

6.858 Lecture 4
OKWS

Administrivia:

Lab 1 due	
 this	
 Friday.

Today's	
 lecture: How to	
 build	
 a secure web server on Unix. The design of our lab
web	
 server,	
 zookws,	
 is inspired by OKWS.

Privilege separation
•	 Big	
 security	
 idea
•	 Split system	
 into modules, each with their own	
 privilege

o Idea: if one module is compromised, then other modules won't be
•	 Use often:

o	 Virtual machines (e.g., run web site in its own virtual machine)
o	 SSH (seperates	
 sshd, agent)

•	 Challenges:
o	 Modules need to share
o	 Need OS	
 support
o	 Need to	
 use	
 OS carefully	
 to set	
 things up correctly
o Performance

OKWS
•	 Interesting	
 case	
 study	
 of privilege	
 separation

o	 Lots	
 of sharing between services
§ strict partitioning	
 doesn't work

o	 Lots	
 of code
•	 Not widely	
 used	
 outside	
 of OKcupid

o	 Many web	
 sites have their privilege separation	
 plan
o But no papers describing	
 their plans

Background: security and protection in Unix
Typical principals:	
 user IDs, group IDs (32-­‐bit	
 integers).
•	 Each process has a user ID (uid),	
 and a list	
 of group	
 IDs (gid + grouplist).
•	 For mostly-­‐historical reasons, a process	
 has	
 a gid	
 + extra grouplist.
• Superuser principal (root) represented by uid=0, bypasses most checks.
What	
 are the objects + ops in	
 Unix,	
 and how	
 does the OS do access control?
1. Files, directories.

•	 File	
 operations:	
 read, write, execute, change perms, ..
•	 Directory operations: lookup, create, remove, rename, change perms, ..
•	 Each inode	
 has an owner user and group.
•	 Each inode has read, write, execute perms for user, group, others.
•	 Typically	
 represented	
 as	
 a bit vector	
 written	
 base	
 8 (octal); octal	
 works well	

because each digit	
 is 3 bits (read,	
 write,	
 exec).

1

•	 Who can change permissions on files? Only user owner (process UID).
•	 Hard link to file: need write permission to file.

o	 Possible	
 rationale:	
 quotas.
o	 Possible	
 rationale:	
 prevent hard-­‐linking	
 /etc/passwd to /var/mail/root,

with a world-­‐writable /var/mail.
•	 Execute for directory means being able to lookup names (but not ls).
•	 Checks	
 for process	
 opening file	
 /etc/passwd:

o	 Must	
 be able to look	
 up 'etc' in	
 /, 'passwd' in	
 /etc.
o	 Must	
 be able to open	
 /etc/passwd (read or read-­‐write).

• Suppose you want file readable	
 to intersection	
 of group1	
 and group2.
o	 Is it possible to implement this in Unix?

2. File	
 descriptors.
•	 File access control checks performed at file open.
•	 Once process has an open	
 file descriptor,	
 can continue	
 accessing.
•	 Processes can pass file descriptors (via Unix domain sockets).

3. Processes.
•	 What	
 can	
 you	
 do to a process?

o	 debug	
 (ptrace),	
 send signal,	
 wait for exit & get status,	
 ..
•	 Debugging, sending signals: must have same UID (almost).

o	 Various	
 exceptions,	
 this	
 gets	
 tricky	
 in practice.
•	 Waiting / getting exit status: must be parent of that process.

4. Memory.
•	 One process cannot generally name memory in another process.
•	 Exception: debug mechanisms.
•	 Exception: memory-­‐mapped files.

5. Networking.
•	 Operations:

o	 bind to a port
o	 connect to some address
o	 read/write	
 a connection
o	 send/receive	
 raw packets

•	 Rules:
o only	
 root (UID 0) can	
 bind	
 to	
 ports	
 below 1024; (e.g., arbitrary	
 user

cannot run a web server on port 80.)
o only	
 root can	
 send/receive raw packets.
o	 any process can connect	
 to any address.
o	 can only	
 read/write	
 data	
 on connection	
 that a process has an fd for.

• Additionally, firewall imposes its own checks, unrelated to processes.

