
MITOCW | watch?v=jd4es6Bo600

PROFESSOR: Find our final solution, we just have to match the equations. So Psi continues at x equals a.

And what do we have? Well from two, you have cosine of ka. And from four you would have a

equals e to the minus ka. This is the value of this-- so the interior solution at x equals a must

match the value of the exterior solution of k equals a. Psi prime must be continuous at x

equals a as well.

Well what is the derivative of this function? It's minus the sine of this. So it's minus k sine of kx,

that becomes ka, is equal to the derivative of that one, which is minus Kappa A e to that minus

Kappa little a. Two equations, and how many unknowns? Well there's A and some information

about Kappa and k. And the easiest way to eliminate that is to divide them. So you divide the

bottom equation by this equation.

So what do we get? Divide the bottom by the top. Minus k and and the minuses cancel, we

can cancel those minus signs and you get k tan ka is equal to Kappa. But you already are

convinced, I hope, on the idea that we should not use equations that have units. So I will

multiply by little a and a little a to get a [INAUDIBLE] size, and therefore, the right hand side

becomes Xi equals, and the left side become Eta tan Eta.

OK, I want to make a little comment about these quantities already. So all the problem has

turned out into the following. You were given a potential and that determines a number z0. If

you know the width and everything, you know z0. Now you have to calculate Eta and Xi. If you

know either Eta or Xi, you know Kappa or k. And if you know either k or Kappa, since you know

v0, you will know the energy.

So it's kind of neat to express this more clearly, and I think it's maybe easier if one uses Xi.

And look at Xi squared is Kappa squared times a squared. And what is Kappa squared, it's

over there. 2m absolute value of e, a squared over h bar squared. Now you want to find e,

you're going to get in some units. Even e is nice to have it without units. So I will multiply and

divide by v0. 2m v0 a squared over h squared, absolute value of e over v0.

After all, you probably prefer to know e over v0, which tells you how proportional the energy is

to the depth of the potential. And this is your famous constant z0. So e over v0 is actually

equal to Xi over z0 squared. And this is something just to keep in mind. If you know Xi, you

certainly must know z0, because that's not in your potential, and then you know how much is

the energy. All very convenient things.



So punchline for solutions. So what do we have? We have two equations. This equation

maybe should be given a number. Xi equals 8 at tan Eta and Eta and Xi squared giving you z

squared. So how do we solve it? We solve it graphically. We have Psi, Eta, and then we say,

oh, let's try to plot the two equations. Well this is a circle. Eta squared plus Psi squared. Now Xi

and Eta must be positive, so we look at solutions just in this quadrant. Let's put here pi over 2.

Pi 3 pi over 2, 2 pi, and here is Eta and there is Xi.

Well this is a circle, as we said, but let's look at this. Xi equals Eta tan Eta. That vanished as

Eta goes to 0 and will diverge at Eta equals pi over 2. So this part, at least, looks like this. And

then it will go negative, which don't care, from this region, and then reach here at pi. And after

pi, it will go positive again and it will reach another infinity here. And then at 3 pi, at 2 pi, it will

go again and reach not another infinity like that.

So these are these curves. And the other curve, the circle, is just a circle here. So, for

example, I could have a circle like this. So the radius of this circle is radius z0. And there you

go, you've solved the problem. At least intuitively you know the answer. And there's a lot of

things that come out of this calculation. If the radius z0 is 3 pi over 2, for example, and the

radius z0 represents some potential of some depth and width, there will be just two solutions.

These are these solutions. These points represent values of Xi and values of Eta, from which

you could read the energy. In fact, you can look at that state and say, that's the state of largest

Xi, and therefore it's the state of the largest absolute value of the energy. It's the most deeply

bound state. Then this is next deeply bound state. So there's two bounce states in this case.

Interestingly, however shallow this potential might be, however small, z0, the circle, will always

have one intersection, so there will always be at least one solution.

That's the end of that story. Let me say that for the odd case, odd solutions, I will not solve it.

It's a good thing to do in recitation or as part of the home work as well. The answer for the odd

case is that Psi is equal to minus Eta [? Cot ?] Eta. And in that case, I'll give you a little preview

of how the this [? Cot ?] looks. It looks like this. And then there are more branches of this

thing. So for the odd solution, you have these curves. And if you have a circle, sometimes you

don't have a solution. It doesn't intersect this.

So these odd solutions, you will see and try to understand, they don't always exist. You meet a

potential that is sufficiently deep to get an odd solution. And then the odds and even solutions

will interweave each other and there will be a nice story that you will explore in a lot of detail.



But the is, you've reviewed the problem to unit free calculation, in which you can get the

intuition of when solutions exist and and when they don't. But solving for the particular

numbers are transcendental equations, and you need a computer to solve.


