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Problem 1: 16 Points

Figure 1: A perfectly conducting waveguide.

The electric field for a TE mode in an infinitely long (in the x direction) perfectly conducting rectangular

waveguide (a < b) is given by;

~E(x, y, z, t) = E0 cos(kyy + φy) cos(kxx− ωt)ẑ (1)

(1.a)

(4pts) Find ky and φy that satisfy the boundary conditions.

We need to have E‖ → 0 at the boundary with the conductor. The electric field is in the ẑ

direction, so we need E = 0 at (i) y = 0 and at (ii) y = b; (i) implies that φy = ±π2 , so

E ∝ sin(kyy). Condition (ii) implies that ky = nπ
a , where n is some integer greater than zero. So

we may rewrite the electric field as;

E(x, y, z, t) = E0 sin
(nπ
a
y
)

cos (kxx− ωt) ẑ (2)

(1.a)

(1.b)

(4pts) Write down the dispersion relation for this mode of the waveguide.

We can obtain the dispersion relation from the wave equation;

∇2 ~E − 1

c2
∂2 ~E

∂t2
= 0 (3)

Putting the solution for ~E into the wave equation we find;

ω2

c2
= k2

x + k2
y (4)

ω2

c2
= k2

x +
(nπ
a

)2

(5)

⇒ kx =

√
ω2

c2
−
(nπ
a

)2

(6)

(1.b)
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(1.c)

(4pts) What is the lowest frequency that will propagate in this mode?

The lowest frequency that will propagate occurs at n = 1, in this case the dipersion relation

becomes;

kx =

√
ω2

c2
−
(π
a

)2

(7)

so the lowest frequency that results in a non-imaginary wave number is;

ωcutoff =
πc

a
(8)

⇒ fcutoff =
c

2a
(9)

(1.c)

(1.d)

(4pts) What is the magnetic field ~B(x, y, z, t) associated with the electric field of this mode?

We can find the magnetic field associated with this mode by the use of Faraday’s law;

~∇× ~E = −∂
~B

∂t
(10)∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 0 Ez

∣∣∣∣∣∣∣ = −∂
~B

∂t
(11)

E0ky cos(kyy) cos(kxx− ωt)x̂+ E0 sin(kyy)kx sin(kxx− ωt)ŷ = −∂
~B

∂t
(12)

~B(x, y, z, t) = E0

(
ky
ω

)
cos(kyy) sin(kxx− ωt)x̂− E0

(
kx
ω

)
sin(kyy) cos(kxx− ωt)ŷ (13)

(1.d)
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Problem 2: 16 Points

Figure 2: A system of coupled oscillators.

The figure above shows a system of masses. The mass of 2m is connected to an immobile wall with a

spring of constant 2k, while the mass of m is connected to an immobile wall with a spring of constant k.

The masses are then coupled to each other with an elastic band of length L, under tension T = 2kL. The

masses are constrained to move in the x direction only. At equilbrium the masses have the same x position

and the springs are uncompressed. There is no friction or gravity. The displacements from equilibrium are

small enough (x1, x2 � L), so that the tension in the band stays constant.

(2.a)

(5pts) Write down the coupled differential equations describing the displacement of the masses from

equilibrium {x1, x2}.
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For x1 we have from Newton’s law;

2mẍ1 = −2kx1 − T sin θ (14)

Where sin θ = (x1 − x2)/L. Putting this in, we find;

2mẍ1 =

(
−2k − T

L

)
x1 +

T

L
x2 (15)

ẍ1 =

(
− k
m
− T

2mL

)
x1 +

T

2mL
x2 (16)

ẍ1 =
−2k

m
x1 +

k

m
x2 (17)

While for x2 we find;

mẍ2 = −kx2 + T sin θ (18)

mẍ2 =

(
−k − T

L

)
x2 +

T

L
x1 (19)

ẍ2 =
2k

m
x1 −

3k

m
x2 (20)

Now calling ω2
0 = k/m we can rewrite these as;

ẍ1 = −2ω2
0x1 + ω2

0x2 (21)

ẍ2 = 2ω2
0x1 − 3ω2

0x2 (22)

(2.a)

(2.b)

(7pts) Find the normal mode frequencies of the system.

