
Lecture 7

B. Zwiebach

February 28, 2016

Contents

1 Wavepackets and Uncertainty 1

2 Wavepacket Shape Changes 4

3 Time evolution of a free wave packet 6

1 Wavepackets and Uncertainty

A wavepacket is a superposition of plane waves eikx with various wavelengths. Let us work with

wavepackets at t = 0. Such a wavepacket is of the form

1 1
Ψ(x, 0) = p

Z
Φ(k)eikxdk. (1.1)

2π −1

If we know Ψ(x, 0) then Φ(k) is calculable. In fact, by the Fourier inversion theorem, the function

Φ(k) is the Fourier transform of Ψ(x, 0), so we can write

1 1
Φ(k) = p

Z
Ψ(x, 0)e−ikxdx. (1.2)

2π −1

Note the symmetry in the two equations above. Our goal here is to understand how the uncertainties

in Ψ(x, 0) and Φ(k) are related. In the quantum mechanical interpretation of the above equations one

recalls that a plane wave with momentum ~k is of the form eikx. Thus the Fourier representation of

the wave Ψ(x, 0) gives the way to represent the wave as a superposition of plane waves of different

momenta.
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Figure 1: A Φ(k) that is centered about k = k0 and has width ∆k.

Let us consider a positive-definite Φ(k) that is real, symmetric about a maximum at k = k0, and has

a width or uncertainty ∆k, as shown in Fig. 1. The resulting wavefunction Ψ(x, 0) is centered around

x = 0. This follows directly from the stationary phase argument applied to (1.1). The wavefunction

will have some width ∆x, as shown in Fig. 2. Note that we are plotting there the absolute value

j|Ψ(x, 0)j| of the wave packet. Since Ψ(x, 0) is complex, the other option would have been to plot the

real and imaginary parts of Ψ(x, 0).
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Figure 2: The Ψ(x, 0) corresponding to Φ(k) shown in Fig. 1, centered around x = 0 with width ∆x.

Indeed, in our case Ψ(x, 0) is not real! We can show that

Ψ(x, 0) is real if and only if Φ�(−k) = Φ(k) . (1.3)

Begin by complex conjugating the expression (1.1) for Ψ(x, 0):

1 1 1 1
Ψ�(x, 0) = p

Z
Φ�(k)e−ikxdk = p Φ�( k)eikxdk . (1.4)

2π −1 2π

Z
−

−1

In the second step we let k ! −k in the integral, which is allowable because we are integrating over

all k, and the two sign flips, one from the measure dk and one from switching the limits of integration,

cancel each other out. If Φ�(−k) = Φ(k) then

1 1
Ψ�(x, 0) = p

Z
Φ(k)eikxdk = Ψ(x, 0), (1.5)

2π −1

as we wanted to check. If, on the other hand we know that Ψ(x, 0) is real then the equality of Ψ� and

Ψ gives
1 1
p Φ�(−k)eikx

1 1
dk = p Φ(k)eikxdk . (1.6)

2π −1 2π −1

This is equivalent to

Z Z
1 1
p Φ�( k) Φ(k) eikxdk = 0 . (1.7)

2π
− −

−1

This equation actually means that

Z
the

(|
object o

�{z
ver the

}
brace must vanish. Indeed, the integral is

computing the Fourier transform of the object with the brace, and it tells us that it is zero. But a

function with zero Fourier transform must be zero itself (by the Fourier theorem). Therefore reality

implies Φ�(−k) = Φ(k), as we wanted to show.

The condition Φ�(−k) = Φ(k) implies that whenever Φ is non-zero for some k it must also be non-

zero for −k. This is not true for our chosen Φ(k): there a bump around k0 but is no corresponding

bump around −k0. Therefore Ψ(x, 0) is not real and Ψ(x, 0) will have both a real and an imaginary

part, both centered on x = 0, as shown in Fig. 3.

Let’s now get to the issue of width. Consider the integral for Ψ(x, 0)

1
Ψ(x, 0) = p

Z 1
Φ(k)eikxdk , (1.8)

2π −1

and change variable of integration by letting k = k0 + ek, where the new variable of integration k

parameterizes distance to the peak in the momenZtum distribution. We then have

1 1

e
Ψ(x, 0) = p eik0x Φ

�
k i

0 +
2π −1

ek� e k̃x dek. (1.9)
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Figure 3: The real and imaginary parts of Ψ(x, 0).