How does	
 the principal of a process	
 get set?
•	 System	
 calls: setuid(), setgid(), setgroups().
• Only root (UID 0) can call these system	
 calls (to first approximation).
Where does the user ID, group ID list come from?
•	 On a typical Unix system, login program	
 runs as root (UID 0)
•	 Checks	
 supplied	
 user	
 password	
 against /etc/shadow.

2

•	 Finds	
 user's	
 UID	
 based	
 on	
 /etc/passwd.
•	 Finds	
 user's	
 groups	
 based	
 on /etc/group.
• Calls	
 setuid(), setgid(), setgroups()	
 before	
 running user's	
 shell
How do you regain privileges	
 after	
 switching to	
 a non-­‐root user?
•	 Could	
 use	
 file	
 descriptor	
 passing (but have	
 to	
 write	
 specialized	
 code)
•	 Kernel mechanism: setuid/setgid binaries.

o	 When	
 the binary is executed,	
 set	
 process UID or GID to binary owner.
o	 Specified with a special bit in the file's permissions.
o	 For example, su / sudo binaries are typically setuid root.
o	 Even if your shell	
 is not	
 root,	
 can	
 run	
 "su	
 otheruser"
o	 su process	
 will check passwd,	
 run	
 shell as	
 otheruser	
 if OK.
o	 Many such programs on Unix, since root privileges often needed.

•	 Why might setuid-­‐binaries be a bad idea,	
 security-­‐wise?
o Many ways for adversary (caller of binary) to manipulate process.
o	 In Unix, exec'ed process inherits environment vars, file descriptors, ..
o	 Libraries that a setuid program	
 might use not sufficiently paranoid
o Historically, many vulnerabilities (e.g. pass $LD_PRELOAD, ..)

How to prevent a malicious program	
 from	
 exploiting setuid-­‐root binaries?
•	 Kernel mechanism: chroot

o	 Changes what '/' means when opening files by path name.
o	 Cannot name files (e.g. setuid binaries) outside chroot tree.

•	 For example, OKWS uses chroot to restrict programs to /var/okws/run, ..
•	 Kernel also ensures that '/../' does not allow escape from	
 chroot.
•	 Why chroot	
 only allowed for root?

o	 setuid	
 binaries	
 (like	
 su)	
 can	
 get confused	
 about what's	
 /etc/passwd.
o	 many kernel implementations (inadvertently?) allow recursive calls to

chroot() to escape from	
 chroot jail, so chroot is not an effective security	

mechanism	
 for a process running as root.

•	 Why hasn't	
 chroot	
 been	
 fixed to confine a root	
 process in	
 that	
 dir?
o Root can write kern mem, load kern modules, access disk sectors, ..

Background: traditional web server architecture (Apache).
•	 Apache runs N identical processes, handling HTTP requests.
•	 All processes run as user 'www'.
•	 Application code (e.g. PHP) typically runs inside each of N apache processes.
•	 Any accesses to OS state (files, processes, ...) performed by www's UID.
•	 Storage:	
 SQL database, typically one connection with full access to DB.

o	 Database	
 principal is the	
 entire	
 application.
•	 Problem: if any component is compromised, adversary gets all the data.
•	 What kind of attacks might occur in a web application?

o	 Unintended	
 data	
 disclosure	
 (getting	
 page source code, hidden files,	
 ..)
o	 Remote code execution (e.g., buffer overflow in Apache)
o	 Buggy application	
 code (hard to write secure PHP	
 code),	
 e.g.	
 SQL inj.
o Attacks on web browsers (cross-­‐site scripting	
 attacks)

3

Back to OKWS: what's	
 their application / motivation?
• Dating web site:	
 worried	
 about data secrecy.
• Not so worried about adversary breaking in and sending spam.
• Lots	
 of server-­‐side code execution: matching, profile updates, ...
• Must	
 have sharing between users (e.g. matching) -­‐-­‐ cannot just partition.
• Good summary of overall plan: "aspects most vulnerable to attack are least

useful	
 to attackers"

Why is this hard?
• Unix makes it tricky to reduce privileges (chroot, UIDs, ..)
• Applications need to share state in complicated ways.
• Unix and SQL databases	
 don't have fine-­‐grained sharing control mechanisms.

