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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Physics 8.012  Fall 2007 

Final Exam

Monday, December 17, 2007


NAME: _______________S O L U T I O N S__________________ 

MIT ID number: __________________________________________________ 

Instructions (PLEASE READ THESE CAREFULLY):
1. Do all EIGHT (8) problems. You have 3 hours. 
2. Show all work. Be sure to circle your final answer. 
3. Read the questions carefully
4. All work must be done in the white books provided. 
5. No books, notes, calculators or computers are permitted
6. A sheet of useful equations is provided on the last page. 

Your Scores 

Problem Maximum Score Grader 

1 10 

2 10 

3 15 

4 10 

5 15 

6 15 

7 10 

8 15 

Total 100 
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Problem 1: Quick Short Answer Problems [10 pts] 

Answer all five problems. You do not need to show any work. Be sure to record 
your answers in your solution book, NOT on this exam. 

(a) [2 pts] A bicycle rider pedals up a hill with constant
velocity v. In which direction does friction act on the wheels? 

Friction does not act while theUphill Downhill bike moves at constant velocity 

(b) [2 pts] An 8.012 student pushes a heavy object up a
hill, and is prevented from slipping by friction between
her shoes and the surface of the hill. While she is 
walking up, she picks up one of her feet. Will she be: 

Neither, as there is no change
in the friction force actingMore likely to slip Less likely to slip


(c) [2 pts] A ball attached to rope is twirled around a stick as
shown in the diagram at right. Ignore gravity and friction.
Which of the following quantities is conserved in the motion of
the ball? Be sure to write down all of the choices below that 
apply. 

Angular None of these areEnergy Momentum Momentum conserved 
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(d) [2 pts] (Challenging) Consider two 
uniform disks of mass M, radius R and
negligible thickness, connected by a thin,
uniform rod of mass M. The centers of the 
disks are separated by a distance 4R.
Reproduce the diagram at right in your
solution book and draw the principle axes 4R
of this object centered at its center of mass
[1 pt], indicating the axis about which torque-free rotations are unstable [1 pt].
Note: you do not need to calculate the moment of inertia tensor to solve this
problem. 

unstable 
axis 

⊗ 

North 

(e) [2 pts] A car at latitude λ on a rotating
Earth drives straight North with constant
velocity v as indicated in the diagram. In West
which direction does friction between the East ⊗car’s tires and the road act on the car to 
counteract the Coriolis force on the car? 

RR 
MM 

M 

λ 

East West Coriolis force does not act on the car
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Problem 2: Swing Bar Pendulum [10 pts] 

M 

L/3 

L 

A uniform bar of mass M, length L, and negligible width and thickness is pivoted
about a fixed post at a point 1/3 along the length of the bar (see figure). The bar is 
initially released from rest when it is tipped just slightly off of vertical, causing it
to swing downwards under the influence of constant gravitational acceleration g as
shown above. Ignore friction. 

(a) [5 pts] What is the total force the swinging bar exerts on the fixed post when it
passes through horizontal? Express your answer as a vector with components in
the coordinate system indicated above. 

(b) [5 pts] What is the angular rotation rate of the bar as it swings past it lowest
point (i.e., oriented vertically)? 
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SOLUTION 

x 
L/6 COM 

(a) The motion of the bar involves both translation of its center of mass
(at distance L/6 from the pivot point) and rotation about the center of 
mass. This motion is determined by both gravitational force and the
constraint forces at the pivot. Assume that there are both horizontal (Fx)
and vertical (Fz) components of the constraint force acting on the
swinging bar (the forces the bar exerts on the fixed post will be equal
and opposite these forces). The figure above shows the force diagram.
Because the motion is rotational, use the polar coordinates r and θ 
centered at the pivot point to describe the translational motion, where at
the instant that the bar is horizontal the positive r and θ directions 
correspond to x and –z in the prescribed rectangular frame. θ is also the 
rotational coordinate of the bar about its center of mass, and points in the
same direction as the translational motion (i.e. the bar rotates and swings
in the same direction). 
The equations of motion are (the coordinate r = L/6 is constant): 
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Combining the last two equations yields:


To solve for Fx, we can use conservation of mechanical energy since
only a conservative force (gravity) is doing work on the bar. The kinetic
energy of the bar (translation of center of mass and rotation about center
of mass) is drawn from its gravitational potential energy when it starts at
vertical and its center of mass if L/6 higher: 

then using the r equation of motion:


The force that the swinging bar exerts on the fixed post is therefore: 

Note that we could have also derived the rotation and energy equations
as pure rotation about the pivot. In this case the rotational equation of
motion, with torque coming from gravity acting at the center of mass,
becomes: 
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which can be plugged into the θ equation for the center of mass motion
above to obtain Fz. The conservation of energy equation involves only
rotational energy in this case because the pivot is not translating; hence: 

as derived above, and this can be plugged into the r equation of motion
to obtain F z as before. 