As we integrate over ek, the most relevant region is

k 2 −∆k , ∆k , (1.10)2 2

because this is where Φ(k) is large. As we sw

e
eep

�
this reg

�
ion, the phase kx in the exponential varies in

the interval

kx 2 −∆kx , ∆kx (for x > 0) , (1.11)2 2

e
and the total phase excursion is

e
∆k x.

�
We will get

�
a substantial contribution to the integral for a

small total phase excursion; if the excursion is large, the integral will get washed out. Thus, we get a

significant contribution for ∆kjxj . 1, and have cancelling contributions for ∆kjxj � 1.

From this, we conclude that Ψ(x, 0) will be nonzero for x 2 (−x0, x0) where x0 is a constant for

which ∆kx0 � 1. We identify the width of Ψ(x, 0) with ∆x := 2x0 and therefore we have ∆k 1∆x2 � 1.

Since factors of two are clearly unreliable in this argument, we simply record

∆x∆k � 1 . (1.12)

This is what we wanted to show. The product of the uncertainty in the momentum distribution and

the uncertainty in the position is a constant of order one. This uncertainty product is not quantum

mechanical; as you have seen, it follows from properties of Fourier transforms.

The quantum mechanical input appears when we identify ~k as the momentum p. This identifica-

tion allows us to relate momentum and k uncertainties:

∆p = ~∆k . (1.13)

As a result, we can multiply equation (1.12) by ~ to find:

∆x∆p � ~ . (1.14)

This is the rough version of the Heisenberg uncertainty product. The precise version requires definining

∆x and ∆p precisely. One can then show that

~Heisenberg uncertainty product: ∆x∆p � . (1.15)2
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The product of uncertainties has a lower bound.

Example: Consider the case where Φ(k) is a finite step of width ∆k and height 1/
p

∆k, as shown in

Fig. 4. Find Ψ(x, t) and estimate the value of ∆x.

Figure 4: A momentum distribution.

Note that the Ψ(x, 0) we aim to calculate should be real because Φ�(−k) = Φ(k). From the integral

representation, Z ∆k

1
Ψ(x, 0) = p

2 1

2π ∆k
2

p eikxdk
− ∆k

∆k

1 eikx 2

= p
2π∆k ix

�
−∆k

2 (1.16)
i∆kx

�
1 e 2

�
=

�
−

∆

e−i
kx

p
2

2π∆k ix

∆kx1 sin
= p 2 ∆

sin ∆kx =

r
k 2 .x 22π∆k 2π ∆kx

2

We display Ψ(x, 0) in Fig. 5. We estimate

Figure 5: The Ψ(x, 0) corresponding to Φ(k).

2π
∆x � ! ∆x∆k � 2π . (1.17)

∆k

2 Wavepacket Shape Changes

In order to appreciate general features of the motion of a wave-packet we looked at the general solution

of the Schrödinger equation

1 1
Ψ(x, t) = p

Z
Φ(k)ei(kx−ω(k)t)dk , (2.18)

2π −1
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and under the assumption that Φ(k) peaks around some value k = k0 we expanded the frequency ω(k)

in a Taylor expansion around k = k0. Keeping terms up to and including (k � k0)2 we have

dω ��� 1 d2ω
ω(k) = ω(k0) + (k � k0) + (k

2
0

� k0)2

dk k dk2

�
. (2.19)

k0

The second term played a role in the determination

��
of the group velocit

��
y and the next term, with

second derivatives of ω is responsible for the shape distorsion that occurs as time goes by. The

derivatives are promptly evaluated,

dω dE p ~k d2ω ~
= = = , = . (2.20)

dk dp m m dk2 m

Since all higher derivatives vanish, the expansion in (2.19) is actually exact as written. What kind of

phase contribution are we neglecting when we ignore the last term in (2.19)? We have

e�iω(k)t = e��� �i
1 (k�k0)2 ~ t
2 m . (2.21)