How does OKWS partition the	
 web server? (Figure 1 in paper)
• How does a request flow in this	
 web server?

okd -> oklogd

-> pubd

-> svc -> dbproxy

-> oklogd

• How does this design map onto physical machines?
o Probably many front-­‐end machines (okld, okd, pubd, oklogd, svc)
o Several DB machines (dbproxy, DB)

How do these components interact?
• okld	
 sets	
 up socketpairs	
 (bidirectional pipes)	
 for each	
 service.

o One socketpair for control	
 RPC requests (e.g.,	
 "get	
 a new	
 log	
 socketpair").
o One socketpair for logging (okld has to get it from	
 oklogd first via RPC).
o For HTTP services: one	
 socketpair	
 for forwarding HTTP connections.
o For okd:	
 the	
 server-­‐side	
 FDs for HTTP services' socketpairs	
 (HTTP+RPC).

• okd	
 listens	
 on a separate	
 socket for control requests	
 (repub,	
 relaunch).
o Seems to be port 11277 in Figure 1, but a Unix domain socket in OKWS

code.
o For repub, okd talks to pubd to generate new templates, then	
 sends

generated templates to each service via RPC control channel.
• Services	
 talk to DB	
 proxy	
 over TCP (connect by port number).

How does OKWS enforce isolation between components in Figure 1?
• Each service	
 runs	
 as	
 a separate	
 UID	
 and	
 GID.
• chroot used to confine each process to a separate directory (almost).
• Components communicate via pipes (or rather, Unix domain socket pairs).
• File	
 descriptor	
 passing used	
 to	
 pass	
 around	
 HTTP connections.
• What's the point	
 of okld?
• Why isn't okld the same as okd?

4

•	 Why does okld need to run	
 as root?	
 (Port	
 80,	
 chroot/setuid.)
•	 What	
 does it	
 take for okld to launch a service?

o	 Create	
 socket pairs
o	 Get new socket to	
 oklogd
o	 fork,	
 setuid/setgid,	
 exec	
 the	
 service
o	 Pass control sockets	
 to	
 okd

•	 What's the point	
 of oklogd?
•	 What's the point	
 of pubd?
•	 Why do we need a database proxy?

o	 Ensure that each service cannot fetch other data, if it is compromised.
§ DB proxy	
 protocol defined	
 by	
 app developer, depending on what

app requires.
§ One likely-­‐common kind of proxy is a templatized SQL query.
§ Proxy	
 enforces overall query structure	
 (select,	
 update), but allows

client to fill in query parameters.
o	 Where does the 20-­‐byte token come from? Passed as arguments to

service.
o	 Who checks the token?	
 DB	
 proxy has list	
 of tokens (& allowed queries?)
o	 Who generates token? Not clear; manual by system	
 administrator?
o	 What if token disclosed? Compromised component could issue queries.

•	 Table 1: why are all services and okld in the same chroot? Is it a problem?
o	 How would we decide?	
 What	
 are the readable,	
 writable files there?
o	 Readable: shared	
 libraries	
 containing service	
 code.
o	 Writable: each service can	
 write to its own	
 /cores/<uid>.
o	 Where's the config file? /etc/okws_config, kept in memory by okld.
o	 oklogd	
 & pubd	
 have	
 separate chroots because they have important state:

oklogd's chroot contains the log file, want to ensure it's not modified.
pubd's chroot contains the templates, want to avoid disclosing them	
 (?).

•	 Why does OKWS need a separate GID for every service?
o	 Need to execute binary, but file ownership allows chmod.
o	 Solution: binaries owned by root, service is group owner, mode 0410.
o	 Why 0410 (user read,	
 group	
 execute),	
 and not	
 0510 (user read & exec)?

•	 Why not	
 process per user?	
 Is per user strictly better?	
 user X service?
o	 Per-­‐service isolation probably made sense for okcupid given their apps.

(i.e. perhaps	
 they	
 need a lot of sharing	
 between	
 users anyway?)
o	 Per-­‐user isolation requires allocating UIDs per user, complicating okld,

and reducing performance (though may still be OK for some use cases).

Does OKWS achieve	
 its	
 goal?
•	 What attacks from	
 the list of typical web attacks does OKWS solve, and how?

o	 Most	
 things other than	
 XSS are addressed.
o	 XSS sort-­‐of addressed through using specialized template routines.

•	 What's the effect of each component being compromised, and "attack surface"?
o	 okld: root access to web server machine, but maybe not to DB.

