
MITOCW | watch?v=XMEFdofERLI

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or to view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right, guys, let's get started. So today, we're going to talk about a very different and

principled approach to building secure web applications. And it's going to be about a system

called Ur/Web. And right now, our guest lecturer is the author of the system, Adam Chlipala,

who's a professor at MIT, is going to tell you more about the system he built.

ADAM CHLIPALA: All right, so I want to get to a demo as soon as possible. But before that, I just want to spend

some slides setting up part of the context about this system. And you've probably gotten some

of that context already from the draft paper that was the reading for this class. So what is

Ur/Web? It's always good to start out by explaining what the name of something means.

So Ur/Web, first it's a programming language for building web applications. That's what the

Web part of the name means. And it's sort of a full stack system. It does everything you need

to do to build web applications. And Ur is a new general purpose functional programming

language that is used to implement these web specific features.

And the whole point of Ur/Web is that instead of having a general purpose programming

language and then having a library or a traditional framework for building web applications, it's

all integrated into a customized programming language in Ur/Web. And it's a language that

involves compilation, not interpretation at run time. And the compiler in some sense

understands what a web application is supposed to do. And it will point out mistakes that

you're making that a conventional compiler, for say Java, would not be able to realize where

mistakes.

So there are really three main principles that I was trying to follow in designing this language.

The middle one is most relevant in this context. But they are programmer productivity,

security, and performance. And the last part, especially on the server side, because that

seemed more important for scaling reasons. In many cases, the users of your application

won't notice small performance issues on the client side. But a small issue on the server side

could force you to buy many more servers than you would have otherwise.



And at this point, there are some users of Ur/Web-- not nearly as much as pretty much any

other language you probably think of. But there's at least this one commercial web application,

which is an RSS feed reader that supports such exotic features as displaying comments. And

there's the URL chosen by a non-native English speaker who regrets it now. It's called BazQux

Reader, as a combination of common medicine tactic variables from the hacker community.

And there are a few thousand paying users. And it looks like that-- much nicer than anything I

know how to make with CSS. But here's a proof that it can be done using Ur/Web. Feel free to

jump in with questions at any point, though I probably haven't gotten to the point yet that

provokes many questions.

So the basic sales pitch for Ur/Web is that it has a very high level programming model, which

is very different from, say, Django, which I know you spent some time reading about or talking

about in class. And it has a good security story. Some features you want for security are really

integrated into the system so that you would really have to work hard to avoid inheriting these

security benefits. And I'll say more about the detail shortly. And also, the server side

performance is unusually good, even among the popular tools for building web applications

that you're more likely to have heard of before.

And the caveat is that we probably need to have internalized the big ideas of functional

programming languages like Haskell before a programmer's ready to start using Ur/Web. And

looking at the questions and answers for this class, maybe a fifth of you were complaining

about the functional programming parts of the paper being hard to follow.

I apologize. There are just so many good ideas in the world of functional programming that it's

hard not to start from that point and add more cool stuff on top of that. And I will try to avoid

any requirement to know that material to follow what I'll be doing in class today.

So the programming model is really closely connected to static typing. And that's not just static

typing like in, say, Java, which has a relatively inexpressive clunky type system, but static

typing like in Haskell or OCaml. And these types are one of the ways that the compiler

understands what you're doing and catches mistakes in your program.

And it turns out that the core Ur language that Ur/Web is built on top of has a very expressive

static type system. So many of the things that Ur/Web does are actually just exposed as

libraries with no special compiler support. For instance, we'll teach the compiler how to type

check SQL queries without actually building the typing rules of SQL into the compiler. They



can be encoded as a library and use a standard type checker to make sure your SQL queries

are following the rules of SQL.

Most relevant in this context, the security story at a high level-- most of the most common

security vulnerabilities are impossible by construction in Ur/Web. You will have to explicitly

enable scary looking flag names to be allowed to do most of the most awful things you can do

in a web application, like no cross site scripting vulnerabilities unless you really invoke some

black magic, say, by using the foreign function interface. And there are a few other security-

specific features that I'll highlight later.

And the performance is also very good. The compiler is, first of all, a domain specific compiler

for a web application. So it understands what the web application is doing and is able to

optimize some things that a more general compiler wouldn't catch. And usually the code that

comes out of this compiler that runs on the server is native code, which is very, very

competitive with what you might bother to write by hand in C.

And the performance costs that there are compared to other approaches tend to have to do

with the concurrency model, which makes the programmer's life easier at some cost in

performance. And I'll say a little bit more about that in a moment.

Here's a quick plug for this web framework benchmarking initiative that is run by a third party.

This is a screenshot of the results of the most recent round where a number of different web

programming tasks were completed in many different frameworks, and they were compared

pretty much exclusively on performance so far. And here you can see Ur/Web sitting at fourth

out of about 60 frameworks on this benchmark. And there's been some improvements to the

Ur/Web compiler since this screenshot was taken. And I expect in the next round it'll move up

a little bit higher.

But basically, already this is a simple example using SQL to generate HTML pages. You get

about 100,000 requests per second from the Ur/Web server, which is going to be just plenty

for most applications. So sort of maybe the important takeaway message from this slide in this

class is that you can adopt a high level model that makes security easier to achieve without

just giving up all the performance that you would expect to get from more mainstream

techniques.

