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Lecture 11 
A covariant formulation of electromagnetics (part I) 

11.1 Electric and magnetic felds and forces: Background 

Our pivot from Galileo’s relativity to Einstein’s relativity began by considering electrody-
namics. Let’s write out again the critical equations which govern electrodynamics — the 
Maxwell equations which connect the the felds to their sources, and the Lorentz force law 
which shows how these felds act on charges: 

∇ · E = ρ/ϵ0 , ∇ · B = 0 , (11.1) 
∂B ∂E ∇× E = − , ∇× B = µ0J + µ0ϵ0 ; (11.2)
∂t ∂t 

F = q (E + v × B) . (11.3) 

It should be emphasized very strongly that these equations are fully compatible with special 
relativity. Indeed, all of the modifcations to various physical concepts that Einstein’s rela-
tivity requires were introduced because it became clear that important aspects of Newtonian 
mechanics were not compatible with electrodynamics. Electrodynamics is one of the most 
successfully and accurate theories of nature we have developed. Once it has been updated 
to account for the fact that our universe is quantum mechanical in nature (a topic for a 
diferent course!), we end up with a version of electrodynamics that is perhaps humanity’s 
most precisely-tested description of nature. 
That said, Eqs. (11.1), (11.2), and (11.3) are not written in a way that makes it clear 

they are compatible with Lorentz covariance. The felds and the force are written using 
3-vectors, which depend upon us choosing a particular observer’s “space” coordinates; the 
feld equations are expressed using a particular observer’s time and space derivatives. These 
equations are formulated for one particular reference frame, and it is not obvious how they 
will transform to another reference frame. The goal of the next two lectures is to think how 
to organize the structures expressed in Eqs. (11.1), (11.2), and (11.3) in a way that clearly 
shows electrodynamics is a Lorentz covariant theory. 

11.2 How to organize the felds 

11.2.1 General considerations 

So far, when we’ve translated a physical quantity into Lorentz covariant language, we have 
found a way of taking quantities which are 3-vectors and mapping them into 4-vectors. 
Examples so far are displacement (add ct as the “zeroth” component), the 4-velocity (change 
d/dt to d/dτ so that we use a clock whose meaning is invariant to describe time derivatives; 
add c dt/dτ = γc as the zeroth component), and the 4-momentum (add energy as the zeroth 
component, dividing by c to make sure the dimensions are sensible). Can we do this with 
the electric and magnetic felds? 
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magnetic and electric felds in another; and vice versa. The classic example of this is 
charge moving in a magnetic feld. Consider a charge moving parallel to a current-carrying 
wire, as illustrated in Fig. 1: 

Wire carries current I

Charge q moves with velocity v = vex

Separation r

We have several problems here. First, we know that E and B felds must transform into 
one another when we change frames: what is pure magnetic feld in one frame is a mixture 
of a 

Figure 1: A charge q moving parallel to a wire carrying a current I. 

For concreteness, let’s defne ex as pointing to the right, ey as pointing into the page, and ez 

as pointing up. Then, in what we will call the “lab” frame L, we have a charge q that moves 
to the right. The charge is a distance r from a wire that carries a current fowing to the left. 
As we learned in 8.02/8.022, this wire generates a magnetic feld that circulates around the 
wire. At the location of the charge, this feld takes the value 

µ0I 
B = ey . (11.4)

2πr 

The wire is neutral, so the charge q does not feel any electric force — it only feels a magnetic 
force, whose value is 

µ0qIv 
F = qv × B = ez . (11.5)

2πr 
This force points “up” in the fgure — the charge is repelled from the wire. 
Let’s now change frames, and think about what must happen. First, we require q to 

be the same in all reference frames. If changing frames changed the value of charge, the 
elementary charge would vary for moving charges. Imagine the efect this would cause for a 
system in which there are members whose charges are equal and opposite, but are moving at 
diferent relative speeds. A system which is neutral when its members “sit still” might have 
net charge when they are in motion! In addition to feeling absurd, the fact is that we have 
no experimental evidence for anything like this whatsoever. Observations and measurements 
indicate that a body’s charge is unchanged no matter how fast we observe it to move. 
So, let’s jump into a reference frame that moves with v = vex — i.e., the frame C in 

which the charge is at rest. In this frame there can be no magnetic force. The magnetic 
force is proportional to the charge’s speed. If the speed is zero, the magnetic force is zero. 
However, a repulsive force in one frame of reference is not consistent with no force in another. 
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The details of how the force behaves in this frame might difer1 (perhaps its magnitude will 
be diferent), but there still must be an overall repulsive force. If there is no magnetic force, 
then there must instead be an electric force. 
This means there must be an electric feld in the charge’s rest frame, even though there 

was no such feld in the lab frame. Something that we measured to be pure magnetic feld 
transforms to a mixture of electric and magnetic feld. Whatever “entity” we will use to 
describe electric and magnetic felds in special relativity must be able to transform magnetic 
felds into electric felds (and vice versa). 

