

6.858 Lecture 8
Web	
 Security

What is the web? In the old days, it was a simple client/server architecture (client
was your web browser, server was a machine on the network that could deliver
static text and images to your browser).
• In the old days,	
 the server-­‐side	
 was much more complex than the client-­‐side:

browsers didn't support rich interactivity, but the server might interface with
databases,other	
 servers, etc.

• Because the server was so much more complicated, "web security" focused on
the server-­‐side.	
 Up to this point, this class has largely	
 focused on the server-­‐side	

as well	
 (e.g.,	
 buffer overflows on	
 web	
 servers,	
 privilege separation	
 in	
 the OKWS
server).

The web has changed: now the browser is very complicated.
• JavaScript: Allows a page to execute client-­‐side	
 code.
• DOMmodel Provides a JavaScript interface to the page's HTML,	
 allowing the

page to add/remove tags, change their styling, etc.
• XMLHttpRequests	
 (AJAX): Asynchronous HTTP	
 requests.
• Web	
 sockets: Full-­‐duplex client-­‐server	
 communication over TCP.
• Web	
 workers: Multi-­‐threading	
 support.
• Multimedia support: <video>, web cams, screen-­‐sharing.
• Geolocation: Browser can determine your location by examining GPS units.

Firefox can also locate you by passing your WiFi information to the Google
Location Service.

• <canvas> and WebGL: Bitmap manipulation and interactive 2D/3D graphics.
• Nacl: Allows browsers to run native code!

The web is now a complex platform for distributed computation! But what does this
mean for security?
• The threat surface	
 is huge!
• A single web application now spans multiple programming languages,	
 OSes,

hardware platforms. I might be running Firefox on Windows	
 interacting with	
 a
Linux server running Apache and interfacing with memcached and MySQL).

• All of this composition makes it difficult	
 to verify end-­‐to-­‐end	
 correctness,	
 or even
understand what the system is doing. Ex: Parsing contexts and content
sanitization.

<script> var x = 'UNTRUSTED'; </script>

//Single quote breaks out of JS string

//context into JS context

//

//"</script>" breaks out of JS context

//into HTML context

1

• The web specs are incredibly long, very complex, occasionally	
 contradictory,	
 and
constantly	
 evolving.

o So, browser vendors	
 do something that roughly resembles the specs and
then	
 laugh about	
 it with their friends.

o If you want to understand the horror,	
 go to quirksmode.org.

In this lecture,	
 we're	
 going to focus on the client-side	
 of a web application.	
 In	

particular, we're going to focus on how to isolate content from different providers
that	
 has to reside within the same browser.
• Big	
 difference between	
 a web	
 application	
 and a traditional	
 desktop	
 application:

the bits in a desktop application typically come from a single vendor	
 (e.g.,
Microsoft or Apple or TurboTax),	
 but a single	
 web application	
 contains content
from a bunch of different principals!

+--+
| +--------------------------------------+ |

| | ad.gif from ads.com | |

| +--------------------------------------+ |

| +-----------------+ +------------------+ |

| | Analytics .js | | jQuery.js from | |

| | from google.com | | from cdn.foo.com | |

| +-----------------+ +------------------+ |

| |

| HTML (text inputs, buttons) |

| |

| +--------------------------------------+ |

| | Inline .js from foo.com (defines | |

| | event handlers for HTML GUI inputs) | |

| +--------------------------------------+ |

|+--+|

|| frame: https://facebook.com/likeThis.html||

|| ||

|| +----------------------+ +--------------+||

|| | Inline .js from | | f.jpg from https://

|| | https://facebook.com | | facebook.com |||

|| +----------------------+ +--------------+||

|| ||

|+--+|

| |

Question: Which pieces of JavaScript code can access which pieces	
 of state? For
example…

