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1.1 Goal of this course 

Our goal this semester is to understand Albert Einstein’s theories of relativity, and what 
they tell us about the structure of the laws of physics. We will study the special theory of 
relativity in great detail for most of the semester. In the last several weeks of the term, we 
will briefy explore general relativity, focusing on situations in which what we learn from 
special relativity can be “upgraded” to the general case with relative ease. 

More generally, our goal this semester is to think about how we formulate physics in such 
a way that a deep underlying principle is built into these laws. During the frst few weeks of 
this course, we will motivate how on both theoretical and experimental grounds we came to 
understand that our universe respects a principle we call Lorentz symmetry. We will fnd that 
some of the laws of physics we learned previously exactly respect this symmetry, whereas 
others are approximations (albeit incredibly accurate approximations under the “everyday” 
conditions that one typically encounters in our day-to-day life, and even in cases where very 
precise measurements can be made). We will then develop a way of representing physical 
laws such that they automatically satisfy Lorentz symmetry. You can take this as a kind of 
“warm-up exercise” for including other symmetries that nature respects, and other principles 
that we may need to build into physics. 

1.2 Newtonian physics and Galilean relativity 

Let us begin by examining Newtonian physics. Newton’s laws obey a law of relativity, though 
it is not the one that we usually think of when we discuss “relativity” in physics. Rather 
than Einstein’s relativity, Newton’s laws respect what we call Galilean relativity, following 
principles that were originally laid out by Galileo. We will begin by examining Galilean 
relativity in order to see a relativity principle in action, based on laws of physics that we 
thoroughly know and love . . . and to see an interesting shortcoming we quickly fnd when we 
combine Galilean relativity with physics that we encounter early in our physics studies. 

To begin this discussion, we need to defne some terms: 

• Event: An “event” is something that happens somewhere at some time. An event is 
essentially a particular point in both space and time. A key feature is that the event’s 
reality is independent of how we label it, which can depend on our “reference frame.” 

• Reference frame: A system for labeling events in space and time. One can regard 
a reference frame as essentially a clock and a set of coordinate axes that are tied to a 
particular observer. For example, the professor, standing in front of the classroom uses 
a clock on the wall to defne time, and takes the position of their feet as the origin. 
They imagine an x axis pointing from their feet toward the back of the classroom; a 
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y axis pointing from the professor’s feet to their left, and a z axis pointing from the 
professor’s feet up to the ceiling. (We have carefully defned the axes so that they form 
a right-handed coordinate systems. If you are unfamiliar with this concept, please ask 
one of the staf for a clarifcation.) 

A student, sitting in the front row, sets up a similar reference frame. Also using the 
wall clock for time, the student likewise defnes their position as the origin, imagines 
an x axis that points from their feet to the front of the classroom (they are facing in 
the opposite direction as the professor, so “forward” for them is opposite of “forward” 
for the professor), a y axis pointing from their feet to their left, and z axis pointing 
from their feet to the ceiling. 

These two reference frames assign diferent labels to events, but both are perfectly 
valid provided they are used consistently. � 
Aside: This is a good point to introduce some notation and defnitions. Once we’ve 

introduced coordinate axes, it is very useful to defne unit vectors which point along 
these axes. We will call the unit vectors along the x, y, and z axes ex, ey, and ez 

respectively. ex is a dimensionless vector of magnitude 1 that is parallel to the x 
axis; likewise for the other two unit vectors. If more than 1 reference frame is being 
discussed, we will include some kind of label to distinguish them; e.g., exP is the x 
unit vector for the professor’s reference frame; exS is the x unit vector for the student’s 
reference frame. 

In our typed-up notes, we will use boldface to denote vectors in 3-dimensional space. 
This does not work well in chalk, so we will instead use an undertilde (e.g., ex) when � ˜we write such vectors on the chalkboard. 

• Geometric object: Something with properties that exist independent of the reference 
frame that we use to describe it. 

An example of a geometric object is an event. Suppose that at 2:47 pm on 4 September 
2024, a piece of chalks strikes the professor’s forehead. All observers note this event. They 
may assign diferent labels to it — the professor calls it t = 14:47 04-09-2024, x = 0, y = 0, 
z = 1.8 meters; the student calls it t = 14:47 04-09-2024, x = 3 meters, y = −1 meter, 
z = 1.8 meters. Our labels difer, but they describe exactly the same thing. This very much 
like the way in which diferent languages use diferent sounds to describe the same thing: 
whether you call a bound collection of pages and words a book, un libro, ein Buch, or any 
of the many other words used by people around the world, you know what it is. 