11.2.2 A covariant representation of the force and felds 

Our root issue is essentially one of simple counting. We have had success ftting important 
physical quantities into 4-vectors so far, but it just isn’t going to work for the electric and 
magnetic feld. They have 6 components, and we cannot ft these 6 pieces of information 
into the 4 components of a 4-vector. We need something bigger. 
A simple example of a bigger object is a 2nd-rank tensor, which has 16 components. 

That’s too many; but, we can reduce the number of free components by imposing symmetry. 
If we use a symmetric tensor, then it has 10 free components — still too many. But an 
antisymmetric 2nd-rank tensor has 6 free components — exactly what we need. 
So let’s think how we can ft the 6 components (Ex , Ey, Ez), (Bx , By, Bz) into an 

antisymmetric 2nd-rank tensor which we will call F αβ . To guide us, let’s deduce how the 
Lorentz force law, F = q(E + v × B), can be written in a fully covariant manner. 
First, we “upgrade” the force. We start with F = dp/dt. Clearly, we will want to take 

the 3-momentum p over to the 4-momentum, whose components are pα . We also need to 
upgrade the time derivative with one that uses a notion of time that all frames are happy to 
use as a point of reference. Just as we did in defning the 4-velocity, let’s replace d/dt with 
d/dτ , where τ is the proper time measured by the body which is experiencing the force. 
What about the right-hand side, q(E + v × B)? This a quantity that is linear in q, 

linear in the felds, and — if we think about this carefully — linear in the components of the 
velocity. “Wait,” I imagine you protesting, “the B term is linear in components of velocity, 
but what about the E term?” Note that E and B have diferent dimensions: the dimensions 
of E are force over charge, but the dimensions of B are force over speed times charge. When 
we assemble these quantities into a single tensor, we’ll need to account for the diference in 
dimensions. We often do this by throwing in factors of the speed of light. This suggests that 
we think about the Lorentz force law as � � � � 

E 
F = q c + v × B . (11.6) 

c 

Bearing in mind that the components of uα are given approximately by (c, vx, vy, vz) for a 
body that is not moving very fast relative to us, this suggests that in the Lorentz force law, 
the electric feld is being multiplied by the timelike component of the 4-momentum. 
Putting all this together, we want the covariant formulation of the Lorentz force to be 

dpα 

= qF αβ uβ . (11.7)
dτ 

1In a few lectures we will look carefully at forces and accelerations in special relativity; we briefy introduce 
a handful of important issues a little later in this lecture. 
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Let’s now fgure out how to “fll up” the tensor F αβ so that this is consistent with the Lorentz 
force law that we learned about in 8.02/8.022 by going through the spatial components, 
α = 1, 2, 3, one by one. (We’ll come back to the α = 0 component later.) First look at 
α = 1, or α = x: 

dpx 

dτ 

� 
F 10 u0 + F 12 u2 + F 13 = q u3 . (11.8) 

There is no F 11 term because of this tensor’s antisymmetry — all diagonal elements are zero. 
Let’s further use the fact that u0 = −u0 = −γc, u2 = γ(dy/dt), and u3 = γ(dz/dt): �� 

dpx dy dz 
+ F 12 + F 13−cF 10 = γq . (11.9)

dτ dt dt 

Next, divide by sides by γ and use the fact that an interval of time dt measured by clocks 
in this frame is γdτ : �� 

dpx dy dz 
+ F 12 + F 13−cF 10 = q . (11.10)

dt dt dt 

Compare this to the x component of the Lorentz force law: �� 
dpx dy dz 

Ex + Bz − By= q . (11.11)
dt dt dt 

This allows us to read of 

F 10 F 12 F 13 = −Ex/c , = Bz , = −By . (11.12) 

Repeating this exercise for the y and z force components and noting that the tensor is 
antisymmetric allows us to fll it in entirely:  

0 Ex/c Ey/c Ez/c 
 . (11.13) 

−Ex/c 0 Bz −By 

−Ey/c −Bz 0 Bx 

−Ez/c By −Bx 0 

F αβ . = 

This tensor is often called the Faraday tensor. It replaces the 3-vectors which describe electric 
and magnetic felds according to some particular observer’s reference frame with a geometric 
object whose components can be readily translated to any reference frame; and, it connects 
to 4-vectors whose components can likewise be readily translated to any reference frame. 