2

https://||
http://quirksmode.org/

• ������� ���	
���
 ���� ���� ����	����� ����

���� ������ �����
����� ����

������������ �����
 ��
�� ���
���� ��������� ��������	
 ��������� ���������

���
 ��� ���	���� �� ���
��� ����� � � ��

• ������� �����
 ���� ���� ����������� ����

���� ������ ��	��� �!������������

������� �
 �������� �"��
#�� $�	��
�$ ���� ���
��� �	��� � � ��

• ��� �������	
���
����� �� �����
�����

 ��� %"&' ��(�������
���)�#!� ������

��*� ���� ������� ���������!�
��������

• ���� �!������� �� ��� +������* ����� ����� ��

���� �� ��� ������� ������ ,��

�� ������ ���� ��� +������* ����� �
 ����
-..� ��� ��� ������� ����� �
 ����	��

����-..�

"� ��
�������
��/��
����
������
��
��
� �
������
 ����	 ��		�� ���
���0�������

��	��
�

• 1��������	-�"������������ ���
���
�
���	����� �� ��	� �� ������ ���� ����

�����#
���������

• 2�

 ��
����� ��� ����*
 �� ���	������

o 3�!���
	
����- 4� 4 ��!� ��� ��������� ����
���
 ��������� ���
��
���
���	�

��� �� ��	� �� �!����������� !�
��	 ��
�	�
 �� ����
�����
����

o 3�!���
	
�����- ,�!�	����

���	� �� ��	� �� ������ ��
�0���
���
 ����

������� ������� ���� �����		
 ���������!� ���
���
�

� 02(- 5
��� ���� �������
 6���	� &�� ���� ��������	 �
����������

� 02(- 5�!����
������
�

� 02(- �����	 ����� ������
 7��������� +������* 8	�*�8 ������9�

o %������
�
- 4� � ���� ���� ���
��!�� : ����	���
�� �!������� 	�����

���� � ���������
��!�� ;������ ������	����

���	������
����� ��!��

• <�
��
������
 ��
���0���������	��
-�"�� ����
�� �

���
 �� ��������� �!��

��
�������� � ����� ���	������ �!������� 	�������
�� �!������� ���� ��� ��	
�����

��
�����
����� ��	��� �����
��������

• ,��������� �� �� ������-
����� = ��
����� = ����

• +�� �(���	�-

o ����-..�������.����(����	 7����� �������� >? ����	�����9

o ����
-..�������.����(����	 7����
� �������� @@A ����	�����9

o ����-..�������->B>B.����(����	�7���������������>B>B9

• ������
 ��� �� ����� ����
� ���� ��	�� ����

• +��� ���� ����
-

B� 2��� ��������
 �

������� ���� �	����0
��� ��
�����
�7����� ���*��
� ,3&

������� � �!������� ����
����� � ,3& ����� ������
� � !�
��	���
�	�

������������*������

�
9�

� 5� ������ �
 ��� ����	 �/��!�	��� �� � C4, ������ C��(����	��

D� 2��� ����� ���
 ��� ������ �� ��
 CE'� 5 ����� �
 ��� ����	 �/��!�	��� �� �

�����

 �� C��(�

A� ������
 ���	���� �
 � ����� �(����� ���� ��� ��������
 �� �����%"&' ��	�#

������� "��
 �
 �������� �������	���
�����
�$���$ ���
 ���� ������		�������

�(�����	 ������
F �C��(���	��
- E������ � �����
�����#

����� ���

������
 �	
�#
 ���� ��������
��

�

4. Passive	
 content (e.g., images and CSS)	
 can't execute	
 code, so this	
 content
is given zero	
 authority.

• Returning to our example:
o The Google	
 analytics	
 script and	
 the	
 jQuery script can	
 access	
 all the

resources	
 belonging to foo.com (e.g., they can read and write cookies,
attach event	
 handlers to buttons, manipulate the DOM tree, access
JavaScript variables,	
 etc.).

o JavaScript code in the Facebook frame has	
 no access	
 to	
 resources in the
foo.com frame, because the two frames have different origins. The two
frames can only	
 talk via postMessage(), a JavaScript API that allows
domains to exchange immutable strings.

§ If the two frames *were* in the same origin, they	
 could	
 use
window.parent and window.frames[] to directly interact with	
 each	

other's	
 JavaScript state!

o JavaScript code in the Facebook frame cannot issue an	
 XMLHttpRequest
to foo.com's server [the network	
 is a resource	
 with an origin!]	
 . . .

o However, the Facebook frame *can* import scripts, CSS,	
 or images from
foo.com (although	
 that content can	
 only	
 update the Facebook frame, since
the content inherits	
 the	
 authority	
 of the	
 Facebook origin, not foo.com
origin).

o The browser	
 checks	
 the	
 type	
 of ad.gif, determines that ad.gif is a image,
and concludes that the image should receive no authority	
 at all.

What	
 happens if	
 the browser mistakenly identifies the MIME type of an object?
• Old versions of IE used to do MIME sniffing.

o Goal:	
 Detect when	
 a web server has	
 given an incorrect	
 file extension	
 to an
object (e.g., foo.jpg should actually be foo.html).

o Mechanism: IE looks at the first 256 bytesof the file and looks for magic
values which indicate a file type.	
 If there's a disagreement between the
magic values and the file extension,	
 IE trusts the file	
 extension.

o Problem: Suppose that a page includes some passive content (e.g.,	
 an
image) from an attacker-­‐controlled domain. The victim page thinks that
it's	
 safe	
 to import passive content, but the attacker can intentionally	
 put
HTML+JavaScript in the image and execute code in the victim page!

