
8.04, Quantum Physics I, Fall 2015

FINAL EXAM

Friday December 18, 1:30-4:30 pm

You have 3 hours = 180 minutes.

Answer all problems in the white books provided. Write

YOUR NAME and YOUR SECTION on your white

book(s).

There are six questions, totalling 105 points.

The first three questions are shorter, the last three ques-

tions are longer.

No books, notes, or calculators allowed.

Show your work CLEARLY!
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Formula Sheet

• ~c ≃ 197.3 MeV · fm , m 2
ec ≃ 0.511 MeV , mpc

2 = 938 MeV , e2

~c
≃ 1

137

• Relativity: p = γ mv , E = γmc2 , E2 = p2c2 +m2c4 , γ = 1√ ,
1−β2

β = v
c

• Photons: E = hν , p = h , or E = ~ω , p = ~k
λ

• Wavelengths
h

de Broglie: λ =
h

, Compton: λC =
p

.
mc

• Momentum and position operators

~
p =

i

∂

∂x
, [x, p ] = i~ , p =

~ ~
,

i
∇ [xi, pj ] = i~ δij , [ pi, f(x)] =

i

∂f

∂xi

• Schrödinger equation

∂Ψ
i~
∂t

(x, t) =
(

− ~
2

2

2m
∇ + V (x, t)

)

Ψ(x, t) ,

∂
ρ(x, t) +

∂t
∇ · J(x, t) = 0

~
ρ(x, t) = |Ψ(x, t)|2 ; J(x, t) = Im [Ψ∗

m
∇Ψ]

• Fourier transforms:

1
Ψ(x) = √ 1

d
2π

∫

kΦ(k)eikx , Φ(k) = √
∫

dxΨ(x)e−ikx ,

∫

dx |Ψ(x)
2π

|2 =
∫

dk |Φ(k)|2

1
Ψ(x) =

(2π)
3

1
d

2

∫

3kΦ(k)eik·x , Φ(k) =
(2π)

3
d

2

∫

3xΨ(x)e−ik·x ,

∫

d3x |Ψ(x)|2 =
∫

d3k |Φ(k)|2

1 ∞

2π

∫

eikx
1

dx = δ(k) ,
−∞

∫ ∞

eik·x d3x = δ(3)(k)
(2π)3 −∞

∫ +∞

dx exp
−∞

(

−ax2 + bx
)

=

√

π

a
exp
( b2 )

, when Re(a) > 0 .
4a

• Wavepackets

dω
vgroup = , ∆k∆x

k
≃ 1 , shape preserving : t∆v

d
≤ ∆x

• Hermitian conjugation:

∫

dx (KΨ(x, t))∗Ψ(x, t) =

∫

dxΨ∗(x, t) (K†Ψ(x, t))

If K† = K, then K is Hermitian.
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• Expectation values

〈Q〉(t) =

∫

dxΨ∗(x, t)(QΨ(x, t))

• Time evolution of expectation value. For Q Hermitian

d
i~ ,
d
〈Q Q
t

〉 =
〈

[ H ]
〉

• Commutator identity

[A,BC] = [A,B]C +B[A,C]

• Uncertainty ∆Q of a Hermitian operator Q

(∆Q)2 = 〈Q2〉 − 〈Q〉2 =
〈

(Q− 〈Q〉)2
〉

• Uncertainty principle: ∆x∆p ≥ ~

2

∆x =
∆√ ~

and ∆p =
2

√ 1
for ψ

2∆
∼ exp

(

− x2

2 ∆2

)

• Stationary state:

~
2

Ψ(x, t) = ψ(x)e−iEt/~ , −
2m

d2
ψ(x) + V (x)ψ(x) = E ψ(x)

dx2

• Infinite square well
{

0 , for 0 < x < a,
V (x) = ∞ otherwise

ψn(x) =

√

2

a
sin

nπx

a
, En =

~
2π2n2

, n = 1, 2, . . .
2ma2

• Finite square well bound states: E ≤ 0
{

−V0 , for x
V (x) =

| | < a, V0 > 0

0 for |x| > a

2m(E + V 2

η2 ≡ 0)a 2
, ξ2

m

~2

|E|a2≡ 2
, z2

mV

~2 0 ≡ 0a
2

~2

→ |E|
V0

=
ξ2
, ξ2 + η2 = z2

z2 0
0

Even solutions: ξ = η tan η

Odd solutions: ξ = −η cot η

• Delta function potential:

mα2

V = −α δ(x), α > 0, Bound state: E = −
2~2
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• Harmonic Oscillator

1
Ĥ =

1
p̂2 +

2m
ˆmω2x̂2 = ~ω (N + 1

2
ˆ) , N = â†â

2

â =

√

mω

2~

(

x̂+
ip̂

mω

)

, â† =

√

mω

2~

(

x̂− ip̂
,

mω

)

x̂ =

√

~
(â + â†) , p̂ = i

2mω

√

mω~
(â† − â) ,

2

x, p i~ , a, a† , N̂ , a −a , N̂[ˆ ]̂ = [ˆ ˆ ] = 1 [ ˆ ] = ˆ [ , â† ] = â† .