All right, so let me start out by giving my cartoon impression of the way web programmers

think about writing web applications in mainstream frameworks today. And then I'll show the



think about writing web applications in mainstream frameworks today. And then I'll show the

different perspective that Ur/Web provides, where some of the things that can go wrong at this

level given the abstractions that are exposed can no longer go wrong by construction.

So the basic cartoon picture is there's a web server out there. And it's sort of in charge of the

whole process of your application. And there's a whole fleet of browsers out there that are

going to interact with that server. It'll have some state that winds up effectively shared across

all these browsers through their contact with the server.

So the usual picture is that the browser starts interacting with the web server by sending it an

HTTP request that includes some URLs embedded in it. And then the web server throws back,

again, the HTTP and HTML page. And there are some URLs embedded in that, which can be

used to decide which request to make the web server in the future.

This web server might also be talking to a database that provides a persistent store that is

shared across all the users of the application. One popular protocol to speak between the web

server and the database is SQL. That's what I'll be focusing on talking about Ur/Web.

And also, with modern web applications, it's not just the one page at a time model where

whenever anything has to change on the page you make a new request to the server and then

replace the whole page of the unit. There's this Ajax style where the browser within a single

page view will sometimes make extra HTTP requests to the web server and receive responses

that are processed programmatically in a customized way. And this often uses representations

like XML and JSON and other simple wire formats for exchanging data between the client and

the server.

And then when the browser gets back that response, there's some JavaScript code running

there, which implements arbitrary logic for controlling the UI that we're displaying to the user.

And the way this works is that this JavaScript code can read the responses that the server has

given to those different Ajax calls.

And then it can modify the page that's displayed basically by mutating a global variable that

stands for the page. And any part of the program can have arbitrary effects on this global

variable that is the page. And often, parts of the page are looked up by string IDs that are

annotated on nodes of the tree that's describing the document.

And finally, one more complication-- sometimes we want to allow what feels like the web

server contacting the browser without prompting. So say there's a new email message. The



web server wants to tell the browser, new message. So there are a variety of ways of doing

this involving acronyms like Comet and WebSockets that really look a lot like the browser

contacting the server. It's the same sort of thing conceptually in the other direction.

All right, so I want to bring back on the screen all these protocols and languages, highlight

some parts in yellow here. Having read the paper, does anyone have a guess about what is

the commonality between all these highlighted parts here from a security perspective? Yes.

STUDENT: They're all strings. So you can put whatever you want in them.

ADAM CHLIPALA: Right, in the mainstream approaches to web application programming, all of these things are

strings. And the programming language doesn't understand the way you're using them and

can help you avoid making mistakes. So for instance, by representing these things are strings,

you get code injection attacks. So as far as I'm concerned, code injection attacks are basically

about the consequence of including as a primitive in your programming language or your

framework some function that runs programs as text in some sufficiently expressive language.

In Ur/Web, there is no built-in interpreter at runtime for strings as programs. And that makes a

lot of the most common mistakes in web applications impossible by construction. So all these

things that are highlighted will either be invisible, or they'll be represented with special types

that make clear what kind of code you're dealing with and don't have any sort of automatic

coercion from string into any of those special types.

All right, so here's the alternative model that Ur/Web exposes, which gets compiled to the

traditional model. So it works in all the widely deployed browsers. But the programmer can

think at this higher level and avoid the potential for mistakes that were possible in the previous

picture. So we still have the web server, which is in charge. And we still have this fleet of

browsers that are trying to use the web server.

But now, the first important change is that when the browser wants to initiate use of a web

application, it doesn't just send a string of HTTP requests with a URL in it. Effectively, the

abstraction is the browser names a function that should be called where the call runs on the

server instead of the client.

And then the server responds with not a string of HTTP protocol text but a strongly typed

documentary. So instead of a string of HTML, it's a tree, a first class object in the language.

And that is how the program manipulates it, not as a string.



And each of these trees contains within it links, which are themselves basically just references

to other functions that you might choose to call on the server. So then the browser, when the

user clicks on those links, picks out the function and conceptually calls it on the server, just like

the original function that we called to get to this point.

And we have a database interface, which is accessed by the web server throwing queries at

the database. And these are not just text in the Ur/Web model. They're strongly typed SQL

syntax trees. And then the database will respond back with not text, but a list of records of

native values in the programming language that we're working with.

So we don't have to worry about incorrectly converting between strings and native

representations, or native representations in any other format that the database might

traditionally be presenting to us. And here's a key element of how the semantics of Ur/Web

makes it easier for programmers to think about fewer scenarios that can actually happen when

the application is running.

There's the standard idea of transactions in the world of relational databases where you can

run a series of operations that seem to run with no interruption by other concurrent threads.

And Ur/Web adopts that model and builds it into the semantics of the language. So when a

single function is running on the server on behalf of a client, then all of its database accesses

appear to happen as an atomic unit without any interruption by any other concurrent requests

to the same server.

And you can't even avoid this behavior if you want to. Transactions are built into the language.

And they really make concurrency a lot easier to think about, and potentially help you avoid

security issues that only arise when some rare interleaving happens with a particular

combination of requests.