(b) We can use conservation of energy again to compute the angular
rotation rate at the bottom of the swing: 
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Problem 3: Cue Ball Spin [15 pts] 

M 

µ 

∆p 

α 

R 

A billiards player strikes a cue ball (a uniform sphere with mass M and radius R)
with a cue stick at the middle of the ball (i.e., at a height R above the table) and at
an angle α with respect to horizontal. The strike imparts an impulse ∆p on the ball
in the direction of the strike, causing it to move toward the right as well as
“backspin” – spin in the direction opposite of rolling motion. The coefficient of 
kinetic friction between the ball and table surface is µ. Assume that the ball does 
not rebound off of the table after the strike, and that constant gravitational
acceleration g acts downwards. 

(a) [5 pts] What is the initial speed and angular rotation rate of the cue ball after it
is struck? 

(b) [5 pts] For what angle α will the ball eventually come to rest? 

(c) [5 pts] For the case of part (b), how far does the ball travel before it comes to
rest? 
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SOLUTION


∆p 

α 
Mg 
N 

Ff 
(a) There are two solutions for this part based on the ambiguity of
whether ∆p is the impulse imparted onto the ball or delivered by the
stick. Both solutions were accepted. In the former (assumed) case, the
horizontal translational momentum of the ball arises purely from the
horizontal impulse, so that: 

The vertical impulse imparts no vertical translation because of the
normal force from the floor; however, it does impart an angular impulse
on the ball: 

Alternately, if we consider ∆p to be purely the impulse imparted by the
stick over a short time ∆t, then one needs to also consider the other
forces acting on the ball during that time, in particular friction between
the ball and the floor. The friction force acting on the ball during the
time ∆t is: 
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where during the time ∆t:


The normal force varies according to the details on how the strike force
acts over the time ∆t. Nevertheless, the change in momentum in the x
direction over this period is: 

If we assume that ∆t is very small, then 

The angular rotation rate remains the same as above. 

(b) For this part assume the first solution for v0. The ball comes to rest 
when it stops rotating and translating. Both motions are retarded by
friction acting at the bottom surface of the ball. 

Since these times must be the same we find that:
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(c) The distance traveled by the ball in this case is given simply by our
usual expression for ballistic motion with constant acceleration: 
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Problem 4: The Accelerated Atwood Machine [10 pts] 

R


M 

M 
2 

M 

An Atwood machine consists of a massive pulley (a uniform circular disk of mass
M and radius R) connecting two blocks of masses M and M/2. Assume that the 
string connecting the two blocks has negligible mass and does not slip as it rolls
with the pulley wheel. The Atwood machine is accelerated upward at an
acceleration rate A. Constant gravitational acceleration g acts downward. 

(a) [8 pts] Compute the net acceleration of the two blocks in an inertial frame of
reference in terms of g and A. Do not assume that tension along the entire string is
constant. 

(b) [2 pts] For what value of A does the block of mass M remain stationary in an
inertial frame? 
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SOLUTION 

T1 T2 

Mg’ T1 T2 Mg’/2 

(a) This problem is straightforward if it is done in an accelerated
reference frame, where the pulley and blocks move under an effective
gravitational field g’ = g + A. The force diagrams of the components of
the system in this reference frame are shown above. The equations of
motion for the pulley and blocks are (with positive z in the direction of
effective gravity): 

The massless string implies the constraint equations:


Combining these equations yields:
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To determined the accelerations in the inertial frame, add the system

acceleration A to the accelerations of the blocks in the accelerated

frame: 

These are downward accelerations, so the block of mass M/2 actually
accelerates upwards in the inertial frame. 

(b) The first mass will remain stationary in the inertial frame if 
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Problem 5: What is the Best Way to Move a Heavy Load up a Hill? [15 pts] 

2α 

µ1 

2M 
M 

µ2 

2α 

µ1 
2M 

M 

µ2 

A B 

Two students, each of mass M, are attempting to push a block of mass 2M up a
symmetric triangular hill with opening angle 2α. Student A pushes the load
straight up; student B pulls the load up by running a massless rope through a
massless, frictionless pulley at the top of the hill, and pulling on the rope from the
other side. The maximum coefficient of friction (assumed here to be equal to the
coefficient of kinetic friction) is µ1 between the students’ shoes and the hill, and µ2
between the block and the hill. Assume µ1 > 2µ2. Constant gravitational
acceleration g acts downwards. 

(a) [5 pts] For what minimum angle αmin (i.e., maximum steepness) does neither
student need to apply any force to hold the load in place? 

(b) [5 pts] Calculate and compare the forces each student must exert on the block
to move it up the hill at constant velocity. Does either student have an advantage 
here? 