ω
âφ0 = 0 , φ0( ) =

(m
x

1

π~

) /4

exp
( mω− x2

2~

)

.

1
φn = √ (a†)nφ0

n!

Ĥ φn = En φn = ~ω
(

n + 1 φ
2

)

n , N̂ φn = nφn , (φm , φn) = δmn

â†φn =
√
n+ 1φn+1 , â φn =

√
nφn−1 .

• Positive energy states

~
ψ(x) = Aeikx +Be−ikx k

, J =
m

(

|A|2 − |B|2
)

, E =
~
2k2

2m

• Scattering in 1D. V (x) = ∞ for x ≤ 0. Solution φ(x) = sin kx when V = 0.

ψ(x) = eiδ sin(kx+ δ) , x > R (R is the range)

Scattered wave: ψ = φ+ ψs

ψ i
s = Ase

kx , As = eiδ sin δ

dδ
Time delay: ∆t = 2~

dE
→ 1

R

dδ ∆t
=

dk free transit time

1
Nbound = δ(0)− δ(∞)

π

Resonances: Rapid growth in δ

(

, large time d

)

(Levinson’s theorem)

elay, large amplitude in the inner region.
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• Orbital angular momentum

L̂x = ŷ p̂z − ˆ ˆẑ p̂y , Ly = ẑ p̂x − x̂ p̂z , Lz = x̂ p̂y − ŷ p̂x .

L̂ , L̂ i~ L̂ , L̂ , L̂ i~ L̂ L̂[ x y ] = z [ y z ] = x , ˆ[ ~ ˆ
z , Lx ] = i Ly .

L̂2 ≡ L̂ ˆ
xL ˆ

x + L ˆ
yL ˆ

y + LzL̂z , ˆ[L2 , L̂i ] = 0

∇2 1
=
r

∂2

∂r2
r +

1

r2

(

∂2

∂θ2
+ cot θ

∂

∂θ
+

1 ∂2

sin2 θ ∂φ2

)

∂
L̂2 = − 2

~

(

2 ∂ 1 ∂2
+ cot θ +

∂θ2 ∂θ sin2 θ ∂φ2

)

~
L̂z =

i

∂

∂φ
; L̂± = ~e±iφ

(

± ∂

∂θ
+ i cot θ

∂

∂φ

)

• Spherical Harmonics

Y (θ, φ) ≡ N Pm i
ℓ,m ℓ,m ℓ (cos θ)e mφ

L̂z Y ~ℓm = mYℓm

L̂2 Yℓm = 2
~ ℓ(ℓ+ 1) Yℓm

∫ 2π 1

dΩY ∗
ℓ m (θ, φ) Yℓm(θ, φ) = δℓ′,ℓδm′′ ′ ,m ,

∫

dΩ =

∫

dφ

∫

d(cos θ)
0 −1

1
Y0,0(θ, φ) = √

4π
; Y1,±1(θ, φ) = ∓

√

3

8π
sin θ exp(±iφ) ; Y1,0(θ, φ) =

√

3
cos θ

4π

• Central potentials: V (r) = V (r)

u(r)
ψ(r, θ, φ) = Yℓm(θ, φ)

r

(

~
2 d2 ~

2 ℓ(ℓ+ 1)− + V (r) +
)

u(r) = Eu(r)
2m dr2 2mr2

u(r) ∼ rℓ+1 , as r → 0 .
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• Hydrogen atom:
p2 Ze2

H =
2m

−
r

Z2e2 1 ~
2 e2

En = − , a0 = ≃ 0.529× 10−10m , 13.6 eV
2a 2 2

0 n me 2a0
≃

ℓ Zr

ψn,ℓ,m(~x) = A
(

r r
0

)

(

Polynomial in
0

of degree n− (ℓ+ 1)
)

e
−

na0 Yℓ,m(θ, φ)a a

n = 1, 2, . . . , ℓ = 0, 1, . . . , n− 1 , m = −ℓ, . . . , ℓ

unℓ(r)
ψn,ℓ,m(~x) = Yℓ,m(θ, φ)

r

2r
u1,0(r) = exp( r/a0)3/2

a0
−

2r r
u2,0(r) = 1 exp( r/2a0)

(2a0)3/2

(

−
2a0

)

−

1 1 r2
u2,1(r) = √ exp( r/2a0)

3 (2a 3
0) /2 a0

−
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1. Virial Theorem for one-dimensional potentials. [15 points]

(a) Let ψ(x) be an energy eigenstate. Explain why the expectation value [H,Ω] of

the commutator of H with an arbitrary operator Ω vanishes on the sta

〈

te ψ.

