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1 The Step Potential

Figure 1: The step potential.

We now begin our detailed study of scattering states. These are un-normalizable energy eigenstates.

They simply cannot be normalized, just like momentum eigenstates. These energy eigenstates are

not states of particles, one must superpose scattering states to produce normalizable states that can

represent a particle undergoing scattering in some potential. Here we examine the step potential

(Figure 1), defined by (
0 , x < 0 ,

V (x) = (1.1)
V0 , x � 0 .

Our solutions to the Schrödinger equation with this potential will be scattering states of definite

energy E. We can consider two cases: E > V0 and E < V0. In both cases the wavefunction extends

infinitely to the left and is non-normalizable. Let us begin with the case E > V0.
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2 Step Potential with E > V0

Figure 2: The energy E of the stationary state is greater than the step V0. The full x axis is classically allowed.

The stationary state with energy E is of the form

~Ψ(x, t) = ψ(x)e−iEt/ , (2.2)

and we will focus first on the unknown ψ(x). In order to write a proper ansatz for ψ(x) we visualize a

physical process in which we have a wave incident on the step barrier from the left. Given such a wave

traveling in the direction of increasing x, we would expect a reflected wave and a transmitted wave.

The reflected wave, moving in the direction of decreasing x, would exist for x < 0. The transmitted

wave, moving in the direction of increasing x, would exist for x > 0. The ansatz for the energy

eigenstate must therefore contain all three pieces:(
Aeikx +Be−ikx x < 0 ,

ψ(x) = (2.3)¯
Ceikx x > 0 .

Recall that eikx, with k > 0, represents a wave moving in the direction of increasing x, given the

universal time dependence above. Therefore A is the coefficient of the incident wave, B is the coefficient

of the reflected wave, and C is the coefficient of the transmitted wave. The waves for x < 0 have
¯wavenumber k and the wave for x > 0 has wavenumber k. These wavenumbers are fixed by the

Schrödinger equation

2 2mE 2m(E V )¯ 0
k = , k2 =

~2

�
. (2.4)

~2

There are two equations that constrain our coefficients A,B, and C: both the wavefunction and

its derivative must be continuous at x = 0. With these two conditions we can solve for B and C in

terms of A. This is all we could expect to do: because of linearity the overall scale of these three

coefficients must remain undetermined. In fact, we can think of A as the input value and B and C as

output values. Let us begin:

� ψ(x) must be continuous at x = 0. Thus

A+B = C . (2.5)

� ψ′(x) must be continuous at x = 0. Thus

k̄
ikA� ¯ikB = ikC ! A�B = C . (2.6)
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Solving for B and C in terms of A, we get

− ¯B k k C 2k
= , = . (2.7)

A k̄ A ¯k + k + k

¯If A is real B and C are real. For E = V0, we have k = 0 and equations (2.7) give B = A and C = 2A.

Therefore, for E = V0 the energy eigenstate is (
2A cos(kx) x < 0 ,

E = V0 : ψ(x) = (2.8)
2A x > 0 ,

and looks like this:

Figure 3: Energy eigenstate for E = V0.

We get further insight into the solution by evaluating the probability current to the left and to the

right of the x = 0 step. Recall the form of the probability current for a wavefunction ψ is

~
J = Im

m

�
∂ψ

ψ∗
∂x

�
(2.9)

A short calculation shows that the current JL to the left of the step is

~k
JL =

m

There is no interference ar

(
2 ~jAj2 k ~k− jBj
�

= JA − JB , J = jAj2 , J 2
A B = jB . (2.10)

m m
j

ising from the incident and reflected waves. The total current to the left of

the step is simply the current JA associated with the incident wave minus the current JB associated

with the reflected wave. The current JR to the right of the step is

~k̄
jR =

m
jCj2 = JC . (2.11)

In any stationary solution there cannot be accumulation of probability at any region of space because

the probability density ρ is manifestly time-independent. While probability is continuously flowing
∂ρin scattering solutions, it must be conserved. From the conservation equation ∂J + = 0, the time∂x ∂t

independence of ρ implies that the current J must be x-independent. In particular, our solution (2.7)

must imply that JL = JR. Let us verify this:

