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15.1 The road ahead 

In this set of lecture notes, we are going to begin to examine how to incorporate gravity into 
relativity. We will be concerned with two major questions: 

• First, how is gravity “made,” broadly speaking? In other words, given some body that 
generates a gravitational feld in Newtonian physics, how do we describe that body’s 
gravity using relativistic physics? 

• Second, how do we describe a body’s motion under the infuence of gravity? How does 
what we think of as the “gravitational force” act in relativistic physics? 

You might imagine that, given all we have done so far, addressing these points shouldn’t 
be too difcult. After all, we reformulated both electric and magnetic forces and felds into 
nicely covariant relativistic language. How much harder can this be for gravity? 
As we’ll begin to see in the next section of these notes, gravity introduces complications 

that make describing it substantially more difcult. Indeed, going through all the details in 
great rigor is far beyond the scope of 8.033. We will content ourselves in this class with a 
more descriptive analysis, seeing how it is that the tricks we’ve learned so far don’t work for 
gravity. We will then examine a high-level synopsis of how we proceed to answer the frst of 
the two questions above. Going beyond that high-level synopsis takes roughly half the term 
of 8.962. Students who wish to pursue this subject further are encouraged to look into the 
course 8.228 (ofered during IAP), and perhaps to consider taking 8.962 at some point down 
the road. 
Once we have this high-level synopsis of how gravity arises, it isn’t beyond 8.033 to 

describe how that gravity acts on a body. Exploring how relativistic gravity acts and how it 
difers from Newtonian gravity will be a big part of what we do in the last few weeks of this 
term. To get there, we frst need to establish some important principles. 

15.2 The principle of maximum aging 

Imagine that two bodies travel from event A, located at x = 0, t = 0 to event B located at 
x = 1 lightsecond, t = 4 seconds. One body moves there at constant velocity v = 0.25c ex; 
we’ll call this the “direct” path. The other body moves frst to event C, located at x = 0, 
t = 2 seconds. It then moves of to event C at half the speed of light1 . We illustrate this 
situation in Fig. 1. 

1In reality, the body must accelerate for some interval to reach this speed. For this initial discussion, we 
idealize the interval over which the acceleration occurs to be so short that it is nearly instantaneous. 
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Figure 1: Two paths from event A to event B. The “direct” path goes from A to B at 
constant velocity; the indirect path goes from A to B via the event C. Note that diferent 
scales are used for the x and t axes. 

Question: On which path does the body age more, the direct one or the indirect one? 
We’ve already discussed a similar situation when talked about the twin paradox, but just 
to remind ourselves how this works let’s step through the analysis. We are going to use the 
fact that along any timelike trajectory, 

∆s 2 = −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 = −c 2∆τ 2 . (15.1) 

The last equality follows from the fact that ∆τ is the time experienced in the body’s own 
rest frame; in that frame, ∆x = ∆y = ∆z = 0, since the body is at rest in its rest frame. 
Let’s use this to compute how much ∆τ the bodies experience along these two trajectories. 
First, consider the direct trajectory: � �1/2 

∆τ = (∆t)2 − (∆x)2/c2 � �1/2 
= 16 sec2 − 1 sec2 

√ 
= 15 seconds . (15.2) 

√ 
The body ages a total of 15 ≃ 3.87 seconds on the direct trajectory. 
Next, the indirect trajectory. We break this up into two pieces: 

∆τA→C = 2 seconds . (15.3) 

� �1/2 
∆τC→B = 4 sec2 − 1 sec2 

√ 
= 3 seconds . (15.4) 
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Without too much efort, we can fnd other trajectories in which the aging is less much 
less, if we design the trajectory well. Consider, for example, the trajectory shown in Fig. 2: 
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with the direct trajectory aging of 3.87 seconds, we see that the body ages more on the 
unaccelerated trajectory. 

— 

So on the indirect trajectory, the body ages a total of 2 + 3 ≃ 3.73 seconds. Comparing 

Figure 2: Yet another path from event A to event B. On this path, the body zig zags back 
and forth at nearly light speed until it fnally reaches event B. 