• Moral: Browsers are complex-­‐-­‐-­‐adding a well-­‐intentioned	
 feature may cause
subtle and unexpected security	
 bugs.

Let's	
 take	
 a deeper	
 look at how the	
 browser secures	
 various	
 resources.

Frame/window objects
• Note: A frame object is a DOM node of type HTMLIFrameElement,	
 whereas	
 the

window	
 object is the alias for the global JavaScript namespace. Both objects have	

references	
 to	
 each	
 other.

• Get the origin of their frame's URLs
-­‐OR-­‐	

4

• Get the origin of the adjusted document.domain
o A frame's document.domain is originally derived from the URL in the

normal	
 way.
o A frame can set document.domain to be a suffix of the full domain. Ex:

§ x.y.z.com //Original value
§ y.z.com //Allowable new value
§ z.com //Allowable new value
§ a.y.z.com //Disallowed
§ .com //Disallowed

o Browsers distinguish between a document.domain that	
 has been	
 written,
and one that	
 has not, even if both have the same value! Two frames can
access each other if:

o They have both set document.domain to the same
value,	
 or

o Neither	
 has	
 changed	
 document.domain (and	
 those
values	
 are equal in both frames)

o These rules	
 help protect a site from being attacked by a buggy/malicious
subdomain, e.g., x.y.z.com trying to attack y.z.com by shortening	
 its
document.domain.

DOM nodes
• Get the	
 origin	
 of their surrounding frame

Cookies
• A cookie has a domain AND a path. Ex: *.mit.edu/6.858/

o Domain can only be a (possibly full) suffix of a page's current domain.
o Path	
 can be	
 "/" to	
 indicate	
 that all paths	
 in the domain should have access

to the cookie.
• Whoever sets cookie gets to specify the domain and path.

o Can be	
 set by	
 the	
 server using a header, or by JavaScript	
 code that	
 writes
to document.cookie.

o There's also	
 a "secure" flag	
 to	
 indicate HTTPS-­‐only	
 cookies.
• Browser keeps cookies on	
 client-­‐side	
 disk (modulo cookie expiration,	
 ephemeral

cookies,	
 etc.).

• When	
 generating	
 an HTTP request,	
 the browser sends all matching cookies in
the request.

o Secure	
 cookies only sent for HTTPS	
 requests.
• JavaScript code can access any cookie that match the code's origin,	
 but note that

the cookie's path and the origin's port	
 are ignored!
o The protocol matters, because HTTP	
 JavaScript cannot access HTTPS

cookies	
 (although	
 HTTPS JavaScript can access	
 both	
 kinds	
 of cookies).

• Q: Why is it important to protect cookies from arbitrary	
 overwriting?

5

• A: If an attacker controls a cookie, the attacker can force the	
 user to	
 use an
account	
 that's controlled	
 by	
 an attacker!

o Ex: By controlling a Gmail cookie, an attacker can redirect a user to	
 an
attacker controlled account	
 and read any	
 emails that are sent from that
account.

• Q: Is it	
 valid for foo.co.uk	
 to set	
 a cookie's domain to co.uk?
• A: This is valid according to the rules that we've discussed	
 so far,	
 but in practice,

we should disallow such a thing,	
 since	
 ".co.uk"	
 is semantically	
 a single, "atomic"
domain	
 like	
 ".com". Mozilla maintains a public	
 list which	
 allows browsers to
determine the	
 appropriate suffix rules for top-level domains.
[https://publicsuffix.org]

HTTP responses:	
 Many	
 exceptions	
 and	
 half-­‐exceptions	
 to same-­‐origin	
 policy.
• XMLHttpRequests: By default,	
 JavaScript	
 can only send XMLHttpRequests to its

origin server… unless the remote server has enabled Cross-­‐origin Resource	

Sharing (CORS).	
 The scheme defines some new HTTP	
 response	
 headers:

o Access-­‐Control-­‐Allow-­‐Origin	
 specifies	
 which origins can	
 see HTTP
response.

o Access-­‐Control-­‐Allow-­‐Credentials	
 specifies if browser	
 should	
 accept
cookies in HTTP	
 request from the foreign origin.

• Images: A frame can load an image from any origin… but it	
 can't	
 look	
 at the
image pixels… but it	
 can determine the image's size.