〉

(b) Choose Ω = xp, and take
p2

H = + V (x) .
2m

Use the claim from part (a) to find a relation between the expectation value 〈T 〉
of the kinetic energy and the expectation value of a combination of x and the

derivative V ′(x) of the potential with respect to its argument. Both expectation

values are taken on an energy eigenstate.

(c) What does your result in (b) imply for the relation between 〈T 〉 and 〈V 〉 for the
case of the one-dimensional harmonic oscillator?

2. Electron orbit in the Hydrogen Atom [15 points]

Throughout this problem we consider a hydrogen atom with fixed principal quantum

number n, with ℓ = n− 1, and m = n− 1. The value n is arbitrary and possibly large.

(a) Write the wavefunction ψn,ℓ,m(r, θ, φ) in terms of the relevant spherical harmonic

and a radial factor fully determined except for an overall unit-free normalization

constant N .

(b) Give, up to normalization, the radial probability density P (r) for which P (r)dr

is the probability to find the electron in the interval (r, r + dr). For what value

of r is P (r) maximum? For large n this is actually a rather sharp maximum.

(c) It is known that, up to normalization,

|Y (θ, φ)|2 ℓ
, ≃ 2
ℓ ℓ (sin θ) .

Sketch |Yℓ,ℓ|2 as a function of θ ∈ [0, π] when ℓ is a large integer. Describe in

words and/or with a picture, the locus where the electron is likely to be found for

n large and ℓ = m = n− 1.
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3. Finding the outgoing wave-packet [15 points]

In a one-dimensional scattering problem with a potential of range R we write the

solution ψ(x) for x > R as

ψ(x) = eiδ(k) sin
(

kx+ δ(k)
)

, x > R .

(a) Decompose this ψ(x) into the sum of an incident wave ψinc(x) traveling towards

x = 0 and an outgoing wave ψout(x) traveling away from x = 0.

(b) We send in a localized wave-packet Ψinc(x, t) given by

∞

Ψinc(x, t) =

∫

dk f(k) e−ikxe−iE(k)t/~ , x > R ,
0

with f(k) a function whose magnitude peaks sharply for k = k0 > 0. Write an

analogous expression for the associated out-going wave packet Ψout(x, t).

(c) Use the stationary phase approximation to find the relation between x and t that

describes the motion of the outgoing packet Ψout(x, t).
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4. Towards perfect bomb detection [20 points]

We modify the Mach-Zehnder setup to increase towards 100% the fraction of Elitzur-

Vaidman (EV) bombs that can be vouched to work without detonating them. An EV

bomb is triggered by a photon detector: if operational any photon incident on the

detector will make the bomb explode, if defective the detector lets all photons through

and the bomb does not explode.

To improve detection we use a high reflectivity beam-splitter, henceforth called BS,

represented by a two-by-two unitary matrix U of the form

π

=

(

cos
U 2N

i sin π
2N

i sin π
2N

cos π
,

2N

)

with N some large, fixed, positive integer. Note that BS is a beam splitter with

reflectivity R and transmissivity T given by

π
R =

(

cos
2N

)2

, T =
(

sin
π

2

)2

, R + T = 1 .
N

We will imagine the beamsplitter BS placed vertically, with a photon to the left of BS

represented by

(

1
)

0
and a photon to the right of BS represented by

( )

. This holds
0 1

both for photons moving towards or away from BS.

s
U o

(

co α i sinα
seful f rmula:

i sinα cosα

)(

cosβ i sin β cos(α + β) i sin(α + β)
= .

i sin β cos β

) (

i sin(α+ β) cos(α + β)

)

(a) Calculate the k-th power Uk of the matrix U .

(b) We now construct a cavity in which the beam-splitter BS is placed in between

perfectly reflecting mirrors M1 and M2 at equal distances to the left and to the

right. A photon is sent in from the left, as shown in the figure. The photon will

hit BS and split, the reflected and transmitted components will bounce off the

mirrors and hit BS a second time, and so on and so forth.
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After k hits of the BS what is the probability pL(k) that the photon will be found

on the left side of the cavity and what is the probability pR(k) that it will be

found on the right side of the cavity?

What are those probabilities for k = N?