The path here zips back and forth at nearly light speed. As such, the body accumulates 
nearly zero proper time along each leg, and so it does not age at all in moving from event A 
to event B. Consistent with how we resolved the twin paradox, we can see that acceleration 
reduces the aging which a body experiences as it moves through spacetime. 
We will soon briefy discuss a topic called the calculus of variations. Some of you may have 

already learned about this — it is the key technique which underlies Lagrangian mechanics, 
for example. Using the calculus of variations, we can meaningfully pose the following ques-
tion: “Given the infnite number of timelike trajectories in spacetime which connect events 
A and B, along which one does the body age the most? In other words, which trajectory 
through spacetime is the one which corresponds to maximum aging?” 
The answer we will fnd is that the trajectory of maximum aging is indeed the unaccel-

erated trajectory. This will prove to be very, very useful for us. Picking out the “trajectory 
of maximum aging” to understand the motion of a body in special relativity is overkill; it is 
fne for understanding how this technique operates, but it isn’t how you want to calculate 
a body’s trajectory through special relativity’s spacetime on an everyday basis. However, 
we will argue (using an important principle that Einstein introduced to understand how to 
incorporate gravity into relativity) that this technique is exactly what we need to compute 
a body’s motion under gravity once we start making a relativistic theory of gravity. 
For now, please fle away in some mental storage drawer the idea that “no acceleration” 

means “maximum aging” as a body moves through spacetime. We will want to return to 
this point in several lectures. 
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15.3 Making Newton’s gravity relativistic? 

Long ago, Isaac Newton taught us that two masses feel a force that is proportional to their 
masses, inversely proportional to the square of the distance between them, directed along 
the line between the two masses, and attractive: 

m1m2
FG = −G er . (15.5) 

r2 

This looks just like Coulomb’s law, which tells us about the electric force between two 
charges: 

1 q1q2
FE = er . (15.6)

4πϵ0 r2 

The diferences are that the electric force arises from charges q rather than masses m; the 
electric force can be attractive or repulsive, depending on the signs of q1 and q2 (note that 
masses are always positive); and the two forces have diferent “coupling constants” (G versus 
1/4πϵ0). Given that we were able to put the electric force into fully relativistic form without 
too much efort, with magnetic felds and forces getting wrapped up in the fnal form, can 
we perhaps do the same thing for gravity? 
Although this seems like a plausible course of action, it is important to recognize a major 

diference between the two force laws. A key issue is that the charges q1 and q2 which enter 
into the electric force are Lorentz invariants. Do all observers agree on the masses m1 and 
m2 which enter into the gravitational force? 
The issue is certainly yes if the Newtonian force only acts on rest mass. If that’s the 

case, though, then there is an interesting consequence: gravity can have no efect on anything 
massless, such as light. It is also not hard to construct “though experiments” which suggest 
that gravity would act a little oddly. 
Consider a box of mass M . Inside this box are lumps of putty, each of rest mass m. If 

gravity only acts on rest mass, then on the surface of the Earth, this box will have weight 

Fw = (M + 2m)g , (15.7) 

where 
GME 

g = ed
R2 

E 

(15.8) 

is the gravitational acceleration at the surface of the Earth. It depends on the Earth’s mass 
ME , its radius RE , and points down, ed, from the surface toward the Earth’s center. 
Let’s imagine that the lumps of putty are in fact moving toward each other at speeds 

very close to the speed of light: the box has a long axis oriented parallel to the Earth’s 
surface (let’s call this along the x direction); one lump of putty has u = uex, the other 
has u = −uex, and each lump’s speed u is close to c. Before the lumps of putty come into 
contact, the box’s weight is given by Eq. (15.7). Afterwards, the box has weight 

Fw = (M + 2γ(u)m)g . (15.9) 

If u ∼ c, then γ(u) can be huge. In such a case, the weight of the box very suddenly increases, 
perhaps by a large amount. 
Or, imagine that one lump of putty is made of matter, and the other of antimatter. All 

evidence2 indicates that antimatter responds to gravity just like “normal” matter. After the 

2It’s actually hard to gather such evidence, because antimatter tends to annihilate with regular matter 
before we can make a precise measurement. 
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two lumps collide, all of their rest mass is converted into radiation. If gravity only acts on 
rest mass, then the box now has weight 

Fw = Mg (15.10) 

after the collision; the weight very suddenly decreases. If gravity only acts on rest mass, 
then an object’s weight can very suddenly and discontinuously change. 
Let me emphasize that these thought experiments do not tell us that m1 and m2 cannot 

be rest masses. However, they make it clear that if they are rest mass, then we must be 
prepared for some potentially weird consequences. It is worth taking a few moments to think 
about alternatives. 
What if gravity doesn’t so much act on rest mass as it acts on energy? For instance, 

suppose that the m that appears in the Newtonian force law is really something like E/c2 . 
In the vast majority of situations that humanity has encountered in its history, an object’s 
kinetic energy is a very tiny fraction of its rest energy. As such, the diference between m 
and E/c2 has tended to be negligible. It is not unreasonable to imagine that gravity acts on 
energy, but that we inferred the force law (15.5) because of the overwhelming importance of 
rest energy at typical kinetic energy levels. 
If gravity acts on all forms of energy, then it acts on light. Let’s consider that possibility. 