• CSS:	
 Similar story to images-­‐-­‐a frame can't directly read	
 the	
 content of external
CSS files, but can infer some of its properties.

• JavaScript: A frame can load JavaScript from any origin . . . but it can't directly
examine the source	
 code in a <script>	
 tag/XMLHttpRequest response	
 body	
 . . .
but all JavaScript	
 functions have a public toString() method which reveals source	

code… and a page's home server can always fetch the source code directly	
 and
then pass it to the page!

o To prevent	
 reverse-­‐engineering,	
 many sites minify and obfuscate their
JavaScript.

• Plugins: A frame can run a plugin from any origin.
o <embed src=...> // Requires	
 plugin-­‐specific elaborations.

Remember that, when the browser generates an HTTP	
 request, it automatically	

includes	
 the	
 relevant cookies.

• What happens if the browser creates a frame with a URL like this?
o http://bank.com/xfer?amount=500&to=attacker

• This attack is called	
 a cross-­‐site	
 request forgery (CSRF).
• Solution: Include some random data in URLs that is difficult for the	
 attacker

to guess.	
 Ex:

<form action="/transfer.cgi" ...>
<input type="hidden"

name="csrfToken"

6

https://publicsuffix.org/

 value="a6dbe323..."/>

•	 Each time a user requests the page, the server generates	
 HTML	
 with	
 new
random tokens. When the user submits a request, the server validates the
token	
 before actually processing	
 the request.

•	 Drawback: If each URL to the same object is unique, it's difficult	
 to cache that
object!

Network addresses almost	
 have an origin.
•	 A frame can send HTTP	
 and HTTPS	
 requests to a host+port that match its

origin.
•	 Note that the security of the same-­‐origin	
 policy depends	
 on the	
 integrity	
 of the	

DNS infrastructure!
•	 DNS rebinding attack

o	 Goal: Attacker wants to run attacker-­‐controlled JavaScript code with	
 the	

authority	
 of an origin that he does not control (victim.com).

o	 Approach:
1) Attacker	
 registers a domain name (e.g., attacker.com) and creates

a DNS	
 server to respond to the relevant	
 queries.
2) User	
 visits the attacker.com website, e.g., by	
 clicking	
 on an	

advertisement.
3) The	
 attacker	
 website	
 wants	
 to	
 downloads a single object,	
 but first,	

the browser must issue a DNS request for attacker.com. The
attacker's DNS	
 server responds with a DNS	
 record to the attacker's
IP address. However,	
 the record has a short time-­‐to-­‐live.

4) The	
 attacker rebinds attacker.com to the IP address of victim.com.
5) A	
 bit later, the attacker website creates an XMLHttpRequest	
 that	

connects	
 to attacker.com. That request will actually be sent	
 to the
IP address of victim.com! The browser won't complain because it
will	
 revalidate the DNS	
 record and see the new	
 binding.

6) Attacker	
 page can now exfiltrate data, e.g., using CORS	

XMLHttpRequest	
 to the attacker domain.

o	 Solutions:	

§ Modify DNS	
 resolvers so that	
 external hostnames can never

resolve	
 to	
 internal IP addreses.
§ Browsers can pin	
 DNS	
 bindings,	
 regardless of their	
 TTL settings.	

However, this may break web applications that use dynamic DNS
(e.g., for load-­‐balancing).

What	
 about	
 the pixels on	
 a screen?
•	 They don't have	
 an origin! A frame can draw anywhere within	
 its bounding	
 box.
•	 Problem: A parent frame can overlay content atop the pixels of its child frames.

o	 Ex: At attacker creates a page which has an enticing	
 button	
 like "Click	

here for a free iPad!" Atop that button,	
 the	
 page creates a child frame that
contains	
 the Facebook "Like" button. The attacker places that button atop

7

the "free iPad" button, but makes it transparent! So, if the	
 user clicks	
 on
the "free iPad" button,	
 he'll actually "Like"	
 the attackers page on
Facebook.

• Solutions
1) Frame-­‐busting	
 code: Include JavaScript that prevents your page from

being included as a frame. Ex: if(top	
 != self)
2) Have	
 your	
 web server send	
 the	
 X-­‐Frame-­‐Options HTTP response	
 header.

This will instruct the browser not	
 to put your content	
 in a child frame.

What about frame URLs that don't have an origin?
Ex: file://foo.txt

about:blank
javascript:document.cookie="x"

• Sometimes the frame is only accessible to other frames with	
 that protocol (e.g.,
file://). [This	
 can	
 be	
 irritating	
 if you're debugging	
 a site and you want to mix
file:// and	
 http:// content].

