
8.03 Fall 2016 Practice Exam 2 Solution

Problem 1 
a.

∂2ρ

∂t2
= c2

∂2ρ

∂x2
− ω2

pρ. (1)

Plug in ρ(x, t) = a sin(kx− ωt), we get

−ω2 = −c2k2 − ω2
p (2)

Hence

ω =
√
c2k2 + ω2

p (3)

b.

k(ω) =
1

c

√
ω2 − ω2

p. (4)

The phase velocity

v =
ω

k
= c

1√
1− ω2

p

ω2

(5)
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The group velocity

v = (
dk

ω
)−1 = c

√
1−

ω2
p

ω2
(6)

c.

Plug ρ(x, t) = a cos(ωt)e−κx in to the wave equation, we get

−ω2 = c2κ2 − ω2
p (7)

Hence

κ =
1

c

√
ω2
p − ω2 (8)
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Problem 2

a.

The tension force from the string in the vertical direction

Ty = T
dy

dx
|x=0 (9)

balances the external force F (t). Hence the boundary condition is

F0 sin(ωt) + T
dy

dx
|x=0 = 0 (10)

b.

The wave has to satisfy the wave equation:

∂2y

∂x2
=

1

v2
∂2y

∂t2
, (11)

where v2 = T
µ . The general complex solution with a single freqency is

y = f cos(ω′(t− x

v
) + φ1) + g cos(ω′(t+

x

v
) + φ2) (12)

For the steady-state solution to satisfy the boundary condition for arbitrary t, this ω′ has to

equal to ω. Hence the frequency of steady-state solution has angular frequency ω and wavelength

λ =
2πv

ω
. (13)

c.

We don’t need to keep the reflected pulse term, hence just plug

y = f cos(ω(t− x

v
) + φ1) (14)

into the boundary condition

F0 sin(ωt) + T
∂y

∂x
= 0, (15)

we have

F0 sin(ωt) +
Tfω

v
sin(ωt+ φ1) = 0. (16)

We can take φ1 = π, f = F0v
Tω , hence the result steady-state harmonic wave is in the form of

y =
F0v

Tω
cos(ω(t− x

v
) + π), (17)

with amplitude

A =
F0v

Tω
. (18)

Problem 3

a.

The boundary condition is:
∂y

∂x
|x=0 = 0, (19)
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y(L, t) = 0. (20)

The normal modes are then in form of

y(x) = cos(kx), (21)

with condition

cos(kL) = 0. (22)

Hence the normal mode m is

ym = cos(kmx) , km = (m− 1

2
)
π

L
(m = 1, 2, . . . ) (23)

The frequency of a normal mode is related to k by

ω = kv = k

√
T

µ
. (24)

Hence

ωm = (m− 1

2
)
π

L

√
T

µ
, (25)

τm =
2π

ωm
=

2L

m− 1
2

√
µ

T
. (26)

b.

Am =
2

L

∫ L

0
y(x, 0) cos

(
(m− 1

2
)
πx

L

)
dx

=
2

L

∫ L/4+D/2

L/4−D/2
H cos

(
(m− 1

2
)
πx

L

)
dx

=
2H

π(m− 1
2)

[
sin((m− 1

2
)π(

1

4
+
D

2L
))− sin((m− 1

2
)π(

1

4
− D

2L
))

]

=
4H

π(m− 1
2)

cos
(m− 1

2)π

4
sin

(m− 1
2)πD

2L

(27)

c.

Am = 0 when

cos
(m− 1

2)π

4
= 0 (28)

or

sin
(m− 1

2)πD

2L
= 0. (29)

The first condition can never happen for integral m. This is because no normal modes has

ym(L/4) = 0.

The section condition may happen if there’s some m satisfying

(m− 1
2)D

2L
= p (30)
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is an integer.

d.

y(x, t) =
∞∑
m=1

4H

π(m− 1
2)

cos
(m− 1

2)π

4
sin

(m− 1
2)πD

2L
cos

(
(m− 1

2
)
πx

L

)
cos((m−1

2
)
vπ

L
t). (31)

The time factors in each component are chosen to be cos(ωmt), so that the time derivative
∂y
∂t (x, 0) = 0.

e.