~k ~
JL =

( ¯ 2k kjA − k
m

j2 − jBj2
�

=

�
1−

�
A 2

m ¯� � k + k
j j

~ ¯k 4kk ~k̄ 4k2

� �
(2.12)

=
m ¯(k + k)2

jAj2 ¯= A 2 = ~k C
m ¯(k + k)2

j j j j2 = JR ,
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as expected. The equality of JL and JR implies that

J J
JA � JB = JC ! JA = JB + JC ! B C

1 = + . (2.13)
JA JA

We now define the reflection coefficient R to be the ratio of the probability flux in the reflected wave

to the probability flux in the incoming wave:

JB jBj2
�
k � ¯ 2k

R � = = 1
J Aj2 ¯
A j k + k

�
� . (2.14)

This ratio happens to be the norm squared of the ratio B/A, and it is manifestly less than one, as it

should be. We also define the transmission coefficient T to be the ratio of the probability flux in the

transmitted wave to the probability flux in the incoming wave:

¯J
T � C k j k̄

=
jC 2 ¯4k2 4kk

= = . (2.15)
JA k jAj2 k ¯ ¯(k + k)2 (k + k)2

The above definitions are sensible because R and T , given in terms of current ratios, add up to one:

R+ T = 1 , (2.16)

C 2

as follows by inspection of (2.13). Note that T = | |
|A|2 because of wavenumbers to the right and to the

left of the step are not the same.
¯Recall that for E = V0 we found k = 0. In that case we have full reflection: R = 1 and T = 0.

Indeed the probability current associated with the constant wavefunction that exists for x > 0 (see

(2.8)) is zero. Additionally we can give an argument from continuity. The coefficients R and T must

be continuous functions of the energy E. For E < V0 we expect T = 0 since the forbidden region is all

of x > 0 and an exponentially decaying wavefuntion cannot carry probability flux. If T = 0 for any

E < V0 it must still be zero for E = V0, by continuity.

3 Step Potential with E < V0
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Figure 4: The step potential barrier.

When E < V0 the region x > 0 is a classically forbidden region. Let us try to solve for the energy

eigenstate without re-doing all the work involved in solving for B and C in terms of A. For this

purpose we first note that the ansatz (2.3) for x < 0 can be left unchanged. On the other hand, for

x > 0 the earlier solution
¯

ψ(x) = Ceikx , k2 2m(E
=

� V0)
, (3.17)

~2
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should become a decaying exponential

ψ(x) = Ce−κx , κ2 2m(V0
=

� E)
. (3.18)

~2

We note that the former becomes the latter upon the replacement

k̄ ! i κ . (3.19)

This means that we can simply perform this replacement in our earlier expressions for B/A and C/A

and we obtain the new expressions. In particular from (2.7) we get

B k iκ
=
�

(3.20)
A k + iκ

Therefore
B i(k κ

=
� iκ) + ik

= =
A i(k + iκ)

�
κ� ik

� e2iδ(E) , (3.21)

with

k E
δ(E) = tan−1

�
κ

�
= tan−1

�r
. (3.22)

V0 � E

�
Since the magnitude of A is equal to the magnitude of B, we have JA = JB and JC = 0. Thus T = 0

and R = 1. As noted above, the ratio B/A is a pure phase. The phase of the numerator κ+ ik is δ(E)

and the phase of the denominator κ � ik is �δ(E), thus the total phase 2δ(E) for the ratio. We did

not absorb the minus sign into the phase; in this way δ(E)! 0 as E ! 0. Note that δ(E) is positive

and does not exceed π/2. In fact a sketch of δ(E) is given in Figure 5.

Figure 5: The phase δ(E) as a function of energy E < V0.

The total wavefunction for x < 0 is interesting

ψ(x) = Aeikx + (�Ae2iδ(E))e−ikx

= Aeiδ(E)
�
e−iδ(E)eikx � eiδ(E)e−ikx (3.23)

= 2iAeiδ(E) sin(kx� δ(E))

�
This means that the probability density is

jψj2 = 4A2 sin2(kx� δ(E)) . (3.24)
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The point x0 > 0 determined by the condition kx0 = δ(E) is the point in the forbidden region where

the extrapolation of the allowed-region solution would vanish. Of course in the forbidden region x > 0,

the probability density jψj2 is a decaying exponential.