Another example of a geometric object is a vector. Consider a meter stick that points 
from a table at the front of the classroom. All observers agree1 that it has a length of 1 
meter, and all agree that is poking out of the table at some angle. However, depending on 
the reference frames being used, diferent observers will use diferent representations of that 
vector. This is of course fne as long as the diferent representations are used consistently 
in describing the physics of the system under study. Figure 1.2 illustrates this concept in a 
simple 2-dimensional example. 

1The agreement among diferent observers about the length of this stick in this example won’t hold up 
once we move beyond Galilean relativity! Hold that thought for now. 
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Figure 1: Three observers, three diferent inertial reference frames. (Imagine they are in a 
gravity-free environment so that each observer is inertial.) Each agrees that there is a large 
stick embedded in the table, making a 45◦ angle with its top and side. Observer A orients √ 

A A Bit along the direction (ex + ez )/ 2; observer B orients it along ez ; and observer C orients √ 
it along (eCx − eCz )/ 2. These diferent representations are consistent, provided we correctly 
relate each observer’s choice of coordinate axes to those of the other observers. 

Much of relativity, whether it is Galileo’s or Einstein’s, is about making sure that we 
carefully and consistently describe things in diferent reference frames, and that we correctly 
relate the description of quantities according to one reference frame to those quantities 
according to another reference frame. Geometric objects are excellent tools for describing 
physics because objects like events, vectors, and tensors (which will be introduced and defned 
soon) have a meaning that transcends a particular reference frame’s representation of that 
object. It is very important (and useful) to maintain a distinction in your mind between the 
object (e.g., a particular vector) and the representation of that object (e.g., the components 
of that vector according to some given frame of reference). 

A particularly important reference frame is an inertial reference frame, or IRF; we will 
use this term enough that it is worth abbreviating. This is a frame of reference in which a 
body’s momentum is constant if no forces act on it: It is an unaccelerated reference frame. 
Non-inertial reference frames certainly exist, and require us to introduce what are sometimes 
called “fctitious” or “non-inertial” forces2 , like the centrifugal force or the Coriolis force. 

1.3 Galilean transformations 

How do we relate quantities as described in one reference frame to those in another? We 
can deduce how to do this by thinking about the (hopefully, straightforward) connection 
between how the two frames relate the representations of geometric objects. Doing so, we 
build a mathematical “machine” for connecting quantities between two reference frames. In 

2I prefer “non-inertial” to “fctitious,” since “fctitious” sounds quite a bit like “fake.” Anyone who has ever 
crashed a bike taking a turn too fast or hurt their neck on an amusement park ride can tell you that there 
is nothing at all fctitious about those forces if you happen to be in the non-inertial frame. 
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Newtonian physics, we call the resulting mathematical machine the Galilean transformation. 
Let us say IRF C is used by the class to label objects and events; IRF P is used by the 

professor. The professor and the class are oriented in the same way, so that their x, y, and z 
axes all point in the same direction. However, the professor is walking across the classroom: 
the class sees the professor moving with constant speed v in the x direction. How do we 
relate these two IRFs? 

Consider time frst. Is there any diference in time according to the class and to the 
professor? In Newtonian physics, the answer is no: Both the class and the professor get 
their time from the wall clock, no matter whether they are in motion or not. So we have 

tP = tC . (1.1) 

 

Their representations of space difer, however. An object at a fxed position in IRF C “falls 
back” along x in IRF P : 

 

− vt x = xP C P 

 

= xC − vtC , (1.2) 
yP = yC , (1.3) 
zP = zC . (1.4) 

(Notice that and coincide when The which coordinates moment at0t tx x = = .P C P C 

 

coincide should be specifed when the relationship between the IRFs is laid out.) The set of 

 

four equations, (1.1)–(1.4), relating quantities in P to quantities in C is a Galilean spacetime 
transformation. It can be neatly written as a matrix equation:  

tP 1 0 0 0 tC  
xP 

yP 

 = 
 
−v 1 0 0 
0 0 1 0 

 · 
 
xC 

yC 

 . (1.5) 

zP 0 0 0 1 zC 

Writing out 4 × 4 matrices like this gets unwieldly; a more compact form is 

x⃗P = G · ⃗xC . (1.6) � 

� 

Aside: Here is another good point to introduce some more notation. When studying 
relativity, it will be useful to make “4-vectors,” vectorial quantities with 4 components: the 
3 spatial ones that you are probably familiar with from previous coursework, plus 1 more for 
a time component. In this course, whenever we write an object with an overarrow like x⃗P , 
it refers to such a 4-vector. The same symbol in boldface or with an undertilde (xP or xP )