And actually, I want to get to one of the questions that someone submitted for this class that I

found intriguing. Ur/Web will detect when a transaction fails because of a concurrency

problem, like a deadlock, and automatically restart the transaction. Someone's response to a

question said, this might make it easier to launch security attacks that depend on causing

transactions to fail because of concurrency issues.

I just wanted to ask the class, what's an example of an attack like that, if anyone happens to

have one in mind? If you have a system that automatically restarts transactions that run into



deadlocks, how does that cause a security problem, if it does? This is a question I don't have

an answer in mind for, which is why I'm asking it. It might also have only a non-obvious answer

that no one would come up with on the spot like this, which is fine, too. Yeah.

STUDENT: Can you maybe do some sort of denial of service? If it's going to restart a transaction that

you're sending, and you know it will fail, can you just keep restarting that and try again?

ADAM CHLIPALA: OK, so--

STUDENT: So if you could cause the system to do some transaction you know is about to fail and

repeatedly fail, it keeps trying over and over again, it would never [INAUDIBLE].

ADAM CHLIPALA: Right, so you'd need at least two threads running at once to do that. But potentially that could

work. So you could launch a denial of service attack taking advantage of the fact that

contention leads to request handlers restarting over and over again and purposely cause

contention and use this as a way to amplify the strength of your denial of service attack

beyond what you can get with a traditional model. All right, I can believe that. Yeah.

STUDENT: Is [INAUDIBLE] the only way to cause the transaction to fail?

ADAM CHLIPALA: It is. Well, it's the only way to cause it to fail and automatically restart. Yeah.

STUDENT: Perhaps it could have a third party, which would conditionally fail. And then you could use that

to monitor some other user's behavior.

ADAM CHLIPALA: You'd also need a way to observe the fact that it had failed, which you should only be able to

do through timing. But that could still be an issue. OK, right, so you can use this as a side

channel to see what other threads are doing, because their actions might or might not create a

conflict in your thread.

OK, that sounds possible in principle, and very twisty. I'm not sure. It's hard to think of a

concrete attack that would work predictably. But it could be a fun exercise. Yeah.

STUDENT: So do the transactions you run-- for each request that comes in, you run a transaction for the

code you run at the web server. But when you send that code to the database, does that

translate into a database transaction as well?

ADAM CHLIPALA: It is, yeah. The whole execution on the server side is wrapped in one database transaction if

the application uses the database. Yeah.



STUDENT: So if you have a transaction that's not going to end up obtaining, do you think [INAUDIBLE]?

ADAM CHLIPALA: Yeah.

STUDENT: Are you telling the database that nothing's going to be updated later? Because presumably,

the database doesn't know that.

ADAM CHLIPALA: Yes, so the compiler does static analysis and finds out transactions that need to be read-only.

And it creates the transaction in read-only mode, which in some database systems enables

extra optimizations.

STUDENT: What about if you read some stuff, and some of the stuff you read doesn't affect what you're

going to write, but some of the other stuff you read does?

ADAM CHLIPALA: I see, so you're asking, could we use our knowledge of the semantics of the application to give

hints to the database system saying some of what looked like concurrency violations are

actually benign, and we don't need to restart at that point? I think the short answer is no. The

current implementation doesn't do that. But that would be interesting to look into. I think it

would require changes to the database engine, not just the interface in the language.

STUDENT: Usually you could split it into two separate transactions, maybe, or something under certain

circumstances.

ADAM CHLIPALA: Yeah, that sounds hard to do right, but potentially worthwhile for-- I don't know how to estimate

what fraction of applications could take advantage of that, but it's a neat idea. All right, so

transactions are great.

We also have-- so I was just telling you about the model, the old school model of the browser

requesting a single page from the web server. We can also have this Ajax style stuff that

basically looks like code on the client. It's calling a function that's just marked to run on the

server. When it finishes, the result comes back in the client code.

And the result is just a native value in the programming language. You don't have to worry

about making it into a string somehow and translating it back. And then we have to take the

result and use it to change the page that the user sees. Otherwise, it wasn't a very useful

request to make.

So the model in Ur/Web is very different from the standard document object model that



browsers expose directly. The basic idea is something called functional reactive programming,

which I won't try to explain in too much detail. Because I know it requires a nontrivial grokking

of functional programming first, even if we cut off that reactive part. But the basic idea is the

document is described in terms of a set of mutable cells, which are sort of the data the page

depends on.

And the page itself is something different, described as a function that takes as inputs the

values of those cells, and then computes a page. And then the runtime system of the

language watches changes to those mutable cells. And when they do change, it automatically

computes the consequences for the displayed page and efficiently updates just the parts of

the page that have changed based on those cells.

All right, and on each client, there can be many different threads running at once. These

threads are spawned in Ur/Web code and themselves run Ur/Web code. But the compiler

needs to translate them into JavaScript to get the browser to run them. So that's one of the

services the compiler provides. That's one important point about the threads.

Another key point is that the client side threading follows what's call the cooperative multi-

threading model. A thread doesn't have to worry about being preempted by another thread at

an arbitrary point. There are well defined operations that signal, OK, it's all right to switch to

another thread here. One of them is making a remote function call to the server, for instance,

or asking to sleep for a certain number of milliseconds.

