

6.858 Lecture 7
Native Client

What's the goal	
 of this paper?
• At the time, browsers allowed any web page to run only JS (+Flash) code.
• Want to allow web apps to run native (e.g., x86) code on user's machine.

o Don't want to run complex code on server.
o Requires	
 lots of server resources,	
 incurs	
 high latency for users.

• Why is this useful?
o Performance.
o Languages	
 other	
 than JS.
o Legacy	
 apps.

• Actually being used in the real world.
o Ships as part of Google Chrome:	
 the NaCl	
 runtime is a browser extension.
o Web	
 page	
 can run a NaCl	
 programmuch like a Flash program.
o Javascript can interact with the NaCl	
 program by passing messages.
o NaCl	
 also provides strong sandboxing for some other use cases.

• Core	
 problem: sandboxing x86 code.

Using native	
 client:
• https://developers.google.com/native-client/
• Install	
 browser plug in
• Use Nacl tool change to compile C or C++	
 program

o There are restrictions on what system calls you can use
o Example app: games (don't need much systems support)
o Special interface	
 to talk to browser (in release	
 called	
 Pepper)

• Make a web page that includes Nacl module:

 <embed name="nacl_module"

id="hello_world"

width=0 height=0

src="hello_world.nmf"

type="application/x-nacl" />

• Module is "controled"	
 x86 code.

Quick demo:

% urxvt -fn xft:Monospace-20

% export NACL_SDK_ROOT=/home/nickolai/tmp/nacl_sdk/pepper_35

% cd ~/6.858/git/fall14/web/lec/nacl-demo

this is from NaCl's tutorial part1

% vi hello.cc

% vi index.html

% make

% make serve

1

https://developers.google.com/native-client/
http:hello.cc

copy-paste and add --no-dir-check as the error message asks

visit http://localhost:5103/

change hello.cc to "memset(buf, 'A', 1024);"

% make

% !python

visit http://localhost:5103/

ctrl-shift-J, view console

What are some options for safely running x86 code?

Approach 0: trust the code developer.
• ActiveX, browser plug-­‐ins,	
 Java,	
 etc.
• Developer	
 signs	
 code with	
 private	
 key.
• Asks user to decide whether to trust code from some developer.
• Users are bad at making such decisions (e.g., with ActiveX code).

o Works for known	
 developers	
 (e.g., Windows	
 Update	
 code, signed by	
 MS).
o Unclear	
 how to	
 answer	
 for unknown	
 web applications	
 (other	
 than	
 "no").

• Native	
 Client's	
 goal is to	
 enforce safety,	
 avoid	
 asking	
 the	
 user.

Approach 1: hardware protection / OS sandboxing.	

• Similar plan to some ideas we've already read: OKWS, Capsicum,	
 VMs,	
 ..
• Run untrusted	
 code as a regular user-­‐space	
 program or a separate VM.
• Need to control what system calls the untrusted code can invoke.

o Linux: seccomp.
o FreeBSD: Capsicum.
o MacOSX: Seatbelt.
o Windows: unclear what options exist.

• Native	
 client uses	
 these	
 techniques,	
 but only	
 as	
 a backup plan.
• Why not	
 rely on	
 OS sandboxing	
 directly?

o Each OS may impose different, sometimes incompatible requirements.
§ System calls to allocate memory, create threads, etc.
§ Virtual	
 memory layout (fixed-­‐address shared libraries in	

Windows?).
o OS kernel vulnerabilities are reasonably common.

§ Allows untrusted code to escape sandbox.

o Not every OS might have a sufficient sandboxing mechanism.

§ E.g., unclear what to do	
 on Windows,	
 without	
 a special	
 kernel	

module.

§ Some sandboxing mechanisms require root: don't want to run
Chrome	
 as root.

o Hardware	
 might have vulnerabilities (!).
§ Authors claim some instructions happen to hang the hardware.
§ Would be unfortunate if visiting	
 a web	
 site could	
 hang	
 your	

computer.