τ1 =
4L

v
, t =

τ1
2

=
2L

v
. (32)

The initial configuration of static string can be decomposed to two square pulses traveling in

the opposite direction, each with velocity v, width D and height H
2 . After time t, each of them

have travelled back to the original position, hitting the wall once. Since hitting the wall will

add a π phase shift, or turn the pulse upside down, while hitting the massless ring won’t change

the shape of the pulse, each of the two traveling pulses was turned upside down after time t.

Hence the shape of string at time t = τ1
2 is:

Problem 4

a.

The wave equation on the left:
∂2yL
∂x2

=
µ

T

∂2yL
∂t2

. (33)

The wave equation on the right:
∂2yR
∂x2

=
µ

T

∂2yR
∂t2

. (34)

The boundary condition at x = 0: the vertical component of string tension on the left and right

should balance, hence

T
∂yL
∂x
|x=0− =

T

2

∂yR
∂x
|x=0+ . (35)

We also have the continuity condition:

yL|x=0− = yR|x=0+ . (36)

b.
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There are reflected waves at x = 0 and x = L. The reflected wave at x = 0 does not change

the sign, since the impedance
√
Tµ on the left is larger than the impedance on the right. The

reflected wave at x = L change the sign because it’s a fixed boundary condition at x = L.

Hence these reflected waves have the opposite sign.

c.

We denote

v = v1 =

√
T

µ
. (37)

Hence the wave on the left of x = 0:

yL = f1(x/v − t) + f2(x, t), (38)

where the reflected wave

f2(x, t) = rf1(−x/v − t). (39)

The wave on the right of x = 0:

yR = g(x, t) + g2(x, t). (40)

Here g(x, t) is the transmitted wave through x = 0:

g(x, t) = tf1(x/v − t), (41)

g2(x, t) is the reflected wave from x = L:

g2(x, t) = r2f1((2L− x)/v − t). (42)

Then the boundary condition at x = 0 gives:

T

v
f ′1(−t)−

rT

v
f ′1(−t) =

tT

2v
f ′1(−t)−

r2T

2v
f ′1(2L/v − t). (43)

Since

f1(t ≥ 0) ≡ 0, (44)

and we only consider times t ≤ 2L/v, the last term in (43) vanishes, we have

1− r =
t

2
(45)

and

1 + r = t. (46)

Hence

r =
1

3
, t =

4

3
. (47)

At boundary x = L, we have

g(L, t) + g2(L, t) = 0, (48)

hence

r2 = −t = −4

3
. (49)
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d.

At time t = L
v , the right half of the pulse has passed x = 0, also reflected to the left. The

left half of the pulse is still propagating to the right. Denote the height of the right edge of the

initial pulse by 1, the shape of string at t = L
v is:

x=0 x=L

4/3

2/3

1/3

At the time t = 2L
v , the reflected pulse f2 has traveled back to x = −L, the transmitted

pulse g has reached x = L. The right half of g is already reflected, while the left half is still

propagating to the right. The shape of string at t = 2L
v is:

x=0 x=L

-4/3

1/3

Problem 5

a.

The lowest mode is in the form

y1 = sin(k1x) , k1 =
π

L
. (50)

The wavelength

λ1 = 2L, (51)

frequency

ω1 = vk1 = k1

√
TL

M
=
π

L

√
TL

M
. (52)

b.

The nth mode is in the form

yn = sin(knx) , kn =
nπ

L
. (53)

The wavelength

λn =
2L

n
, (54)

frequency

ωn = vkn = kn

√
TL

M
=
nπ

L

√
TL

M
. (55)
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c.

The modes with yn(L/2) = 0 will be zero, because they are antisymmetric at x = L/2:

yn(L/2− x) = −yn(L/2 + x). (56)

There shouldn’t any contribution from these modes.

Hence the modes n = 2m vanish.

d.

At t = 0, the string has zero speed.

The full function y(x, t):

y(x, t) =
∞∑
n=1

Bn sin
nπx

L
cos

nπvt

L
. (57)

After time T = 2Lv , all the time dependent factors cos nπvtL returns to 1. This is the minimal

time since B1 6= 0.

e.

The initial configuration can be decomposed into two traveling pulses to the opposite direc-

tion with velocity v, height A/2 and the same width as the initial configuration. When it hits

the left or right boundary, it changes sign after reflected.

Hence at the time t = L
4v , the string configuration is:

0 L

which is a straight line.

f.