In matrix form we can rewrite the equations of motion (using the ansatz ẍi = −ω2ẍi);[
−2ω2

0 ω2
0

2ω2
0 −3ω2

0

] [
x1

x2

]
= −ω2

[
x1

x2

]
(23)

And solving for the possible values of ω we have;[
−2ω2

0 + ω2 ω2
0

2ω2
0 −3ω2

0 + ω2

] [
x1

x2

]
= 0 (24)(

−2ω2
0 + ω2

) (
−3ω2

0 + ω2
)
− 2ω4

0 = 0 (25)

6ω4
0 − 5ω2

0ω
2 + ω4 − 2ω4

0 = 0 (26)(
4ω2

0 − ω2
) (
ω2

0 − ω2
)

= 0 (27)

So the two possible values of ω are;

ω1 = ω0 =

√
k

m
(28)

and

ω2 = 2ω0 = 2

√
k

m
(29)

(2.b)
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(2.c)

(4pts) On the two figures included on the next page sketch the normal modes of the system, be sure to

clearly indicate both the magnitude and direction of the motion of the masses.

In mode 1 (ω1), shown in the first figure the ratio of the amplitudes of the motion of the masses

is;

x2/x1 = 1 (30)

While in mode 2 (ω2), shown in the second figure, the ratio of the amplitudes of the motion of

the masses is;

x2/x1 = −2 (31)

(2.c)
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Problem 3: 16 Points

(3.a)

(5pts) An optical fiber consists of a solid rod of material with index of refraction nf surrounded by a

cylindrical shell of material with index nc. Find the largest angle θ so that a wave incident on the solid rod

from air with index na remains in the solid rod (express your answer in terms of nf , nc, and na ).

Figure 3: An optical fiber.

All rays in the solid rod which are incident on the cylindrical shell at an angle less than the critical

angle θc = sin−1(nc/nf ) will be trapped in the rod. So the largest angle θ that can be incident

on the rod and remain inside is given by;

na sin θ = nf sin θ2 (32)

θ2 =
π

2
− θc (33)

⇒ sin θ =
nf
na

sin
(π

2
− θc

)
(34)

⇒ θ = sin−1

(
nf
na

sin
(π

2
− θc

))
(35)

Or equivalently, we can write;

na
nf

sin θ = sin θ2 =

√
n2
f − n2

c

nf
(36)

sin θ =

(
nf
na

)
√
n2
f − n2

c

nf

 (37)

θ = sin−1

(
1

na

√
n2
f − n2

c

)
(38)

(3.a)

Figure 4: Path of an extreme ray.
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(3.b)

(4pts) Unpolarized light propagating in vacuum reflects off the surface of a liquid with index n. The

reflected ray strikes a screen 25cm away at a height of 20cm and is observed to be 100% polarized. What is

is n?
If the reflected light is 100% polarized then it must be incident at Brewster’s angle. So we have;

θB = tan−1(n2/n1) = tan−1(n2) =
π

2
− tan−1(20/25) (39)

⇒ n2 = tan
(π

2
− tan−1(4/5)

)
(40)

Or more simply, we can write;

tan−1(n2/n1) = θB (41)

tan θB = 25/20 = 5/4 (42)

⇒ tan(tan−1(n2/n1)) = 5/4 (43)

⇒ n2 = 5/4 (44)

(3.b)

(3.c)

(7pts) Consider a medium in which waves propagate with a dispersion relation

ω2 = ω2
0 +A2k2 (45)

where ω is the wave (angular) frequency, k is the wave number, and ω0 and A are real constants.

(i) What is the range of frequencies ω for which waves can propagate?

(ii) Compute vphase and vgroup. Make a carefully labeled sketch of each as a function of ω in the plots below.

(i) Rearranging the dispersion relation we find that the wave number in terms of the frequency is

given by;

k =
1

A

√
ω2

0 +A2k2 (46)

So the lowest frequency that results in a non-imaginary wave number is ω = ω0, so the range of

frequencies that can propagate are ω0 < ω <∞.

(ii) The phase velocity is given by ω/k, so we find;

vp = ω/k =
ω

1
A

√
ω2 − ω2

0

=
Aω√
ω2 − ω2

0

(47)

While the group velocity is given by dω
dk ;

vg =
dω

dk
= A2 k

ω
= A

√
1−

(ω0

ω

)2

(48)

(3.c)
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Figure 5: The phase/group velocity
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Problem 4: 16 Points

A monochromatic beam is incident on N slits, which results in a intensity pattern as a function of angle

on a screen some distance away as shown in the figure below. Each slit has a width D and the distance

between the centers of the slits is d. The distance between the screen and the slits is very large.