2

http://localhost:5103
http:hello.cc
http://localhost:5103

Approach 2: software fault isolation (Native Client's	
 primary sandboxing	

plan).
• Given an	
 x86	
 binary	
 to	
 run in Native	
 Client,	
 verify that it's	
 safe.

o Verification involves	
 checking each	
 instruction in the	
 binary.
o Some instructions might	
 be always safe: allow.
o Some instructions might be sometimes safe.

§ Software	
 fault isolation's approach	
 is to require	
 a check before	

these.

• Must ensure the check is present at verification time.
§ Another option: insert the check through binary rewriting.

• Hard	
 to do with x86, but might be more doable with higher-­‐
level	
 lang.

o Some instructions might be not worth making safe: prohibit.
• After verifying, can safely run it in same process as other trusted code.
• Allow the sandbox to call into trusted "service runtime" code. (Figure 2 from

paper)

What does safety mean for a Native Client	
 module?
• Goal #1: does not execute	
 any	
 disallowed	
 instructions	
 (e.g., syscall,	
 int).

o Ensures module does not perform any system calls.
• Goal #2: does not access memory or execute code outside of module boundary.

o Ensures module does not corrupt service runtime data structures.
o Ensures module does not jump into service runtime code, ala return-­‐to-­‐

libc.
o As described in paper, module code+data live within [0..256MB) virt

addrs.
§ Need not populate	
 entire	
 256MB of virtual address	
 space.

o Everything else should be protected from access by the NaCl	
 module.

How	
 to check if the module can execute a disallowed instruction?
• Strawman: scan the executable, look for "int" or "syscall" opcodes.

o If check passes, can start running code.
o Of course, need to also mark all code as read-­‐only.
o And all writable memory as non-­‐executable.

• Complication:	
 x86 has variable-­‐length instructions.
o "int" and "syscall" instructions	
 are	
 2 bytes long.
o Other instructions could	
 be anywhere from 1 to 15 bytes.

• Suppose program's code contains the following bytes:

25 CD 80 00 00

• If interpreted as an instruction starting from 25, it is a 5-­‐byte instr:

AND %eax, $0x000080cd

3

• But if interpreted starting from CD,	
 it's a 2-­‐byte instr:

INT $0x80 # Linux syscall

• Could	
 try	
 looking for disallowed	
 instructions	
 at every offset..
o Likely will generate too many false alarms.
o Real instructions may accidentally have some "disallowed" bytes.

Reliable disassembly.
• Plan:	
 ensure code executes only instructions that	
 verifier knows about.
• How can we	
 guarantee	
 this? Table	
 1 and	
 Figure	
 3 in paper.
• Scan forward	
 through	
 all instructions,	
 starting	
 at the beginning.
• If we see a jump instruction, make sure it's jumping to address we saw.
• Easy	
 to ensure	
 for static jumps (constant addr).
• Cannot	
 ensure statically for computed jumps (jump to addr from register)

Computed	
 jumps.
• Idea is to rely on runtime instrumentation: added checks before the jump.
• For computed jump to %eax, NaCl	
 requires	
 the	
 following code:

AND $0xffffffe0, %eax

JMP *%eax

• This will ensure jumps go to multiples of 32 bytes.
• NaCl also	
 requires	
 that no instructions	
 span	
 a 32-­‐byte boundary.
• Compiler's	
 job is to ensure both of these rules.

o Replace every computed jump	
 with the two-­‐instruction	
 sequence above.
o Add NOP instructions if some other instruction might span 32-­‐byte

boundary.
o Add NOPs to pad to 32-byte multiple if next instr is a computed jump

target.
o Always possible because NOP instruction is just one byte.

• Verifier's	
 job is to	
 check these	
 rules.
o During disassembly, make sure no instruction spans a 32-­‐byte boundary.
o For computed jumps, ensure it's in a two-­‐instruction	
 sequence as	
 above.