11.3 A brief aside on forces and accelerations 

In this lecture, we’ve been talking about a specifc force without yet having discussed forces in 
special relativity in broader terms. We will discuss forces, accelerations, and the properties 
of accelerated observers in more detail in an upcoming lecture. Certain aspects of this 
discussion are needed now, so we pause in our discussion of electric and magnetic felds for 
a brief digression to talk about forces and accelerations. 
As we have discussed, a body of mass m moving with 4-velocity u⃗ has a 4-momentum 

p⃗ = mu⃗. As you have seen in our discussion above, this momentum changes if the body is 
acted on by a force or, more properly, a 4-force: 

dp⃗
F⃗ = . (11.14)

dτ 
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If the body’s mass cannot change, then this leads to the body having a 4-acceleration: 

1 du⃗⃗a⃗ = F = . (11.15) 
m dτ 

When we discuss 3-velocities u and 3-accelerations a, these quantities can have largely any 
value that we want them to have: the value of u is essentially an initial condition to our 
analysis, and the value of a is only constrained by the mechanism providing the force F. 

Not so for the 4-velocity and the 4-acceleration: there is a very interesting and 
important constraint which these two quantities must always satisfy. To see where this comes 
from, begin with the invariant that we can construct from u⃗: 

u⃗ · ⃗u = −c 2 . (11.16) 

Take d/dτ of both sides of this equation: 

a⃗ · ⃗u + ⃗u · ⃗a = 0 , (11.17) 

or 
a⃗ · ⃗u = 0 . (11.18) 

The 4-velocity and the 4-acceleration are always “orthogonal” in spacetime. This important 
constraint has important implications for the nature of any 4-force that you may compute 
— if at the end of your analysis, you fnd that F⃗ · u⃗ ≠ 0, you have made a mistake or have 
overlooked something important. 

11.4 Some details of the electromagnetic 4-force 

With the above discussion in mind, let’s examine the electromagnetic 4-force that we have 
worked out. Is it the case that F⃗ · u⃗ = 0? The answer is yes, and we can show this using a 
little bit of “index gymnastics”: 

F⃗ · ⃗u = qF αβ uβ uα (11.19) 

= −qF βα uβuα (11.20) 

= −qF βα uαuβ (11.21) 

= −qF αβ uβuα . (11.22) 

Let’s step through these lines of analysis carefully. On the frst line, we have have contracted 
the defnition of the electromagnetic 4-force, Eq. (11.7), with the 4-velocity in order to make 
the inner product. On the second line, we have used the fact that the Faraday tensor is 
antisymmetric to swap the order of the indices on the tensor, introducing a minus sign. On 
the third line, we have used the fact that uαuβ is symmetric to swap the order of their 
indices. On the fnal line, we have used the fact that α and β are “dummy” indices — they 
are being summed over, so it doesn’t matter how we label them. We can in fact change α 
for β and β for α, as long as we do this consistently throughout the expression. 
Now compare the frst line with the fourth line. Their right-hand sides are identical ... 

except for a minus sign. This is thus an expression of the form x = −x, whose only solution 
is x = 0. We conclude that 

F⃗ · ⃗u = 0 , (11.23) 

So our 4-force indeed is spacetime orthogonal with the 4-velocity — as it should be. 
Two remarks on this calculation: 
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• This is our frst encounter with a trick that gets used a lot: whenever you contract all 
free indices of a totally antisymmetric mathematical object, like F αβ , against a totally 
symmetric mathematical object, like uαuβ , the result is zero. 

If this makes you nervous and you want to be totally confdent in the result, you can 
always go through an exercise like the one that I did above. The key point is that 
by combining symmetric with antisymmetric, we add up terms that are equal and 
opposite. If you expand out the Einstein summation that I did above, you fnd that 

F 10u1u0 + F 01u0u1, F 23u2u3 + F 32you can combine terms in pairs: u3u2, etc. The 
members of each pair will always be equal in magnitude and opposite in sign. 

• When a force law is set up properly, it generally works out “automatically” that we fnd 
F⃗ ·u⃗ = 0, in much the way that it did for this electromagnetic 4-force. Finding F⃗ ·u⃗ = 0 
does not guarantee that your force law is correct, but not fnding this guarantees that 
your force law is wrong. 

Before moving on to other aspects of the covariant formulation of electric and magnetic 
felds, let’s clean up one last detail. We saw in our calculation above that the α = 1, 2, and 3 
components of the 4-force correspond perfectly to the x, y, and z components of the Lorentz 
force. What is the α = 0 component? Let’s write this out: 

dp0 � � 
F 01 u1 + F 02 u2 + F 03 = qF 0β uβ = q u3

dτ 
γq 

= (Ex(u)x + Ey(u)y + Ez(u)z) 
c 
γq 

= E · u . (11.24) 
c 

Using the fact that p0 = E/c, where E with no indices and no boldface means the energy2 

of the charged body, and using dt = γdτ , this becomes 

dE 
= qE · u . (11.25)

dt 

This expression tells us about the rate at which work is done on the charge by the electric 
feld. If you need a reminder of where this comes from, remember that the diferential of 
work done in moving through a 3-displacement dr in an E feld is 

dW = F · dr = qE · dr . (11.26) 

If the charge does this in a time dt, then 

dW dr 
dt 

= qE · 
dt 

, (11.27) 

in agreement with Eq. (11.25). 