˜refers to only the spatial components. (It is worth noting that other conventions exist, and 
we will briefy mention at least one of them when we discuss tensors. For 8.033, I will stick 

 

with the overarrow for 4-vectors and boldface/undertilde for 3-vectors.) 
How do we invert the relation we just wrote down? That is, given Eq. (1.5) relating 

quantities in frame C to those in frame P , how do we relate quantities in frame P to those 
in frame C? On the grounds of physics, this is simple: if C says that P moves with velocity 
v = vex, then P says that C moves with v = −vex. We quickly deduce that 

tC 1 0 0 0 tP  
xC 

yC 

 = 
 
v 1 0 0 
0 0 1 0 

 · 
 
xP 

yP 

 , (1.7) 

zC 0 0 0 1 zP 
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which we will write more compactly as 

x⃗C = G ′ · ⃗xP . (1.8) 

It is easy to verify that G ′ = G−1 , i.e., that G ′ is the matrix inverse of G. This is an exercise 
on problem set #1. 

Another example of a Galilean transformation: Suppose IRFs C and P are at rest with 
respect to each other, but are rotated about the z axis, as shown in Figure 1.3. 

xC

yC

xP

yP

φ

Figure 2: x and y axes for IRFs C and P , related to each by a rotation about the z (which 
is the same to both frames). 

Space and time are related between the two frames with the equations 

tP = tC , (1.9) 
xP = xC cos ϕ + yC sin ϕ , (1.10) 
yP = −xC sin ϕ + yC cos ϕ , (1.11) 
zP = zC . (1.12) 

The spatial part of this transformation is just a simple rotation. We can write this  
tP 1 0 0 0 tC  
xP 

yP 

 = 
 
0 cos ϕ sin ϕ 0 
0 − sin ϕ cos ϕ 0 

 · 
 
xC 

yC 

 , (1.13) 

zP 0 0 0 1 zC 

or 
x⃗P = GR · ⃗xC , (1.14) 

where GR denotes a Galilean transformation that’s a pure rotation. 
The examples discussed here are not comprehensive3 , but hopefully give you the gist of 

the idea. We will explore these concepts a bit more on the problem sets. 
3There’s another very simple one that is worth mentioning: A shift of origin. Suppose the professor and 

the class have the same orientation, but the professor center spaces on their location, and perhaps their 
watch is set to a diferent time zone. Then, x⃗P = x⃗C +∆x⃗, where ∆x⃗ is a constant ofset. 
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1.4 Transformation of velocities and accelerations 

A key feature of the transformations we have been discussing is that they leave inertial frames 
inertial. To see this, let’s go back to our frst example, the professor moving with speed v in 
the x direction as seen by the class and examine how an object’s velocity transforms under 
Galilean transformations. Consider an object moving with velocity u, where ux = dx/dt, 
uy = dy/dt, uz = dz/dt. (Notational note: We will use the letter v or v to denote the relative 
velocity of two diferent frames of reference; we will use the letter u or u to denote velocity 
within some specifed frame.) 

Suppose the class sees some object moving with velocity uC , with components 

u xC = 
dxC 

dtC 
, uy

C = 
dyC 

dtC 
, u zC = 

dzC 
. (1.15)

dtC 

What are the components as seen by the professor? Let’s apply the Galilean transformation 
rules and fnd out: 

dxPx
Pu = 

dtP 

d 
= 

dt 
−( )vt xC C 

P 

d 
= (xC − vtC )

dtC 

= u xC − v . (1.16) 

By a similar calculation, we see that uy
P = uy

C , uz
P = uz

C . This is nothing more than the 

x
P 

“normal” velocity transformation that we are familiar with from Newtonian mechanics. 
How about accelerations? As usual, we have a = du/dt. Imagine that the object is seen 

by the class to have acceleration a, and use the Galilean transformation to deduce what the 
professor sees for its acceleration: 

du x
Pa = 

dtP 

d 
= (u 

dtP 

d 

x
C − v) 

= (u 
dtC 

x
C − v) 

= a xC . (1.17) 

We likewise fnd ayP = ayC , azP = azC : the class and the professor agree on the object’s acceler-
ation, at least as long as v is constant in time. As long as the two frames are not accelerated 
with respect to one another, Galilean transformations take one inertial representation and 
yield another inertial representation. 
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1.5 Relativity, covariance, and invariance 

You have now been introduced to the workings of Galilean relativity. Having seen a few 
examples of how it works, this is a good opportunity to carefully defne a few terms that we 
are going to use a lot in this course. 

