

| ( )|2 2 1
ψm x dx = 2N

∫

dx = N L
0 0

→ N = √ .
L

(1.31)

Therefore our momentum eigenstates are

1
ψm(x) = √ 2πimx

e L ,
L

(1.32)

and these are states with momentum pm, which is calculated as follows

~ ∂ 2πm~ 2πm~
p̂ ψm = ψm = ψm

i ∂x L
→ pm = .

L
(1.33)

Now that we are equipped with the momentum eigenstates we must simply rewrite the wavefunction

(1.28) as a superposition of such states:

√

2 1 1 i − 2πix 2 1 1√
(

2π x 6πix 6πix

Ψ(x) = e −
L e− L L

L

)

+ √ √
L

(

e + e L

3 2i 3 2

)

. (1.34)

We then recognize that we have

2 1 2 1 1 1
Ψ(x) =

√

ψ1(x)−
√

ψ−1(x) + √ ψ3(x) +
3 2i 3 2i 3

√ ψ
3

−3(x) . (1.35)

This is our key result: the original wavefunction written as a superposition of momentum eigenstates

ψm(x). We can now give the possible values p of the momentum and their corresponding probabili-

ties P :

2π~
p = , P =

L

∣

√

2 1
,

3 2i

∣2 1
=

6

2π~

∣ ∣

p

∣ ∣

= − , P =
L

∣

∣−
√

2 1 2 1
= ,

∣

3 2i

∣

6
(1.36)

6π~ ∣

√

1 2

∣

p

∣

=
∣

∣

3

∣ 1
= , P = ,

L 3

6π~ ∣

√

1

∣

∣

2
, P =

L

∣

∣

3

∣ 1
p = − ∣

= .
∣

3
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2 Uncertainty

For random variables, the uncertainty is the standard deviation—the square root of the expected value

of the square of deviations from the average value. Let Q be a random variable that takes on values

Q1, . . . , Qn with probabilities p1, . . . , pn, respectively. The expected value is

Q =
∑

piQi , (2.37)
i

and the variance (the square of the standard deviation) is

(∆Q)2 ≡
∑

pi(Qi
i

− 2Q) . (2.38)

This definition makes it clear that if ∆Q = 0, then the random variable is constant: each term in the
¯above sum must vanish, making Qi = Q, for all i. We find another useful expression by expanding

the above definition
(∆Q)2 =

∑

2piQi
i

− 2
∑

piQi
i

Q+
∑

i

piQ
2

= Q2 − 2QQ+Q
2
= Q2 −

(2.39)
2

Q ,

where we used
∑

pi i = 1. Therefore

(∆Q)2 = Q2 − 2
Q . (2.40)

Since, by definition (∆Q)2 ≥ 0, we have the interesting inequality

Q2 ≥ 2
Q . (2.41)

Now let us consider the quantum mechanical case. We have already defined expectation values of
ˆHermitian operators, so we can now mimic the definition (2.40) and declare that the uncertainty ∆QΨ

of an operator in a state Ψ is a real number whose square is given by

(∆Q)2Ψ = 〈 2Q 〉Ψ − (〈Q〉Ψ)2. (2.42)

Sometimes for brevity, we omit the label for the state,

(∆Q)2 = 〈 2Q 〉 − 〈Q〉2 . (2.43)

Claim 1. The uncertainty can also be written as the expectation value of the square of the difference

between the operator and its expectation value:

(∆Q)2 =
〈

(

Q̂− 〈Q̂〉
)2
〉

. (2.44)

Indeed, expanding the right hand side we have

〈

Q̂2 − ˆ2Q〈Q̂〉+ 〈Q̂〉2
〉

= 〈Q̂2〉 − 2〈Q̂〉〈Q̂〉+ 〈Q̂〉2 = 〈Q̂2〉 − 〈Q̂〉2 . (2.45)
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Claim 2 ˆ ˆ. The uncertainty can be written as the integral of the square of the norm of (Q− 〈Q〉)Ψ:

∫

∞ ( 2
(∆Q)2 = dx

∣

∣

Q̂− 〈Q〉
)

Ψ(x)
−∞

∣

∣

. (2.46)
∣ ∣

Indeed to prove this we begin with (2.44) By a very similar proof, we can show this is equivalent to

(∆Q)2 =
〈

(
22

Q̂− 〈Q〉
)

〉

=

∫

dx Ψ∗

(

Q̂− 〈Q〉
)

Ψ . (2.47)

Q̂ 〈Q̂Using the Hermiticity of and the reality of 〉 we can bring one of the two factors to act on Ψ∗:

∗
(

Q̂∆

∫

2
( Q)2 = dx

[

− 〈Q〉
)

Ψ
]

(Q− 〈Q〉)Ψ =

∫

dx

∣

∣

(

Q̂− 〈Q〉
)

Ψ
∣

∣

. (2.48)

This completes the proof of claim 2.

∣ ∣

If ∆Q = 0, then by claim 2, we must have that for all x:

(Q− 〈Q〉)Ψ(x) = 0 , → Q̂Ψ(x ˆ) = 〈Q〉Ψ(x) . (2.49)

We see that Ψ is an eigenstate of Q̂, which indeed means there is no uncertainty in the measurement.
ˆ ˆ ˆOf course if Ψ is an eigenstate of Q then again QΨ = 〈Q〉Ψ and the uncertainty vanishes. All in all,

we have established the equivalence

Q̂∆ Ψ = 0 ⇐⇒ ˆΨ is an eigenstate of Q . (2.50)

Andrew Turner transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this

document.
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