Figure 6: Interference pattern due to N slits.

From the pattern deduce the following:

(4.a)

(6pts) The number of slits N on which the beam is incident. Explain your reasoning.

There are three small bumps between peaks. Therefore, N = 5 (Note that there will be N − 2

small bumps for an N slit interference pattern).
(4.a)

(4.b)

(6pts) The ratio d/D. Explain your reasoning.

First, recall that interference peaks appear at nλ
d , while diffraction minima appear at mλ

D where

n and m are integers. From the interference pattern above, we can see 0th, 1st, 2nd, and 3rd

peaks, but cannot see the 4th peak. This means that 4th peak is cancelled due to the diffraction

minima. So we notice that the 1st diffraction minima and 4th interference peak are at the same

position. Therefore, 4λ
d = λ

D , and therefore d/D = 4.

(4.b)

(4.c)

(4pts) Now suppose that the width of the slits is reduced to ∼ 0, while the intensity of the monochromatic

beam is increased so that the intensity of the central maximum is unchanged. On top of the plot (showing

the original intensity pattern in dashed lines) on the next page, draw the resulting intensity pattern.

We recall from the demonstration in class that as the size of a slit is reduced the diffraction

pattern is broaded, in the limit that the width of the slits goes to zero, the diffraction pattern is

infinitely broadened so that it longer modulates the interference pattern.

(4.c)
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Figure 7: The resulting intensity pattern as D → 0.
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Problem 5: 20 Points

A string of length 2L with mass density µ is placed under tension T and is fixed at both ends. At time

t = 0, the displacement of the string is zero everywhere but it is struck so that a transverse velocity is

imparted to a section of the string. The intial conditions of the string are (a� L);

y(x, t = 0) = 0 (49)

ẏ(x, t = 0) =


v0 : L− a ≤ x < L

−v0 : L ≤ x < L+ a

0 : elsewhere

(50)

Figure 8: The intial transverse velocity of the string at time t = 0. The initial displacement is zero
everywhere.

(5.a)

(3pts) Using the plot (Figure #9) provided on the next page, sketch the first three normal modes of

vibration for this string, regardless of whether or not they are excited.

(5.b)

(10pts) What is the amplitude of the n-th normal mode after the string is struck? What is the lowest

unexcited mode?
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In this case, the displacement of the string can be expressed in terms of a sum of normal modes

with the form;

y(x, t) =
∑
n

An sin (knx) sin(ωnt+ ���
0

φ) (51)

with ωn = knv = kn

√
T
µ and kn = nπ

2L .

So the transverse velocity (terms of a normal mode expansion) can be written;

ẏ(x, t) =
∑
n

Anωn sin (knx) cos(ωnt) (52)

And the amplitude of excitation on each normal mode An can be found by;

Anωn =
2

2L

∫ 2L

0

ẏ(x, t = 0) sin(knx)dx (53)

An =
1

ωnL

[∫ L

L−a
v0 sin(knx)dx−

∫ L+a

L

v0 sin(knx)dx

]
(54)

An = − v0

ωnknL

[
cos(knx)|LL−a − cos(knx)|L+a

L

]
(55)

An = − v0

ωnknL
[cos(knL)− cos(kn(L− a))− cos(kn(L+ a)) + cos(knL)] (56)

An = − v0

ωnknL
[2 cos(knL)− 2 cos(knL) cos(kna)] (57)

An = − 2v0

ωnknL
(1− cos(kna))(cos(knL) (58)

An = −v0

v

8L

n2π2

[(
1− cos

(nπ
2

a

L

))
cos
(nπ

2

)]
(59)

An = − v0√
T
µ

8L

n2π2

[(
1− cos

(nπ
2

a

L

))
cos
(nπ

2

)]
(60)

From the last equation above we can see that the n = 1 mode is unexcited. We could also see

that this mode would be unexcited from symmetry, since the n = 1 mode is symmetric about the

center of the string, while the initial conditions are anti-symmetric. Similarly any mode which is

symmetric about the center of the string will be unexcited.