(c) [5 pts] Calculate and compare the minimum angles α < αmin that each student is 
able to move the block up the hill at constant velocity without their shoes slipping
on the hill surface. Does either student have an advantage here? 
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SOLUTION 

2Mg 

N 

µ1N 

F 

2Mg 

N 

µ1N 
Mg 

N’ 

µ2N’
F 

Mg 

F 

µ2N’ 

N’ 

(a) (b) (c) (d) 

(a) The force diagram of the boxes when it is not being pulled by the
students is shown in diagram (a) above, for the critical case in which it
almost slips. The diagram is the same for both boxes. The equations of
motion in the z and x directions are: 

Note that the way α is defined here, the trigonometric functions are
reversed to what is normally derived. 
(b) The force diagram of the boxes when it is pulled with constant
velocity by the students is shown in diagram (b) above, and is the same
for both boxes. For constant velocity, the net force on the block must be
zero, so the equations of motion in the z and x directions are: 
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Neither student has an advantage in this case. 

(c) The force diagrams on each student are shown in diagrams (c) and
(d) above, for the critical case where they almost slip. The force acting
on the students is equal and opposite to the force the students exert to
pull the blocks because the string is massless. For the first student, the
equations of motion in the z and x directions are: 

(Student 1) 

For the second student, the equations of motion in the z direction is the
same and in the x direction: 

(Student 2)

This angle is smaller than that for the first student, so Student 2 can pull

up a block on a steeper incline than Student 1 can without slipping.
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Problem 6: Ball Rolling in a Bowl [15 pts] 

θ 

L 

M 
R 

µ 

A solid uniform ball (a sphere) of mass M and radius R rolls in a bowl that has a
radius of curvature L, where L > R. Assume that the ball rolls without slipping,
and that constant gravitational acceleration g points downward. 

(a) [5 pts] Derive a single equation of motion in terms of the coordinate θ (the
position angle of the ball with respect to vertical) that takes into account both
translational and rotational motion, for any point along the ball’s trajectory. Be
careful with your constraint equation! 

(b) [5 pts] Find the position angle of the ball along the bowl’s surface as a function
of time in the case that θ is small. Assume that the ball is started from rest at a 
position angle θ0. 

(c) [5 pts] At what maximum initial position angle θ0 can the ball be placed and
released at rest and still satisfy the rolling without slipping condition throughout its
motion? Note that θ0 does not have to be small in this case. 
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SOLUTION


θ 

φ 

Ff 

Mg
N 



(a) The force diagram for the rolling ball is shown above. Note that 
friction points in the direction of rolling, as it acts to reduce the spin of
the ball as it slows down going up the bowl’s incline (if the ball is
rolling down the side of the bowl, friction would also point in this
direction to spin up the ball). Because we are dealing with circular
motion, choose a polar coordinate system centered at the focal point of
the bowl with positive θ increasing as shown. Let φ to be the coordinate 
describing the spin of the ball, with positive direction as shown (the spin
vector points out of the page). The equations of motion for translation
of the center of mass and rotation about the center of mass are: 
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Note that the fixed radial coordinate r of the center of mass is (L-R), not 
L. The constraint equation is: 

We can use these equations to solve for the friction force Ff: 

which gives a single equation for θ:


This solution could also be found by appealing to energy conservation,
since in the case of rolling without slipping there are no dissipative
forces acting. Taking the zero point for gravitational potential energy to
be at the bottom of the bowl, the total mechanical energy at any point
along the bowl is (using the constraint equation): 

The change in energy with time is 0, hence: 
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(b) For small angles θ, the equation of motion reduces to:


which is the equation for simple harmonic motion with frequency


The general solution of this equation is:


, 

with the initial conditions 

which gives: 

(c) There are a number of ways to derive the solution for this part, but
consider that the condition for rolling without slipping implies that Ff ≤ 
µN at every point along the motion. The maximum angular
acceleration due to gravity, and hence the maximum slippage between
the ball and bowl surfaces, occurs at the top of the roll at which point
= 0. From the radial equation of motion: 

and from the expression for Ff above we get: 
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Problem 7: Gravitational Focusing in an Asteroid Field [10 pts] 

b 

R 

M 

m 

A small asteroid of mass m moves with speed v when it is far away from a large
planet of mass M. The “impact parameter”, b, is the distance between the centers
of mass of the planet and asteroid perpendicular to the initial velocity vector of the
asteroid (see figure). As the asteroid passes by the planet, its path is deflected by
the gravitational force acting between the two bodies. Assume that M >> m, so
that the planet does not move appreciably as a result of a single interaction with an
asteroid. 

(a) [5 pts] What is the minimum impact parameter bmin that allows the asteroid to 
miss the planet? Hint: in this case the asteroid just grazes the planet surface. 