2The letter “E” is doing double duty here, standing for both energy and electric feld. Sometimes people 
use U for energy in circumstances like this, in order to reduce the likelihood of any confusion. 
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11.5 Transforming electric and magnetic felds 

By ftting the electric and magnetic felds into a rank-2 tensor, it becomes simple to deduce 
how these felds transform when we change frames. Let observer O measure felds described 
by the tensor F αβ ; let O ′ in a diferent inertial frame measure felds described by the tensor 

′ ν ′ F µ . These are related by converting using Lorentz transformation matrices: 
′ ′ ′′ ν = F αβ ΛµF µ αΛ

ν
β . (11.28) 

Let’s work through this using the Lorentz transformation matrix  
γ −γβ 0 0 

Λµ ′ 
α = 

 
−γβ γ 0 0 
0 0 1 0 
0 0 0 1 

 . (11.29) 

In other words, we take O ′ to be moving with v = vex relative to O. Let’s use this calculate 
how the components of the Faraday tensor translate between frames. Start by working 
through the transformation for the (0 ′ 1 ′ ) component: 

� 
= Λ0 ′ 

1F 01 + Λ0 ′ 

F 01 = γ2 − γ2β2 
� 

01F= . (11.30) 

On the frst line, we expanded the transformation rule to write out all the non-zero terms 
that contribute to F 0 ′ 1 ′ . This amounts to all the lambda matrix elements that have 0 ′ on 
the frst index, and all the matrix elements that have 1 ′ on the frst index. A total of 4 such 
elements exist: Λ0 ′ 

0 = γ, Λ0 ′ 
1 = −γβ, Λ1 ′ 

0 = −γβ, and Λ1 ′ 
1 = γ; all the others ones with 0 ′ 

in the frst position are zero. We then used antisymmetry, and then used the fact thatp 

F 0 ′ 1 ′ 
0Λ

1 ′ 
1Λ

1 ′ 
0F 10 

or 1 ′ 

γ = 1/ 1 − β2 to clean this expression up. Translating back into electric and magnetic feld 
components, this tells us 

Ex ′ = Ex . (11.31) 

Move on to the (0 ′ 2 ′ ) component: 

F 0 ′ 2 ′ = Λ0 ′ 
0Λ

2 ′ 
1Λ

2 ′ 
2F 12 

2F 02 + Λ0 ′ 

= γF 02 − γβF 12 . (11.32) 

We cannot simplify this any further, so we now translate back into electric and magnetic 
feld components: 

Ey ′ = γ(Ey − vBz) . (11.33) 

Next the (0 ′ 3 ′ ) component: 

F 0 ′ 3 ′ 
3F 13 = Λ0 ′ 

0Λ
3 ′ 
3F 03 + Λ0 ′ 

1Λ
3 ′ 

= γF 03 − γβF 13 . (11.34) 

This becomes 
Ez ′ = γ(Ez + vBy) . (11.35) 

Doing a similar exercise for the components of the Faraday tensor which map to the 
magnetic felds, we fnd 

′ ′ ′ 
Bx = Bx , By = γ(By + vEz/c2) , Bz = γ(Bz − vEy/c2) . (11.36) 
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By repeating this analysis for frames moving with v = vey and v = vez, it’s not too 
difcult to work out the general rule for transforming between frames. For completely general 
v, we have 

= E∥ , = γ (E⊥ + v × B⊥) ; (11.37)E ′∥ E ′⊥ � � 
B ′∥ = B∥ , B ′⊥ = γ B⊥ − v × E⊥/c

2 . (11.38) 

Here, E∥ denotes the component of E that is parallel v. Let ev ≡ v/v denote the unit vector 
along the velocity vector; then, E∥ = (E ·ev)ev. The other component, E⊥ = E−E∥, denotes 
the part of E that is orthogonal to v. The magnetic feld vectors B∥ and B⊥ are defned 
likewise. 
When I frst was presented with the transformation laws (11.37) and (11.38), I was 

utterly bafed. Though I understood the derivation (which I learned from Purcell’s E&M 
textbook), the rule we fnd for transforming these felds looks nothing like any of the Lorentz 
transformation rules I learned for other quantities! It was only after learning about tensors, 
understanding that E and B were best thought of us components of a rank-2 antisymmetric 
tensor, and spending some time developing fuency with operations like Eq. (11.28) that I 
started to become comfortable with these rules. 
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