§ attack surface: small (no user input other than svc exit).

5

o okd: intercept/modify all user HTTP reqs/responses, steal passwords.
§ attack surface: parsing	
 the first	
 line of HTTP	
 request; control	

requests.
o	 pubd: corrupt templates, leverage to maybe exploit bug in some service?

§ attack surface: requests to fetch templates from	
 okd.
o	 oklogd: corrupt/ignore/remove/falsify log entries

§ attack surface: log messages from	
 okd, okld, svcs
o	 service: send garbage to user, access data for svc (modulo dbproxy)

§ attack surface: HTTP requests from	
 users (+ control msgs from	

okd)

o dbproxy:	
 access/change	
 all user	
 data in the	
 database	
 it's	
 talking	
 to
§ attack surface: requests from	
 authorized services,	
 requests from	

unauthorized services (easy	
 to drop)
•	 OS kernel is part of the attack surface once a single service is compromised.

o	 Linux kernel vulnerabilities rare, but still show up several times a year.
•	 OKWS assumes developer does the right thing at design level (maybe not impl):

o	 Split web application into separate services (not clump all into one).
o	 Define	
 precise	
 protocols	
 for DB proxy	
 (otherwise	
 any	
 service gets	
 any	

data).
•	 Performance?

o	 Seems better than most alternatives.
o	 Better performance under load (so, resists DoS attacks to some extent)

•	 How does OKWS compare to Apache?
o Overall,	
 better design.
o okld runs as root, vs. nothing in Apache, but probably minor.
o	 Neither	
 has	
 a great solution	
 to	
 client-­‐side	
 vulnerabilities (XSS,	
 ..)

•	 Howmight an adversary try to compromise a system	
 like OKWS?
o	 Exploit buffer overflows or other vulnerabilities in C++ code.
o	 Find a SQL injection attack in some dbproxy.
o	 Find	
 logic	
 bugs	
 in service code.
o Find	
 cross-­‐site	
 scripting	
 vulnerabilities.

How successful is OKWS?
• Problems described in the paper are still pretty common.
• okcupid.com	
 still runs OKWS, but doesn't seem	
 to be used by other sites.
•	 C++ might not be a great choice for writing web applications.

o	 For many web applications, getting C++ performance might not be
critical.

o	 Design should	
 be	
 applicable	
 to	
 other	
 languages	
 too	
 (Python, etc).
o	 In fact,	
 zookws	
 for labs	
 in 6.858 is inspired	
 by	
 OKWS,	
 runs	
 Python	
 code.

•	 DB proxy	
 idea hasn't taken off, for typical web applications.
o	 But DB proxy	
 is critical to	
 restrict what data a service can access	
 in

OKWS.
o	 Why? Requires developers to define these APIs: extra work, gets in the

way.

6

o Can	
 be hard to precisely define the allowed DB queries ahead of time.
(Although if it's hard, might be a flag	
 that security	
 policy	
 is fuzzy.)

•	 Some work on privilege separation for Apache (though still hard to use).
o	 Unix makes it hard for non-­‐root	
 users to manipulate user IDs.
o	 Performance is a concern (running a separate process for each request).

•	 scripts.mit.edu	
 has a similar design, running scripts under different UIDs.
o	 Mostly worried about isolating users from one another.
o	 Paranoid web app developer	
 can create	
 separate	
 locker	
 for each

component.
•	 Sensitive systems do partitioning at a coarser granularity.

o	 Credit	
 card processing companies split credit card data vs. everything
else.

o	 Use virtual machines or physical machine isolation to split apps, DBs, ..

How	
 could you integrate modern Web application frameworks with OKWS?
•	 Need to	
 help okd figure	
 out how to	
 route	
 requests	
 to	
 services.
•	 Need to implement DB proxies, or some variant thereof, to protect data.

o	 Depends on how amenable the app code is to static analysis.
o	 Or need to ask programmer to annotate services w/ queries they can run.

•	 Need to ensure app code can	
 run	
 in	
 separate processes (probably OK).

References:
•	 http://css.csail.mit.edu/6.858/2014/readings/setuid.pdf
•	 http://httpd.apache.org/docs/trunk/suexec.html

7

http://css.csail.mit.edu/6.858/2014/readings/setuid.pdf
http://httpd.apache.org/docs/trunk/suexec.html

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