But just regular code can't be interrupted arbitrarily. So that means the programmer doesn't

need to think about as many interleavings, and it's easier to convince yourself that, say, a

particular piece of code avoids some security issue or other bug. Because you can more easily

enumerate all the possible ways for the two threads to interact with each other.

And this is sort of a natural model to use given the way JavaScript is usually implemented.

There isn't preemption in JavaScript and browsers already. So this is just presenting a

threading abstraction on top of the callbacks-based model that JavaScript shows the

programmer directly.

And the last piece that one of the built-in abstractions that Ur/Web applications use is channels

for passing messages between different machines. So each channel has a type, which

expresses what kind of data can flow over if. You don't have to convert things to and from

string or JSON or anything else to make this work.



And channels can live in the database. So imagine this picture is showing us there's a channel

that was created. It has a write side and a read side, which can go to separate places. The

write end is sitting in the database. And the read end somehow made its way to the client and

is sitting in the variable environment of a thread.

So imagine that thread earlier made a remote call to the server, which created the channel,

returned it to the client, and put it in the database in one transaction. So later, the server

decides, OK, I'll query that channel out of the database. And I'll dump a value into it. And it just

sort of pops out the other end on the client. And everything is strongly tied throughout this

process.

All right, I think this is the last step of my animation here. Any questions about this model

before I switch to a code demo?

STUDENT: So how is this different than [INAUDIBLE]? Why do you need a message passage if you

already have that [INAUDIBLE]?

ADAM CHLIPALA: OK, so RPC interface is going from browser initiates the call, the server handles it. The

message is that the channels are intended for cases where the server initiates the

communication. For instance, new email message-- that would be a canonical example. And

the client is waiting to hear that there's a new email message. But it can't determine on its own

when the next message is available. Yeah.

STUDENT: Are all the messages multiplexed through one connection, or is it [INAUDIBLE]?

ADAM CHLIPALA: They are multiplexed through one HTTP connection. I know there are these newfangled things

today called web sockets and maybe some other protocols like that, which didn't exist when

this was implemented. This all works over old-school HTTP with one connection for all the

messages on different channels.

All right, let's see what's next. Yeah, let me switch to a demo here. So here's a Hello World

program in Ur/Web. Probably it deserves more of the screen space than this compilation

output. So it looks pretty un-scary at this point, I hope.

The unusual thing here maybe is that this is really the whole program. There's no extra routing

logic that explains how to map a URL into some code to run to serve requests to that URL. We

just have regular functions of a standard kind of programming language. And the compiler



exposes all the functions in your main module as callable via URLs.

And the URL is just formed from the function name. And if there's some nested structure

modules, the module's structure is also replicated in the URL. And then we have a function

that returns a piece of XHTML syntax. The compiler is actually using a special parsing

extension for processing this XHTML syntax. And it's also doing some basic type checking to

make sure that different XML elements appear inside others that they're actually authorized to

appear inside of.

And I think I compiled this before we started. And it does a not very surprising thing in the

browser. And here's the HTML page that comes out. So among other properties, it

automatically adds the right XHTML header. And it declares the character encoding for this

document. I was mildly horrified to look at some of your assigned reading for this class and

see how much time this book spends talking about character encodings and what happens if

you're not using UTF-8. I hope I understood that correctly.

This forces you to use UTF-8 so that those horrible things aren't going to happen, I hope. But

if anyone sees a way to replicate any of the attacks from that book Tangled  Web in Ur/Web, or

has a hypothesis about something we should try to see if it works, I'd be interested to hear

that. And by the way, at any point during this demo, please suggest experiments that come to

mind about things we should try, mistakes you might make that you wonder whether this

system is able to catch. I think that's the most fun kind of demo. Yeah.

STUDENT: So things like CRSF [INAUDIBLE], you said that [INAUDIBLE].

ADAM CHLIPALA: So cross site request forgery I wanted to explain a little later explicitly. I think the paper sort of

explains why cross site scripting can't work. And the reason is whenever you build a piece of

syntax, it's an object, a tree of different sub parts of that syntax. It's not just a string.

And you're not going to accidentally turn a string from the user into a tree with structure. You

would know if you did that. Because it's hard to write an interpreter. And in Ur/Web, you have

to write an interpreter. It doesn't automatically happen for you. But I'll have an example shortly

that might also address that concern.

So I want to show you what this syntactic sugar actually turns into in the compiler. So this

might look like we could just add some double quotes around the HTML, and then we're back

in the normal world. We might wonder, why is it such a big deal the omit the double quotes



and put XML instead?

So we can actually take my word for it that this is equivalent code for what this does. So tag is

a built in function that builds a tree node of an HTML document. And I'm passing a bunch of

arguments that are expressing the CSS styling on that node.

This one doesn't really have anything going on, so it's a variety of different ways of saying

nothing. And it doesn't take any attributes. And the tag is a body tag. So that's another thing in

the standard library. All of the standard tags are functions with first class status in the standard

library.

And then we need to put a "Hello World" text inside it. So we call a cdata function where cdata

is the XML word for character data or just a string constant. And we can put exactly the text

from below. We'll comment that out.