(b) [5 pts] (Challenging) Now assume that the planet moves with velocity v
through a space that is filled with many small asteroids of mass m that are
distributed uniformly with average number density N (this parameter has
dimension [L]-3) and are initially at rest. Any asteroid that collides with the planet
sticks to it and adds to the planet’s total mass. Determine the rate at which the
planet gains mass (dM/dt) as it moves through the asteroid field as a function of v.
You may express your answer in terms of bmin. Note: this is an important problem
in understanding the formation of planets like the Earth, 
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SOLUTION 
(a) Because gravitational force is a central force law, there are no net
torques acting on the asteroid; hence, its angular momentum is
conserved. There are also no non-conservative forces acting, so total
mechanical energy is also conserved. Using the hint in the question, and
assuming the asteroid approaches from an effectively infinite (“far”)
distance away, these conservation laws imply: 

b 

v∆t 

(b) This situation is basically the same as part (a), except observed in the
frame of reference of the asteroids. Hence the value of bmin remains 
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unchanged. As the planet moves through the field of asteroids in a
period ∆t, it sweeps up everything in a volume (illustrated above): 

hence the total mass accreted onto the planet is:
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Problem 8: The Accelerated Gyroscope [15 pts] 

RD 

M 

(part b) 

(part c) 

A gyroscope wheel consists of a uniform disk of mass M and radius R that is
spinning at a large angular rotation rate ωs. The gyroscope wheel is mounted onto
a ball-and-socket pivot by a rod of length D that has negligible mass, allowing the
gyroscope to precess over a wide range of directions. Constant gravitational
acceleration g acts downward. For this problem, ignore both friction and
nutational motion; i.e, assume the gyroscope only precesses uniformly.  For all 
parts, express your solution as a vector (magnitude and direction) with components
in the coordinate system shown above. 

(a) [5 pts] Calculate the total angular momentum vector of the uniformly
precessing gyroscope in the orientation show above; i.e., the total of the spin and
precession angular momentum vectors. 

(b) [5 pts] The pivot mount is accelerated upward with magnitude A. Calculate the 
precession angular velocity vector in this case. 

(c) [5 pts] (Challenging) The pivot mount is accelerated toward the right with
magnitude A. Calculate the precession angular velocity vector in this case. 
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SOLUTION 

(a) Although it is not explicitly specified in the problem, it is optimal to
calculate the angular momentum vector with respect to the pivot, since
this point is at rest in the given reference frame and the directions x and
z lie along principal axes of the gyroscope wheel in the orientation
shown. This allows us to compute the components as: 

where Ω is the constant precession angular velocity which points in the
+z direction. The spin component has a moment of inertia: 

The precession component has a moment of inertia (using the parallel
axis theorem): 

The spin angular velocity is given; the precession angular velocity can
be calculated using our usual expression for torque acting to rotate a
large spin angular momentum: 

Here the total force F is just the gravitational force acting on the disk.
For constant precession, only the component of angular momentum due
to spin changes as the system rotates around, hence 

Putting the components together:
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(b) If the gyroscope is accelerated upwards, this puts the gyroscope into
an effective gravitational field of strength g+A pointing downwards.
This changes the magnitude, but not direction, of the effective
gravitational force acting on the disk. Hence, the precession rate simply
changes to: 

and the precession vector becomes:


(c) If the gyroscope is accelerated to the right, both the magnitude and
direction of the effective gravity changes, and this problem effectively
becomes identical to that of a the tilted gyroscope where the angle of tilt 
α is given by: 

The precession path is as shown below; if this is not readily obvious,
consider the direction torque acts when the gryoscope wheel has rotated
90º and points into the page; in this case torque is moving the spin
angular momentum vector upwards at an angle α, consistent with the
path shown. The torque acting on the gyroscope disk is: 
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α 

The component of spin angular moment that is precessing is:


Also note that the precession vector is always parallel to effective
gravity. 

So the precession angular velocity vector can be written: 

Note that this reverts back to the expression derived in part (a) if A = 0.
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USEFUL EQUATIONS 

Velocity in polar coordinates 

Acceleration in polar
coordinates 

Center of mass of a rigid
body 

Volume element in 
cylindrical coordinates 

Kinetic energy 

Work 

Potential Energy
(for conservative forces) 

where 

Angular momentum 

Torque 

Fixed axis rotation: 

Moment of inertia for a 
uniform bar (about COM) 
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Moment of inertia for a 
uniform hoop (about COM) 

Moment of inertia for a 
uniform disk (about COM) 

Moment of inertia for a 
uniform sphere (about COM) 

Scalar parallel axis theorem 

Velocity from rotation 

Moments of inertia tensor 
(permute x→y→z) 

Products of inertia tensor 
(permute x→y→z)

 Fictitious force in an 
accelerating frame 

Fictitious force in a 
rotating frame 

Time derivative between 
inertial and rotating frames 

Taylor Expansion of f(x) 
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