Figure 6: Norm squared for the energy eigenstate when E < V0. For x > 0 the probability density decays
exponentially with x. The point x0 is the point where the extrapolation of the x < 0 probability density would
have vanished.

For future use we record the derivative of the phase δ(E) with respect to the energy

dδ(E) 1 1
δ′(E) � =

dE 2

s
. (3.25)

E(V0 � E)

Note that this derivative becomes infinite both for E ! 0 and for E ! V0.

Figure 7: The derivative δ′(E) as a function of energy E < V0.

4 Wavepackets in the step potential

Now we examine the more physical scenario. As we’ve seen with the free particle, the stationary states

are not normalizable, and physical particles are actually represented by wavepackets built with an

infinite superposition of momentum eigenstates. We can do similarly thing with our energy eigenstates.
ˆWe will consider energy eigenstates with E > V or equivalently with k2 > k2

0 , where

k2 2mE 2mV0 ˆ= > k2 , (4.26)
~2 ~2

�

and we will superpose them. To begin we write the energy eigenstates in a slightly different form,

including the time dependence. Setting A = 1 and using the values for the ratios B/A and C/A we

find the solution <8� ¯
eikx ~+ k k

¯ e
ikx e iE(k)t/ , x < 0 ,

k+
−
k
− −

Ψ(x, t) = : (4.27)
2k ¯

eikx e
k+k

−iE(k)t/

�
~

¯ , x > 0 .
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We can form a superposition of these solutions by multiplying by a function f(k) and integrating

over k 8<R∞ −¯
dk f(k)

�
eikx + k k e−ikx iE

ˆ ¯ < 0 ,k
Ψ(x, t) =

�
e− (k)t/~ , x:R k+k

(4.28)

ˆ
∞ ~dk f(k) 2k ¯

eikx t/
¯ e−iE(k) , x > 0 .k k+k

Here f(k) is a real function of k that is essentially zero except for a narrow peak at k = k0. Note that

we have only included momentum components with energy greater than V0 by having the integral’s
ˆlower limit set equal to k. The integral only runs over positive k because only in that case the eikx waves

are moving towards positive x, and are therefore genuine incident waves. The above is guaranteed to

be a solution of the Schrödinger equation.

We can split the solution into incident, reflected and transmitted waves, as follows.

<8Ψinc(x, t) + Ψref (x, t) , x < 0 ,
Ψ(x, t) = : (4.29)

Ψtrans(x, t) , x > 0 .

Naturally both Ψinc(x, t) and Ψref (x, t) exist for x < 0 and Ψtrans(x, t) exists for x > 0. We then

have, explicitly

∞
~Ψinc(x < 0, t) =

Z
dk f(k)eikxe−iE(k)t/ ,

ˆZ k

∞ �
� ¯k k

Ψref (x < 0, t) = dk f(k)

�
e−ikxe−iE(k)t/~ , (4.30)

ˆ ¯
k k + k

Ψtrans(x > 0, ) =

Z ∞ 2k¯ ¯ ¯ ~t dk f(k)

�
eikxe−iE(k)t/ .

ˆ ¯
k

�
k + k

How does the peak of Ψinc(x, t) move? For this we look for the main contribution to the associated

integral which occurs when the total phase in the integrand is stationary for k � k0. We therefore

require
d ~

k
dk

�
2k2 t

x�
2m ~

���� ~k ~k� = 0
k0

! x� 0
t = 0 =) 0

x = t . (4.31)
m m

This is the relation between t and x satisfied by the peak of Ψinc. It describes a peak moving with

constant velocity ~k0/m > 0. Since Ψinc(x, t) requires that x < 0, the above condition shows that we

get the peak only for t < 0. The peak of the packet gets to x = 0 at t = 0. For t > 0, Ψinc(x, t) is not

zero, but it must be rather small, since the stationary phase condition cannot be satisfied for any x

in the domain x < 0.