This time is t = L
4v in the expression (57). Shift the zero point of time to this time, we have

the expression for the 5th mode:

y5(x, t) = B5 sin
5πx

L
cos

5πv(t+ L/4v)

L
= B5 sin

5πx

L
cos

(
5πt

√
T

ML
+

5π

4

)
. (58)

g.

Since all the non-vanishing modes correspond to odd n, the function f(x) in the range

L ∼ 2L should be the opposite of function f(x) in the range 0 ∼ L:

f(x+ L) =

20∑
m=1

Bm sin
(2m− 1)π(x+ L)

L
= −

20∑
m=1

Bm sin
(2m− 1)πx

L
= −f(x) (59)

While the function f(x) in the range 2L ∼ 3L should be the same as function f(x) in the range

0 ∼ L:

f(x+ 2L) =

20∑
m=1

Bm sin
(2m− 1)π(x+ 2L)

L
=

20∑
m=1

Bm sin
(2m− 1)πx

L
= −f(x). (60)
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Hence the shape of string:

0 L 2L 3L

h.

In this new configuration, the lowest mode is in the form

y1 = sin(k1x) , k1 =
π

2L
. (61)

The wavelength

λ1 = 4L, (62)

frequency

ω1 = vk1 = k1

√
TL

M
=

π

2L

√
TL

M
. (63)

i.

The nth mode is in the form

yn = sin(knx) , kn =
(2n− 1)π

2L
. (64)

The wavelength

λn =
4L

(2n− 1)
, (65)

frequency

ωn = vkn = kn

√
TL

M
=

(2n− 1)π

2L

√
TL

M
. (66)

j.

In this case, the function f(x) in the range L ∼ 2L should be the same as function f(x) in

the range 0 ∼ L:

f(2L− x) =
20∑
m=1

Bm sin
(2m− 1)π(2L− x)

2L
=

20∑
m=1

Bm sin
(2m− 1)πx

2L
= f(x) (67)

While the function f(x) in the range 2L ∼ 3L should be the opposite of function f(x) in the

range 0 ∼ L:

f(x+ 2L) =

20∑
m=1

Bm sin
(2m− 1)π(x+ 2L)

2L
= −

20∑
m=1

Bm sin
(2m− 1)πx

2L
= −f(x). (68)

Hence the shape of string:

0 L 2L 3L
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Problem 6

a.

The boundary conditions for the electric field is

~E(0, t) = ~E(L, t) = 0. (69)

Hence the n-th normal mode is

Ey(n)(z) = sin
nπz

L
, (70)

Ey(n)(z, t) = sin
nπz

L
cos

nπct

L
. (71)

b.

The standing wave can be decomposed to:

Ey(n)(z, t) = sin
nπz

L
cos

nπct

L
= Re

[
1

2
ei
nπ
L

(z−ct)− iπ
2 +

1

2
ei
nπ
L

(z+ct)− iπ
2

]
(72)

For a traveling wave component with unit wave vector k̂,

~B =
1

c
k̂ × ~E (73)

Hence

~B = Re

[
ẑ × ŷ1

2
ei
nπ
L

(z−ct)− iπ
2 − ẑ × ŷ1

2
ei
nπ
L

(z+ct)− iπ
2

]
=
x̂

c
cos

nπz

L
sin

nπct

L

(74)

c.

~S =
1

µ0
~E × ~B = − ẑ

µ0
sin

nπz

L
cos

nπz

L
cos

nπct

L
sin

nπct

L
. (75)

〈~S〉 = 0 (76)

UE =
1

2
ε0 ~E

2 =
1

2
ε0 sin2 nπz

L
cos2

nπct

L
(77)

〈UE〉 =
1

4
ε0 sin2 nπz

L
(78)

UB =
1

2µ0
~B2 =

1

2µ0c2
cos2

nπz

L
sin2 nπct

L
=

1

2
ε0 cos2

nπz

L
sin2 nπct

L
(79)

〈UE〉 =
1

4
ε0 cos2

nπz

L
(80)
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Note that

〈UE + UB〉 =
1

4
ε, (81)

which is evenly distributed.

The amplitude of the normal mode is set to be 1 (without unit).

d.

The plot of Ey:

The plot of UE :

~B and UB identically vanish at t = 0 we chose.

However, at another time when ~B and UB does not vanish, the plot of Bx:

The plot of UB:
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