Assume we start with the packet at t = 0 and evolve in time to t > 0. This phase will be ignorable as

long as its magnitude is significantly less than one:

~
(k � k0)2 t

m
� 1. (2.22)

We can estimate (k � k0)2 � (∆k)2 since the relevant k values must be within the width of the

momentum distribution. Moreover since ∆p = ~∆k we get

(∆p)2t

m~
� 1. (2.23)

Thus, the condition for minimal shape change is

m~
t � . (2.24)

(∆p)2

We can express the inequality in terms of position uncertainty using ∆x∆p � ~. We then get

m
t � (∆x)2 . (2.25)

~

Also from (2.24) we can write
∆p t ~
m

� , (2.26)
∆p

which gives

∆p
t

m
� ∆x . (2.27)

This inequality has a clear interpretation. First note that ∆p/m represents the uncertainty in the

velocity of the packet. There will be shape change when this velocity uncertainty through time

produces position uncertainties comparable to the width ∆x of the wave packet.
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In all of the above inequalities we use � and this gives the condition for negligible shape change.

If we replace � by � we are giving an estimate for some measurable change in shape.

Exercise: Assume we have localized an electron down to ∆x = 10�10m. Estimate the maximum time

t that it may remain localized to that level.

Using (2.25) we have

m(∆x)2 mc2(∆x)2 0.5 MeV
t � = =

� 10�20m2

10�16s. (2.28)
~ ~c � c 200 MeVfm � 3� 108m/s

�

If we originally had ∆x = 10�2m, we would have gotten t � 1s!

3 Time evolution of a free wave packet

Suppose you know the wavefunction Ψ(x, 0) at time equal zero. Your goal is finding Ψ(x, t). This is

accomplished in a few simple steps.

1. Use Ψ(x, 0) to compute Φ(k):

1 1
Φ(k) = p

Z
dxΨ(x, 0)e�ikx . (3.1)

2π �1

2. Use Φ(k) to rewrite Ψ(x, 0) as a superposition of plane waves:

1
Ψ(x, 0) = p

2π

Z 1
Φ(k)eikxdk . (3.2)

�1

This is useful because we know how plane waves evolve in time. The above is called the Fourier

representation of Ψ(x, 0).

3. A plane wave ψ (x, 0) = eikx evolves in time into ψ (x, t) = ei(kxk k
�ω(k)t) with ~ ~2

ω = k2
. Using2m

superposition we have that (3.2) evolves into

1 1
Ψ(x, t) = p

Z
Φ(k)ei(kx�ω(k)t)dk. (3.3)

2π �1

This is in fact the answer for Ψ(x, t). One can easily confirm this is the solution because: (i) it

solves the Schrödinger equation (check that!) and (ii) setting t = 0 in Ψ(x, t) gives us the initial

wavefunction (3.2) that represented the initial condition.

4. If possible, do the integral over k to find a closed form expression for Ψ(x, t). If too hard, the

integral can always be done numerically.

Example: Evolution of a free Gaussian wave packet. Take

1 2 2
ψa(x, 0) = .

/
p e�x /4a (3.4)

(2π)1 4 a

This is a gaussian wave packet at t = 0. The constanR t a has units of length and ∆x � a. The state

ψa is properly normalized, as you can check that dxjψa(x, 0)j2 = 1.
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We will not do the calculations here, but we can imagine that this packet will change shape as

time evolves. What is the time scale τ for shape changes? Equation (2.25) gives us a clue. The right

hand side represents a time scale for change of shape. So we must have

m
τ � a2 . (3.5)

~

This is in fact right. You will discover when evolving the Gaussian that the relevant time interval is

actually just twice the above time:
2ma2

τ � . (3.6)
~

If we consider the norm-squared of the wavefunction

jΨ�a(x, 0)j2 1 1
= p e�x

2/2a2
, (3.7)

2π a

you will find that after time evolution one has

jΨ�(x, t)j2 1 1
= p �x2/2a2

e (t)
a , (3.8)

2π a(t)

where a(t) is a time-dependent width. The goal of your calculation will be to determine a(t) and to

see how τ enters in a(t).

Andrew Turner transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this

document.
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