• Sometimes the frame is just inaccessible to all other origins (e.g.,	
 "about:").
• Sometimes the origin is inherited from whoever created	
 the	
 URL (e.g.,

"javascript:").	
 This prevents attacks in which a attacker.com creates a frame
belonging to victim.com, and then navigates the victim frame to a javascript:
URL-­‐-­‐we don't want the JavaScript	
 to execute in	
 the context of victim.com!

Names can be used as an attack vector!
• IDN: internationalized domain names (non-­‐latin	
 letters).
• Supporting more languages is good, but now, it can be difficult	
 for users to

distinguish two domain names from each other.
•	 *Ex: The Cyrillic	
 "C"	
 character looks like the Latin "C" character!	
 So, an attacker

can buy a domain like "cats.com" (with a Cyrillic	
 "C")	
 and trick	
 users who
thought	
 that	
 they were going to "cats.com" (Latin "C").

• Good example of how new features can undermine security assumptions.
• Browser vendors thought	
 registrars will	
 prohibit ambiguous names.
• Registrars	
 thought browser vendors will	
 change browser to do something

Plugins	
 often	
 have subtly-­‐different security	
 policies
• Java: Sort of uses the same-­‐origin	
 policy,	
 but Java code can set HTTP headers

(bad!	
 see "Content-­‐Length" discussion), and in some cases, different hostnames
with the same IP address are considered to share the same origin.

• Flash: Developers place a file called crossdomain.xml on their	
 web servers. That
file	
 specifies	
 which	
 origins can talk to	
 the	
 server via	
 Flash.

HTML5	
 introduces	
 a new screen-­‐sharing	
 API: Once	
 the user gives permission, a site
can capture	
 the entire visible screen area and transmit it back
to the site's origin.

8

• So, if an attacker page can convince the user to grant	
 screen-­‐sharing	
 permission,
the attacker page can open an iframe to a sensitive site (e.g., banking,	
 Facebook,
email), and capture the screen	
 contents!

• The iframe will send cookies, so the user will automatically be logged in,
allowing	
 the attacker to see "real" information, not boring login	
 page stuff.

• Attacker can make the iframe flash only briefly to prevent the user from noticing
the mischief.

• Possible	
 defenses:
o Allow users to only screen-­‐share	
 part of the DOM tree? It seems like this

will	
 be tedious and error-­‐prone.
o Only allow	
 an origin	
 to screen-­‐capture content from its own origin?

Seems like a more reasonable approach, although it prevents

"The Tangled	
 Web,"	
 there	
 have	
 been	
 various	
 modifications and additions to
the aggregate web stack.

• In general, things have gotten more complicated, which is typically bad for
security.

• For reference, here are some of the new features:
o http://en.wikipedia.org/wiki/Content_Security_Policy
o http://en.wikipedia.org/wiki/Strict_Transport_Security
o http://en.wikipedia.org/wiki/Cross origin_resource_sharing
o HTML5 iframe sandbox attribute [http://msdn.microsoft.com/enn

us/hh563496.aspx]

The browser security model is obviously a mess. It's very complex and contains a lot
of subtleties	
 and inconsistencies.

• Q: Why not rewrite the security model from scratch?
• A1: Backwards compatibility! There's a huge amount of preexisting	
 web

infrastructure	
 that	
 people rely	
 on.
• A2: How	
 do we know that a new security model would be expressive

enough? Users typically	
 do not accept	
 a reduction	
 of features in	
 exchange for
an increase in	
 security.

• A3: Any security model may be intrinsically doomed-­‐-­‐-­‐perhaps all popular
systems are destined to accumulate a ton of features as time progresses. [Ex:
Word processing programs, smartphones.]

• What might a better design look like?
o Strict isolation Embassies-­‐-­‐-­‐everything is a network message, even

locally
§ https://www.usenix.org/system/files/conference/nsdi13/nsd

i13-final85.pdf
o Don't make policy extraction and enforcement dependent on complex

parsing rules (remember our sanitization example)

9

Since

http://en.wikipedia.org/wiki/Content_Security_Policy
http://en.wikipedia.org/wiki/Strict_Transport_Security
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://msdn.microsoft.com/en-us/hh563496.aspx
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final85.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final85.pdf
https://msdn.microsoft.com/en-us/hh563496.aspx

o

and the need for guessing.

Only add	
 features in small, clearlyn defined quanta with minimal room
for implementation error or interpretation mistakes---remove ambiguity

10

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