This should give us the same result as before. Let me see if that worked. OK, and now I'll go

back to the actual page. Same thing as before, so this is what that function was really doing at

the begin. It's not just building a string. It's calling a series of operations that are designed so

that they only allow you to build valid HTML, and they never implicitly interpret a string as code

instead of just content that sits there. Yeah?

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: Right, you are anticipating the next few steps. Let me do something less complicated first,

which is also potentially worrisome. Let's decide that we're really happy to see the world, so

we better put the word "hello" in bold and compile that again. It just shows up as interpreting

that literally as text instead of markup.

So this presentation of HTML syntax as a function that builds syntax doesn't have any of the

usual syntactic encoding conventions built into it. It interprets things in the way you would want

it to. And so the implementation of cdata does what's usually called escaping.

But the programmer doesn't need to know there is any such thing as escaping. You can just

think of it as, here's a set of convenient functions for building a tree object that describes a

page. Did I see a question over there?

STUDENT: [INAUDIBLE]?



ADAM CHLIPALA: You want to see the HTML that it generates. OK, it's going to be not the most exciting thing. I

don't know if that's [INAUDIBLE]. I can make it bigger, but then it doesn't fit on one line. So let

me know if I should make it bigger. It just put in the usual escapes for the less than character

with an ampersand.

STUDENT: So given that you're using XHTML, couldn't you just use the cdata [INAUDIBLE] instead of

doing manual [INAUDIBLE]?

ADAM CHLIPALA: Probably. That would require me knowing more about XML than I do. All right, so there was

another question about JavaScript URLs, which is a good one. If we allow JavaScript URLs,

then we have a back door for automatic interpretation of strings as programs at runtime. And

that causes all sorts of issues.

So let's try to avoid that. I'll switch back, first of all, to the shorter version of this. And then

inside the body, I'll make this multiple lines. And let's put a link that tries to do something

appropriate. We'll leave some room for error messages here. This is working correctly.

Invalid URL, JavaScript something, passed bless. So bless is a built in function that is the

gatekeeper of which URLs are allowed. And by default, no URLs are allowed. So certainly this

one is not allowed. And in general, it is a bad idea to write your URL policy so that you can

create values that represent JavaScript URLs. Because then all sorts of guarantees that you

might like are invalid.

To make it a little clearer how it works, let me factor this code into a separate function called a

linker that takes in a URL. So URL is a type. It's not just string. It's a type that stands for a URL

that is explicitly authorized by your application's policy.

And so we can [INAUDIBLE] XML. And instead of a constant, I'll just put u here. And so I'm

using the curly braces like in some popular HTML template frameworks to indicate inserting

some code from the host language inside the HTML that we're building.

And this is all done in a way where it's type checked statically. So the system will check, yeah,

this is a spot where a URL belongs. And this says it is a URL. So that's fine.

And then I can explicitly expose the call to bless by saying, let's just call the linker function here

on the result of blessing that URL. We should get basically the same error message as before.

There's some program analysis going on here to figure out-- I guess it doesn't need that.

Because this string is passed directly to bless.



And we can see-- I couldn't wait to run this for you at runtime and discover the failure. But I

can tell it's definitely going to fail. So I'll just make it a compiler error. This URL is not going to

be accepted by the URL policy.

STUDENT: So if you didn't have the [INAUDIBLE]?

ADAM CHLIPALA: If I left out this call to bless, it would be a much more basic compile time error. You have a

string and need a URL. They're different types. All right, but let's make this a little more

interesting. And I'm going to open up the configuration file for this demo.

It's pretty short, as these things go, at least if you look at any Java web application framework.

They have these gigantic XML files for configuration. This is a little nicer than that, or so I

claim.

We can add a rule that says, anything on Wikipedia is allowed. And then we can put the

Wikipedia URL in here. Now we're in good shape. What's missing? Oh, I guess I don't

remember the URL scheme for that. But we got to the website. That's good enough.

All right, so the big idea here is to have an abstract type of URL, just like you could have an

abstract type of hash tables that encodes invariants about how the hash table looks and

prevents code from reaching inside the array of the hash table. We can do the same thing for

URLs. And the system enforces via this bless function that every value of this type has passed

the appropriate check at some point.

And for instance, with this policy, we know there will never be a JavaScript URL. And it's safe

to take a URL value and use it as a link. It won't break the basic abstractions of the language.

Yeah.

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: OK, so we have to try something like that. And this should go through. And then the browser

knows it's a quote. And we can look at the source. That is because it was escaped in the right

way.

STUDENT: But can you still use-- so JavaScript allows you to say, [INAUDIBLE], and then specify inline

JavaScript there. Is that something that [INAUDIBLE]?



ADAM CHLIPALA: Yes and no. So we can put body onload. And instead of JavaScript, you put some Ur/Web

code that does something. So it would be a disaster to interpret JavaScript code in string form

as a program there.

But we can put code of the same programming language you're working with already escaped

in with these curly braces. And then it automatically gets compiled to JavaScript to run on the

client. All right, any more questions? Yeah.

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: I think it's everything? Is it embarrassing that I said everything? Is there something that

shouldn't be allowed?

STUDENT: [INAUDIBLE].