• What	
 will	
 this guarantee?
o Verifier checked	
 all instructions	
 starting at 32-­‐byte-­‐multiple	
 addresses.
o Computed	
 jumps can only go to 32-­‐byte-­‐multiple	
 addresses.

• What prevents the module from jumping past the AND, directly to the JMP?
o Pseudo-­‐instruction.

• How does NaCl deal with	
 RET	
 instructions?
o Prohibited	
 -­‐-­‐ effectively a computed jump, with address stored on stack.
o Instead, compiler must generate explicit POP + computed jump code.

Why are the rules from Table 1 necessary?

4

• C1:	
 executable code in memory is not writable.
• C2: binary	
 is statically	
 linked	
 at zero, code starts	
 at 64K.
• C3: all computed jumps use the two-­‐instruction	
 sequence above.
• C4:	
 binary is padded to a page boundary with one or more HLT	
 instruction.
• C5: no	
 instructions, or our	
 special two-­‐instruction	
 pair,	
 can	
 span	
 32 bytes.
• C6/C7:	
 all jump targets reachable by fall-­‐through	
 disassembly from start.

Homework	
 Q: what happens if verifier gets some instruction length wrong?

How	
 to prevent NaCl	
 module from jumping to 32-­‐byte multiple outside its code?
• Could	
 use additional checks in the computed-­‐jump sequence.
• E.g.:

AND $0x0fffffe0, %eax

JMP *%eax

Why don't	
 they use this approach?
• Longer instruction sequence for computed jumps.
• Their sequence is 3+2=5 bytes,	
 above	
 sequence is 5+2=7 bytes.
• An alternative solution is pretty easy: segmentation

Segmentation.
• x86 hardware provides "segments".
• Each memory access is with respect to some "segment".

o Segment specifies base + size.
• Segments are specified by a segment selector: ptr into a segment table.

%cs, %ds, %ss, %es, %fs, %gs

o Each instruction	
 can specify	
 what segment to use for accessing memory.
o Code	
 always fetched using the %cs segment.

• Translation: (segment selector, addr) -­‐>	
 (segbase	
 + addr	
 % segsize).
• Typically, all segments have base=0, size=max, so segmentation is a no-­‐op.
• Can	
 change segments: in Linux, modify_ldt() system call.
• Can	
 change segment selectors: just "MOV%ds", etc.

Limiting code/data to module's size.
• Add a new segment with offset=0, size=256MB.
• Set all segment selectors to that segment.
• Modify verifier to reject	
 any instructions that	
 change segment selectors.
• Ensures all code	
 and data	
 accesses will be within [0..256MB).
• (NaCl	
 actually seems to limit the code segment to the text section size.)

What would be required to run Native Client	
 on a system without segmentation?
• For example, AMD/Intel decided to drop segment limits in their 64-­‐bit	
 CPUs.

5

• One practical	
 possibility: run	
 in	
 32-­‐bit	
 mode.
o AMD/Intel CPUs	
 still support segment limits in 32-­‐bit mode.
o Can run in 32-­‐bit	
 mode even on a 64-­‐bit	
 OS.

• Would have to change the computed-­‐jump	
 code to limit target to 256MB.
• Would have to add runtime instrumentation to each memory read/write.
• See the paper in additional references below for more details.

Why doesn't Native Client	
 support exceptions for modules?
• What if module triggers hardware exception:	
 null ptr,	
 divide-­‐by-­‐zero, etc.
• OS kernel	
 needs to deliver exception	
 (as a signal) to process.
• But Native Client	
 runs with an unusual stack pointer/segment selector.
• Some OS kernels refuse to deliver signals in this situation.
• NaCl's	
 solution	
 is to	
 prohibit hardware	
 exceptions	
 altogether.
• Language-­‐level	
 exceptions (e.g., C++)	
 do not involve hardware: no problem

What would happen if the NaCl	
 module had a buffer overflow?
• Any computed call (function pointer, return address) has to use 2-­‐instr jump.
• As a result, can only jump to validated code in the module's region.
• Buffer overflows might allow attacker to take over module.
• However, can't escape	
 NaCl's	
 sandbox.