• Relativity: We’ve been using “relativity” quite a bit without actually defning it explic-
itly. A relativity framework is just a way of transforming observables — particularly 
the representation of geometric objects which we use to describe important quantities 
in physics — from the reference frame of one observer to that of another. 

• Covariance: We describe a law or principle of physics as covariant if it holds in all 
frames of reference. For example, as you will explore on a problem set, the law of 
momentum conservation is covariant in Galilean relativity. This does not mean that 
observers in all inertial frames agree on the value of an object’s momentum; indeed, 
you should be able to convince yourself that you can make that object’s momentum 
take any value at all by changing frames of reference. However, all observers agree that 
if that body interacts with another body, then the momenta of the two bodies after 
their interaction is the same as it was before. 

• Invariance: Some quantities are in fact exactly the same in all frames of reference. 
The mass of a body is the same to all observers in Galilean relativity; a particular 
notion of mass is the same to all observers in Einstein’s relativity; a body’s electric 
charge is the same to all observers in all forms of relativity. Quantities which are the 
same in all frames of reference are called invariants. Learning when and how to exploit 
invariance is one of the skills we will practice this term. Used well, invariants often 
make it possible to signifcantly simplify a calculation. 

1.6 Transformation of waves in Galilean relativity 

A particularly important example for our discussion is to consider how the representation of 
a wave is afected by a Galilean transformation. Let us frst consider waves in general. We 
imagine there is some feld F that propagates through space and has the functional form 

F = F (x − wt) . (1.18) 

(More generally, we should have F = F (r − wt), where r is a general displacement in three 
dimensions; we focus on the 1-dimensional limit for simplicity.) The feld F depends on the 
specifc physics of the wave under consideration: it could be the pressure of a sound wave, or 
the height of a water wave, or the displacement from equilibrium of an element of a spring, 
or . . . Sufce it to say that many phenomena propagate as waves. The quantity w is the 
speed with which the wave propagates; its value also depends on the specifc physics of the 
system under consideration. 

A wave of this form satisfes the diferential equation 

∂2F ∂2F − w 2 = 0 . (1.19)
∂t2 ∂x2 

It should be emphasized that it can take a fair amount of labor and analysis for the physics 
of the phenomenon under study to reduce to (1.19). This form could emerge from a detailed 
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study of displacement and tension along a string, or a study of weight versus buoyancy in 
a fuid, to give two examples. Equation (1.19) which emerges as the typical outcome of 
performing all this labor and analysis is known as the wave equation. 

Suppose that t and x in Eq. (1.19) are quantities as measured by the class. How does 
the wave behave according to the professor? On an upcoming problem set, you will examine 
this problem by applying a Galilean transformation to the wave equation. You will fnd that 
the wave equation changes such that w → w − v. In other words, if the class describes the 
wave as 

then the professor describes the wave as 

F = F (xC − wtC ) , (1.20) 

F = F (xP − (w − v)tP ) . (1.21) 

This is as expected given our discussion of how velocities transform in Galilean relativity. 
Equations (1.20) and (1.21) have a very important consequence: they tell us that there 

is a particular, special IRF in which the wave speed is w. This is the “rest frame” of the 
medium that supports the wave. For example, for a water wave, the wave’s speed is as 
measured in the frame in which the water does not fow. 

At the end of the 19th century, everything that we have discussed here was quite well 
understood. In particular, “natural philosophers” (which includes what we more or less think 
of as physicists today) of this time period had studied many wave phenomena, and all of 
them were of this form: a wave was a disturbance that propagated in some kind of medium, 
and the “natural” wave speed corresponded to the rest frame of that medium. 

This lasted until Maxwell formulated the equations of electrodynamics that bear his 
name. Then things got interesting. 

Nature and Nature’s laws lay hid in night: 
God said “Let Newton be!” And all was light. 

Alexander Pope (1688 – 1744) 

It did not last: The Devil howling “Ho! 
Let Einstein be!” restored the status quo. 

John Collings Squire (1884 – 1958) 
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