ADAM CHLIPALA: I see, so symbols that would independently have funny things happening with software

execution would confuse the human user?

STUDENT: [INAUDIBLE].

ADAM CHLIPALA: OK, I remember reading some of that stuff. And maybe it said the new browser versions avoid

those problems. But some old ones will get confused. It's possible this will create problems in

the old ones that are too permissive. I'm not sure.

But at least all these things are going to be interpreted as UTF-8 if they go into the document.

So if there's some problem with a different encoding, it shouldn't be applicable here. Yeah.

STUDENT: The string of the [INAUDIBLE], right now it's checking a compile time that that string is on

allowed URL. But if you compute a string at runtime, does bless perform a check at runtime

whether or not the string is allowed, or are you not allowed to--

ADAM CHLIPALA: So let's a write a form to test that claim. So we can put a form in here. And form wants us to

enter URL in a text box called URL. Then we can have a Submit button.

When you click on it, it should call the linker function with a record of one value for every field

in the form. In this case, there's just one field called URL. And so linker will get passed a

record that contains the URL as a string type. And then we'll explicitly try to bless it up there

and see if it works.



This is an example of an exciting type error message, which is admittedly sub-optimal in some

ways. Here's one of those things that won't make any sense if you're not familiar with Haskell. I

forgot a return. But at least now it looks more like a Java program. Have a string-- let me scroll

to the end, do one of these, sort of copying the full type of all the attributes that this tag can

take.

And I also forgot to say, this is now a full page. So we can't use an a tag until we're inside a

body tag. And this is the abstruse type error message for that property. OK, so now let's see

what happens. URL is-- yay. There we go. So that was a somewhat long and not necessarily

super exciting answer to your question. Yeah.

STUDENT: The URL [INAUDIBLE], are those just for [INAUDIBLE], or is it more restrictive than that?

ADAM CHLIPALA: It's more restrictive. It's currently just constants and prefixes. But you can also have disallow

rules. And they run in the order that you write.

STUDENT: Oh, so if you stick to disallow JavaScript [INAUDIBLE] that if you put a line break in the middle

of the word "JavaScript," it will still interpret it as--

ADAM CHLIPALA: That would be too bad. That's why it's good to stick to the white list approach instead of the

black list approach. So you probably want all the rules to start with a particular protocol, like

HTTP, and only allow things that fall in your approved set of protocols. That's what I

recommend it is. Yeah.

STUDENT: For many sites, you might let users share links, in which case, you need to allow links to

anywhere.

ADAM CHLIPALA: You can allow links. Well, do you want your users to share JavaScript links or, I don't know,

Flash links, or whatever's allowed? You see, you can white list all the HTTP, HTTPS, URLs

and be in good shape for most websites. That would do that. And the guarantees are a little

weaker compared to allowing only particular URLs. But you can at least ensure that there's no

automatic execution of the string as a program.

So let me pull up one of the examples from the paper, which is this one, an example of a

simple system with a set of chat rooms represented in the database. And the user can click on

a link to go to a room and then send a message. This was the first of several variants on that

scheme.



First, I'll point out I'm going to recompile this. And then magically, all the database tables that it

declares are going to be added to the database. And we can now just start using the

application. But first, we have to add some rooms.

So let's open our [INAUDIBLE] interface to the demo database and insert into the room table

some values like one and two. Hopefully these are here now. OK, and we go in there, and we

can entertain ourselves all day long sending strings of text. Maybe a little more interesting, you

can try to send HTML, and it just gets handled right away. That's the basic functionality there.

And just to quickly go over some of how this works again, so we have these two SQL table that

are just declared in this first class way inside the programming language. And we give the

schema of each table. And then later, when we try to access those tables, the compiler will

check that we're accessing them in a way that's consistent with the schema from a typing

perspective.

So we have a table of rooms where each room is a record of an ID, which is the integer, and a

title, which is the string. This is the type we were just generating records in. And I created a

few rooms at the SQL console. And we also have messages that each message belongs to a

room. And it has a time when it was posted. And it has some text, which is the content of the

message.

And let me fast forward to the main function. We run an SQL query. So here's an example of

SQL syntax embedded inside of Ur/Web. I don't want to go through the expansion of this one

into calling functions from the standard library. Because it's pretty verbose if I do that. But take

my word for it, this is de-sugared into calls of functions in the standard library that represent

the valid ways of constructing an SQL query.

And those functions have types that cause them to type check the query for you, not just

guarantee that the syntax is reasonable. So this gets de-sugared into an indication of an SQL

query. And then the code here is basically just looping over all the rows that come out of that

query and generating a piece of HTML for each one.

In particular, we're going to take the title field of a query result and convert that into HTML with

this notation that involves curly braces. And the square brackets are additionally saying, this

isn't literally a piece of HTML yet. But please convert it for me in the standard way. So we can

do that with strings and integers and all sorts of other types. Yeah.



STUDENT: So if that contained malicious HTML or something, would that be filtered out?

ADAM CHLIPALA: It would be. So in the usual way of talking about these things, escaping happens in the way

you'd want it to. In Ur/Web, you can just think of this as building a tree. This is a node that

stands for some text. Obviously text can't do anything.

STUDENT: So if that title was User Control, and someone made a chat room with the title Alert something,

that would not be JavaScript?