Consider now Ψref (x, t). This time the stationary phase condition is

d
�

~2k2 t ~� kx�
��� k

= 0 ! 0 ~k0
x+ t = 0 = x

2m k m
0

) =
dk ~

� t . (4.32)
m

The relation represents a peak moving

��
with constant negative velocity � ~k0/m. Since Ψref (x, t)

requires that x < 0, the above condition shows that we get the peak only for t > 0, as it befits a

reflected wave. For t > 0, Ψref (x, t) is not zero, but it must be rather small, since the stationary phase

condition cannot be satisfied for any x in the domain x < 0.
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Finally, let us consider Ψtrans. The stationary phase condition reads:

d

dk

(
k̄x− ~2k2

2m

t

~

)∣∣∣∣
k0

= 0 → dk̄

dk

∣∣∣
k0
x− ~k0

t = 0 (4.33)
m

Using

k̄2 = k2 2mV− 0

~2
→ dk̄

dk
=
k
, (4.34)

k̄
back to the earlier equation we quickly find that

~k̄
Transmitted wave peak: x = t , (4.35)

m

¯with k evaluated for k = k0. Since x > 0 is the domain of Ψtrans this describes a peak moving to the

right with velocity ~k̄/m for t > 0. For t < 0, Ψtrans(x, t) is not zero, but it must be rather small,

since the stationary phase condition cannot be satisfied for any x in the domain x > 0.

In summary, for large negative time Ψinc dominates and both Ψref and Ψtrans are very small. For

large positive time, both Ψref and Ψtrans dominate and Ψinc becomes very small. These situations

are sketched in figures 8 and 9. Of course for small times, positive or negative, all three waves exist

and together they describe the complex process of collision with the step in which a reflected and a

transmitted wave are generated.

Figure 8: At large negative times an incoming wavepacket is traveling in the +x direction.

Figure 9: At large positive times we have a reflected wavepacket traveling in the −x̂ direction and the trans-
mitted wavepacket traveling in the +x̂ direction.

Let us now examine a wavepacket built with energies E < V0. Recall that in this situation

B/A = −e2iδ(E). Therefore for an incident wave, all of whose momentum components have energy less

8



than V0,

Ψinc(x < 0, t) =

Z k̂
~dk f(k) eikxe−iEt/ , (4.36)

0

the associated reflected wavefunction is

k̂
~Ψref (x < 0, t) = �

Z
dk f(k) e2iδ(E)e−ikxe−iEt/ . (4.37)

0

Using the method of stationary phase again to find the evolution of the peak,

d
�

Et
���� ~2k0 ~k

k � 0t
2δ(E)� x� � = 0 ! 2δ′(E) x� = 0 . (4.38)

dk ~ k m m
0

From this we quickly find
~k

x = � 0 �
t� 2~ δ′(E)

m

�
, (4.39)

where the derivative is evaluated at E(k0). The reflected wave packet is moving towards more negative

x as time grows positive. This is as it should. But there is a time delay associated with the reflected
~packet, evident when we compare the above equation with x = � k0 t. The time delay is given bym

time delay = 2~ δ′(E) . (4.40)

The derivative δ′(E) was evaluated in (3.25) and it is positive. We see that the delay is particularly

large for wave packets of little energy or those with energies just below V0.

We conclude the analysis of the step potential by discussing what it means to observe the particle

in the forbidden region. It would be contradictory if the observer could make the following two

statements:

1. The particle is located in the forbidden region.

2. The particle has energy less than V0.

Both statements taken to hold simultaneously would imply that the particle has negative kinetic

energy, something that is inconsistent. In particular with E < V0 we would have a negative kinetic of

magnitude V0 � E.

Figure 10: The step potential with potential energy V0. If we could observe a particle in the forbidden region
with energy E then the kinetic energy would be negative.
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First note that in the solution the particle penetrates into the forbidden region a distance of about

1/κ, where, you will recall that

2 2m(V0 E
κ =

� )
. (4.41)

~2

To be sure the particle is in the forbidden region its position uncertainty ∆x must be smaller than the

penetration depth:
1

∆x � . (4.42)
κ

The particle acquires some momentum p due to the position measurement:

~
p �

∆x
� ~κ . (4.43)

Due to this momentum induced by the position measurement there is some additional contribution E′

to the kinetic energy
p2 ~2κ2

E′ =
2m

� = V0
2m

� E , (4.44)

where we used (4.41). From this inequality we find that the total energy will exceed V0

Etot = E + E′ � E + (V0 � E) = V0 . (4.45)

While the argument is heuristic, it gives some evidence that no negative kinetic energy will be detected

for a particle that is found in the forbidden region.

Sarah Geller transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this docu-

ment.
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