15.4 The action of gravity on light 

We consider another thought experiment; this is a variation on one that was originally 
designed by Einstein. 

H

• Imagine we stand on a tall building, and we drop a rock of mass m. 
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• After falling a distance H, the rock enters a device. At the moment it enters this 
device, it has energy 

E = Ebottom = mc 2 + mgH . (15.11) 

• This device converts the rock into a single photon3 of Ebottom = mc2 + mgH = hν 
(be careful not to confuse the height H with Planck’s constant h) and launches this 
photon back up to the top of the building. 

• When the photon has climbed a distance H, we use yet another amazing device to 
convert the photon back into a rock. What energy must this rock have? 

Imagine frst that gravity does not act on light. If that were the case, then the rock 
would reappear next to us with energy E = Ebottom = mc2 + mgH – it would either have a 
slightly larger rest mass, or else it would have some kinetic energy, and continue to climb. 
If we allowed it to come to a halt and then fall back down, on the next pass it would have 
energy E = mc2 + 2mgH at the end of this process. We can repeat this, giving the rock an 
extra mgH of energy on each go-round. If gravity does not act on the light, then we can in 
principle make a device for creating unlimited amounts of energy4 this way. 
Let’s insist that energy be conserved: When the photon is converted back into a rock, it 

has an energy E = Etop = mc2 . Because a photon’s energy is related to its frequency, this 
tells us that the photon loses energy as it climbs out of the gravitation feld: it is redshifted 
according to the rule 

2Etop hνtop mc 
= = , (15.12)

Ebottom hνbottom mc2 + mgH 

or, using gH ≪ c2 , 
νtop gH 

= 1 − . (15.13)
νbottom c2 

Notice that this frequency diference is precisely the same as the efect we found when we 
compared the energy of a photon that is measured by two accelerated observers; compare 
Sec. 14.3 of the previous set of lecture notes. 
A few comments are worth making before moving on: 

• The magnitude of this efect can be estimated by noting that, at the Earth’s surface, 
gH ≃ 100 m2/s2 (H/10 m), and by using c2 ≃ 9 × 1016m2/s2 . This tells us that we 
expect a frequency change in the light of roughly 1 part in 1015 for every 10 meters of 
height change. 

3Alarm bells should be going of in your brain right now: Even allowing for the most amazing technology 
we can imagine, converting a single rock into a single photon would cause all sorts of problems with energy 
and momentum conservation. To address this, imagine dropping a rock and an “anti-rock” — a rock made 
of antimatter. The device can then create two photons; by mounting the device on the Earth, we can allow 
the Earth to recoil in such a way that both energy and momentum are conserved. 

4The device used in this example is, by design, kind of silly. However, it is not hard to imagine making 
less silly variations on this. For example, by allowing matter and antimatter to fall in a gravitational feld 
and then harvesting the light they produce upon annihilation, we could make any amount of energy we want, 
perhaps harvesting the energy by allowing those photons to heat up a bucket of water. The failure of gravity 
to act on light would be an on-ramp to building a perpetual motion machine. 
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• A more general form of Eq. (15.13) is 

νtop ∆ΦG 
= 1 − , (15.14)

νbottom c2 

where ∆ΦG is the change in gravitational potential between the two measurement 
points. 

We emphasize these points because this efect in fact is exactly what we measure. It was 
frst done in 1959 using Mössbauer spectroscopy by Robert Pound and Glen Rebka, looking 
at the efect of gravity on gamma rays which produced by the decay of the isotope 57Fe and 
then climbed 22.5 meters up a tower at Harvard’s Jeferson Laboratory. This measurement 
is now done millions of times a second by a huge number of people around the world, as 
it is integral to the functioning of the Global Position System. Without correcting for this 
frequency shift, GPS accuracy would degrade at a rate of roughly 8 meters per minute. 
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