ADAM CHLIPALA: It wouldn't automatically be interpreted as JavaScript or HTML or anything else. It would just

be text only. All right, so we have this title. And let's wrap an a tag around it. And instead of

href, the usual way to do a link in HTML, we use the link attribute, which is sort of a pseudo

attribute in Ur/Web, which takes as an argument not a URL, but basically an Ur/Web

expression. And the meaning is when you click on this link, please run this expression to

generate the new page that should be displayed.

In this case, we're calling a function called chat, which is defined up here. And here's what it is.

I won't go too much into the details. But we have a few more SQL queries using a variety of

standard library functions for different ways of using queried results.

We generate this HTML page. And we say, you're in the chat room. Here's the title. We get the

same kind of escaping there. And there's a form where the user can enter some text. That's

the form that I used to demonstrate this a few moments ago.

And the Submit button of the form has this ask attribute that is containing say, which is the

name of a function in Ur/Web. And here it is. So when we submit the form, we call this

function. Run some more SQLs. Insert a new row into a table.

We automatically jump in the ID of the chat room and the text field that came from the form.

And these are automatically escaped as necessary. But again, you don't have to think about

escaping in that way in Ur/Web. Because this is just syntax for building a tree. It doesn't stand

for a string. So there's no way to have strange things happen with parsing that you don't

expect from the way that the syntax is written. Yeah.

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: Yes, so from the fact that there's one widget, one GUI widget in this form, and its name is text,

and that one is a text box, the compiler infers that the record that stands for the form result



and that one is a text box, the compiler infers that the record that stands for the form result

should have one element called text that is of type string. And this encoding the forms, the

typing rules for it are not built into the language.

You can actually with the type system in Ur express as a library, what are the operations for

building forms, and how do you check that they're used correctly, including what

consequences they have of the types of the functions that actually handle those forms?

[INAUDIBLE]. Any other questions about this code before I switch to the next step of the

sequence in versions from the paper, which is only a small change?

All right, then here's what I'm going to do. It's basically taking advantage of a way to get

enforced encapsulation of different parts of an application that Ur/Web supports, which is at

least only rarely supported elsewhere. I'm going to take this room. I'm going to take some of

these definitions here and put them inside a module that encapsulates some of them as

private.

In particular, the database tables are going to be private. So no one can access them directly.

They can only access them through a set of methods that we provide. So one method runs

inside a transaction. That's what this type says.

And it produces a list of records with ID and title fields that stand for which rooms are

available. And we'll also just expose this chat operation. And one thing I've done here is I've

introduced a name for the concept of an ID. I won't just say that an ID is an integer. I'll say it's

a new type. And the only way the outside world will ever get one is to list all the rooms. And the

only way the outside world can ever use one is to call the chat function on it.

So just like, say, the abstract type of a hash table inside a hash table class where the details of

what is an ID and how do they get produced internally are private to this module. And the

client code that calls this module isn't going to need to use them. So I'll use this syntax to put

everything down here inside the module so it's not exposed to the rest of the code by default.

And we also are going to want to implement this rooms method. We already happen to have

chat around. But we can implement rooms in a simple way as using another standard library

function for interpreting a query in a useful way.

Let's just select everything from the room table ordering by title. And as usual, this query is

type checked for us. And the system determines, OK, this expression is going to generate a

list of records that happens to match the type that we declared in the signature of this module.



So now outside this module, no other code is allowed to mention the room table or the

message table.

So we can, at least from the perspective of this application, enforce whenever invariance we

want on them. We can even hide secrets inside of them that would be a security problem if

some other part of the code was able to get a hold of them. Yeah.

STUDENT: But couldn't some other part of the code just declare table room as well?

ADAM CHLIPALA: That would be a different table. We could do that, actually. It's got to be in here. I think this

should have no effect on the behavior. I think in this case we're going to get something funny

happening. Let's put this in a different module just to avoid something goofy.

Great, so we can do that. And we can do whatever we want with this table. And I'll compile this

in maybe about 30 seconds and we'll see what happens. But it's actually a different table, just

like if you have the same private field name across two classes in Java they're different field

names. Yeah.

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: So you're suggesting we have, inside this module, an abstract type called room, which

contains both the ID and the title. Is that right?

STUDENT: [INAUDIBLE]?

So I think what would work to do instead is instead of type ID have type room, have room

determine a list of rooms, and chat take a room as an input. Is that what you have in mind? So

what would happen then is when we call the chat function, it'll actually be called via a URL

given the way we use this eventually.

That would be passing the ID and the title within the URL in the URL representation for a

function call. And we only need the ID to implement that function. So it would be a little

wasteful of space and might look gross to the user to have to have the title passed along as an

extra argument in the invocation of chat via a URL. Does that make sense?

Or maybe another way of saying it, if I have this one [INAUDIBLE], is look up at the URL bar.

The ID of the channel we're going into is serialized automatically in the URL at the end here.



And if we were passing a record that contained an ID and a title, the title would be serialized,

too, which is at least a little counterintuative.

OK, the last thing we need to do-- actually, it might be instructive to make just a shallow

change to this code, reference the room module there, and then try to access the room table

like before. This shouldn't be allowed.