Limitations of the original NaCl	
 design?
• Static code: no JIT,	
 no shared	
 libraries.
• Dynamic code supported	
 in recent versions (see additional refs at the	
 end).

Invoking trusted code from sandbox.
• Short code sequences that transition to/from sandbox located in [4KB..64KB).
• Trampoline undoes the sandbox, enters trusted code.

o Starts	
 at a 32-­‐byte	
 multiple boundary.
o Loads unlimited segment into %cs, %ds segment selectors.
o Jumps to trusted code that lives above 256MB.
o Slightly tricky: must ensure trampoline fits in 32 bytes.
o (Otherwise, module could jump into middle of trampoline code..)
o Trusted	
 code first switches	
 to	
 a different stack:	
 why?
o Subsequently, trusted	
 code has to re-­‐load	
 other segment selectors.

• Springboard	
 (re-­‐)enters	
 the	
 sandbox on return	
 or initial start.
o Re-­‐set	
 segment selectors, jump to a particular address in NaCl	
 module.
o Springboard	
 slots (32-­‐byte	
 multiples) start with HLT.	

o Prevents computed jumps into springboard by module code.

What's provided by the service runtime? NaCl's	
 "system call" equivalent.
• Memory allocation: sbrk/mmap.
• Thread	
 operations:	
 create,	
 etc.
• IPC:	
 initially with Javascript code on page that started this NaCl	
 program.

6

• Browser interface via NPAPI: DOM access, open URLs, user input, ..
• No networking:	
 can	
 use	
 Javascript to	
 access	
 network according	
 to	
 SOP.

How secure	
 is Native	
 Client?
• List of attack surfaces: start of section	
 2.3.
• Inner sandbox: validator has to be correct (had some tricky bugs!).
• Outer sandbox: OS-­‐dependent plan.

o On Linux, probably seccomp.
o On FreeBSD (if NaCl	
 supported it), Capsicum	
 would make sense.

• Why the outer sandbox?
o Possible	
 bugs	
 in the	
 inner sandbox.

• What could an adversary do if they compromise the inner sandbox?
o Exploit CPU	
 bugs.
o Exploit OS kernel	
 bugs.
o Exploit bugs in other processes communicating with the sandbox proc.

• Service runtime: initial loader, runtime trampoline interfaces.
• IMC interface + NPAPI: complex code, can (and did) have bugs.

How	
 well does it perform?
• CPU	
 overhead seems to be dominated by NaCl's	
 code alignment requirements.

o Larger	
 instruction cache	
 footprint.
o But for some applications, NaCl's	
 alignment works better than gcc's.

• Minimal overhead for added checks on computed jumps.
• Call-­‐into-­‐service-­‐runtime	
 performance seems comparable to Linux syscalls.

How hard	
 is it to	
 port code to	
 NaCl?
• For computational things, seems straightforward: 20 LoC change	
 for H.264.
• For code that interacts with system (syscalls, etc), need to change them.

o E.g., Bullet physics simulator (section 4.4).

Additional references.
• Native	
 Client for 64-­‐bit	
 x86 and for ARM.

o http://static.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
• Native Client	
 for runtime-­‐generated	
 code (JIT).

o http://research.google.com/pubs/archive/37204.pdf
• Native	
 Client without hardware	
 dependence.

o http://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
• Other software fault isolation systems w/ fine-­‐grained memory access control.

o http://css.csail.mit.edu/6.858/2012/readings/xfi.pdf
o http://research.microsoft.com/pubs/101332/bgii-sosp.pdf

• Formally verifying the validator.
o http://www.cse.lehigh.edu/~gtan/paper/rocksalt.pdf

7

http://static.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
http://research.google.com/pubs/archive/37204.pdf
http://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
http://css.csail.mit.edu/6.858/2012/readings/xfi.pdf
http://research.microsoft.com/pubs/101332/bgi-sosp.pdf
http://www.cse.lehigh.edu/~gtan/paper/rocksalt.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