(c) A photon detector is inserted on the right side of the cavity, so that any photon

reaching the right side will be detected (and absorbed!). As before, a photon is

sent in from the left. After waiting for the time needed for N hits on BS, what is

the probability PL(N) that the photon will be found on the left side of the cavity?

What is the probability PD(N) that the photon has been detected?

(d) Estimate PL(N) and PD(N) in the limit as N is large. Helpful formulae: cos ǫ ≃
1− 1ǫ2 , (1 + ǫ)k ≃ 1 + kǫ for ǫ sufficiently small.

2

(e) Given an EV bomb, we insert it on the right side of the cavity. We send in a

photon from the left and wait for the time needed for N hits of the BS. At that

point, if the lab does not blow up, we look for the photon.

i. What can we conclude if the photon is found on the left side of the cavity?

ii. What is the probability PE(N) that an operational EV bomb will explode in

this experiment? Give an approximate value for N = 250.
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5. Infinite square well with extra dimension = a truncated cylinder [20 points]

A particle in a one-dimensional infinite square well of width a can be thought as a

particle forced to move on a line segment of length a. Consider a particle moving on a

small cylinder of length a. The cylinder has circumference L and it can be represented

as a rectangular region in the (x, y) plane, with the y coordinate along the circumference

of the cylinder and the horizontal lines with arrows identified:

The system is described by the two-dimensional Schrödinger equation (SE) with a

potential that vanishes in the rectangle {(x, y) : 0 ≤ x ≤ a , 0 ≤ y ≤ L}, and is infinite

on the vertical edges at x = 0 and x = a.

(a) Perform separation of variables in the SE and give the two equations that help

determine the energy eigenstates. State the boundary conditions that apply.

(b) Solve for the energy eigenvalues Enℓ and normalized eigenstates ψnℓ(x, y), where

n and ℓ are quantum numbers for the x and y dependence, respectively. State

precisely the ranges n and ℓ run over.

(c) What is the ground state energy of the particle?

(d) Assume henceforth that a and L are such that no accidental degeneracies occur

(accidental degeneracies are those that require special relations between a and L).

What is the list of energy eigenvalues for the particle in the cylinder that coincide

with those for the one-dimensional segment x ∈ [0, a].

(e) What are (or is) the lowest energy levels that exist on the cylinder but do not

exist in the segment?

(f) The y dimension that turns the segment into a cylinder may be considered as a yet

undetected small extra dimension. Suppose the size L of the extra dimension is

about 1000 times smaller than the size a of a small interval where an experimenter

has localized a particle. Assume also that the length a and the particle mass m

are such that
~
2

= 1 eV.
2ma2

Estimate the minimum energy that the experimenter needs to explore to find

evidence for the extra dimension?
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6. Resonant transmission across two delta functions [20 points]

Consider a potential with two positive-strength delta functions, one at x = −a and
another at x = a:

V (x) = gδ(x+ a) + gδ(x− a) .

Note the unit-free combination λ that represents the effective strength of the potential:

mag
λ = 0

~2
≥ .

In solving the general scattering problem of a particle incident from the left one sets
up a wavefunction



Aeikx +Be−ikx

ψ(x) =


 , x < −a ,
Ceikx +De−ikx ,

ikx

|x| < a ,

Fe , x > a .

Here A,B,C,D, F are complex c





onstants that must be adjusted for this to be a solution

of the time-independent Schrödinger equation. We are interested in finding the energies
for which there is resonant transmission, namely, the transmission coefficient is one!

(a) Which of the complex constants in the above ansatz for ψ should vanish for
resonant transmission? Explain briefly.

(b) Assume this constant vanishes and find the four equations that implement the

boundary conditions. Clean them up and put them in the form:

C +D e··· =
·

· ·
C +D e· ·

·
=

C −D e···
· · ·

= · · ·
C −D e··· = · · ·

The expressions indicated by dots should be written in terms of ka, λ, constants

in the ansatz for ψ and numerical constants.

(c) We now claim that the existence of a solution for the above equations requires

ξ cot ξ = −2λ , with ξ = 2ka . (1)

You need not prove this! Show a plot of ξ cot ξ for ξ ∈ [0, 3π]. Show the −2λ

line in the plot for both very small and very large λ. For λ ≪ 1 what are the
approximate values of ka for perfect transmission. For λ ≫ 1 what are the

approximate values of the ka for perfect transmission?

(d) Under condition (1) one can prove that

C

D
= − 1 λ

, C =
cos(2ka)

(

1 + A
ika

)

.

Consider the case of λ≫ 1 and the first resonant transmission. Find an approx-
imate formula for ψ in the region |x| < a and setting A = 1 do a rough plot of

|ψ(x)|2 for all x. Comment on the features of your plot!
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