(5.b)

(Problem continues on the next page.)
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Figure 9: Plot the first three normal modes.

(5.c)

(5pts) Sketch the displacement of the string at time t = L
2

√
µ
T in the plot below.

The diplacement slits into two counter propagating waves, each with height h = av0√
T/µ

, as shown

below.
(5.c)

Figure 10: Plot the displacement of the string.
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Problem 6: 18 Points

Figure 11: An oscillating charge.

A charged particle of mass M and charge +Q is attached to the end of a spring of spring constant k.

The spring lies along the x-axis and the equilibrium point is at the origin. The particle is displaced from

equilibrium by a distance A in the x direction, and released at t = 0. Assume that the size of the particle is

much smaller than A, so it can be treated as a point charge and that the damping rate is very small.

(6.a)

(4pts) Calculate the electric field radiated by the particle along an arbitrary direction in the x− z plane,

at a distance R, where R� A.

Assuming that the damping for the charge is neglectable, then the particle’s motion is just that

of a S.H.O, whose solution is;

x(t) = A cos(ω0t) (61)

ẍ(d) = −Aω2 cos(ω0t) (62)

with ω0 =
√
k/m. Now the electric field is given by;

~E(~R, t) = − q~a⊥(t′)

4πε0Rc2
= −q(n̂× (n̂× ~a(t′)))

4πε0Rc2
(63)

Where n̂ is the unit vector pointing from the source to the observer. In the x− z plane we have

n̂ = sin θx̂+ cos θẑ. So the electric field is given by;(
qAω2

0

4πε0c2R

)
cos(ω0(t−R/c))(cos2 θx̂− cos θ sin θẑ) (64)

(6.a)

(6.b)

(4pts) Calculate the total time averaged power radiated by the particle.
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The total power radiated by the particle is just given to us by the Larmor formula;

P (t) =
q2a2(t′)

6πε0c3
=
q2A2ω4

0 cos2(ω0(t−R/c))
6πε0c3

(65)

Time averaging this results in;

〈P 〉 =
q2A2ω4

0

12πε0c3
(66)

(6.b)

(6.c)

(6pts) Assuming that the power radiated does not change appreciably as a function of time, give a simple

rough estimate of the time it will take for the particle to decrease its amplitude of oscillation to 1/e of its

initial value. Is this assumption realistic?

With the assumption that the power radiated does not change much over time, then the time t it

would take for the original amplitude of motion to decrease to 1/e of its value can by found by;

1

2
mω2

0A
2 − 〈P 〉t =

1

2
mω2

0

(
A

e

)2

(67)

⇒ t =
mω2

0A
2

2〈P 〉

(
1−

(
1

e

)2
)

(68)

t ≈ 0.86× 6πmε0c
3

q2ω2
0

(69)

This assumption is not quite realistic since the power radiated by the charge is proportional to

the amplitude of its motion squared and the amplitude of the motion is decreasing as energy

is radiated away. This method will always underestimate the time needed for the amplitude to

decrease

(6.c)
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(6.d)

(4pts) A more refined estimate can be obtained using that dA/dt = (dA/dE) × (dE/dt), and using the

average power radiated over a given cycle for dE/dt. Use this to calculate the time it will take the particle

to decrease its oscillation amplitude to 1/e of its initial value.

The energy E is given by;

E =
mω2

0A
2

2
(70)

so we have;
dA

dE
=

1

mω2
0A

(71)

Whereas the average power radiated per cycle is what we found in part (b);

dE

dt
= 〈P 〉 =

q2A2ω4
0

12πε0c3
(72)

Combining these to find dA/dt we get;

dA

dt
=
dA

dE

dE

dt
=

(
1

mω2
0A

)(
q2A2ω4

0

12πε0c3

)
=

q2Aω2
0

12πε0c3m
(73)

Now integrating to find the time needed for the amplitude to decrease from A to A/e, we have;

∫ A

A/e

dA

A
=

(
q2ω2

0

12πε0c3m

)∫
dt (74)

ln(A)− ln(A/e) = ln(e) = 1 =

(
q2ω2

0

12πε0c3m

)
t (75)

so the time t is given by;

t =

(
12πε0c

3m

q2ω2
0

)
(76)

(6.d)
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