This would be like being able to read and write the private fields of a class in Java. And

indeed, we get a pretty straightforward message basically saying, this right here is an unbound

variable. There's no table called room in scope.

And we could mention this extra one that we created just for fun. But then it would be a

different table. It wouldn't be a problem that we could access that. So instead, what we should

do is I'll break this into two parts.

We'll start out by just calling the rooms method, and then do a slightly different thing to read its

elements, map over the list of results that gives-- what did I call [INAUDIBLE]? Map all the list

of results instead of the other way it was working, which was roughly equivalent except for

using different data types. Let's see how this goes.

All right, so I'll go back here. And we can do all the tremendously exciting things we could do

before. But we have this encapsulation. And you can sort of think of this room structure as now

it's a library, and you can call this from all sorts of different places that want to have this

functionality.

You don't have to worry. There's different places that are going to break the internal

invariance of the system. Maybe you want to know that once a message is added, it will never

be deleted. It's always there in the logs. This structure enforces that independently of which

other code the room module might be composed with, for instance. Yeah.

STUDENT: Say you change the definition of room, [INAUDIBLE]. What's going to happen to the database

table?

ADAM CHLIPALA: It'll be a little sad. We'll have to manually run an alter table command if you want to save the

old data. But when the application starts up, it queries the system database catalog and

checks that the schema still matches what it expects. So you'll get a static error then. And that

will hopefully give you a hint about what you should change in the database.



STUDENT: But it wouldn't automatically drop your database or something?

ADAM CHLIPALA: I hope not. I don't think it should do that. And you can imagine tweaking the compiler to

understand the evolution of a database. I think you have to write alter table commands to run.

It doesn't do that right now.

OK, so now let's talk about cross site request forgery and preventing it. Actually, before we do

that, let's look at the code on this page. We have a traditional looking HTML form that gets

generated here. And there's certainly no cross site request forgery protection in here, which I

think is good. Because as I understand cross site request forgery, the problem is there's some

implicit context that your application sends on every request.

So there's some attacker out there who doesn't know your implicit context. Let's say your

password is stored in a cookie, for a really simple example. And when the attacker tricks you

into following a link to the application, your browser sends the implicit context automatically

and causes the application to do something the attacker could not have done directly.

In this case, there's no implicit context. So there's no risk of a cross site request forgery. Does

anyone want to dispute that characterization before I go on? It could be educational for me. All

right, so now let's add some implicit context. And the system is automatically going to deploy

the right countermeasures based on program analysis that realizes now there's implicit

context.

In particular, we just throw in a cookie here. As another example of module capsulation,

actually, I'll put in a whole sort of user authentication system where we have the user accounts

and abstract types of IDs and passwords. So you can't just build the value of either of these

types directly. You'll have to go through some kind of approved method of building values of

these types.

And I'm actually going to expose the table directly in the signature. And I'll put a constraint on

it, too, saying the ID form is a key for it. [INAUDIBLE]. But the thing is, on this user table, ID

and password are abstract types. So the code can't actually look at the password.

And it can't generate all IDs in sequence and try them against this table. Because the type is

abstract. There's no way to make an ID. There's no way to make a password. They just come

out of this table, and they're opaque tokens.

But we might want to allow them to be input from strings. You might want to allow one direction



of conversion between strings and these types. So that's what I'll do here. Basically, the details

I don't want to try to explain. But this is like a declaration, OK, you're allowed to convert strings

into IDs. For those who speak Haskell, this is a type class instant. For those who don't, it's

permission to turn strings into IDs.

We're going to leave out the other permission. We don't want to be able to turn an ID back into

anything. And the password-- let's do the same thing. We want to be able to read a password

from the user but not take a password and turn it into a string where we can actually tell what

the user entered.

So other parts of the code will be able to accept password input from the user, convert it into

this type, and ship it off to the user module and have it be checked. But what they can't do is

query the user table and get all the passwords in a form where they can actually extract the

text from them.

Then we can have a login method that takes these two components and just runs for its side

effects, which is effectively what that code says. We'll also need a way to tell which user is

logged in. That is a code that runs a transaction that produces an ID.

All right, so step one, we can just copy this definition. And I'll fill in what these actually are. It

turns out-- surprise, surprise-- user IDs and passwords are both strings. But outside the

module, that won't be exposed.

And now we're going to create a cookie. So cookies are another thing that's built into the

language. Effectively, they act like mutable global variables that have one copy per client that

uses your application. So we're going to create a cookie that on each client will store basically

just a copy of the same two fields that we have here.

So this cookie is private to this module. Other parts of the code won't be able to read the

cookie, because they just don't have this private field and scope. So no one else will be able to

see directly the ID and password that are stored for this user. But they will be persisted across

different page views, just like you would expect for cookies usually.

I'm going to give it a login function that's going to run some incantation to check against the

database whether this is really a correct pair of username and password. It'll just check, can

we find a row in the database that has this user ID and has this password?



If we find one, then yes, good, that's the correct value. Let's just save it into the cookie. We

use a method that modifies the cookie value. And we have to put some things in here, like just

for simplicity, I'll say this cookie never expires. And I don't want to run SSL here, so I'll say it

doesn't need to be secure.

But if you really care about security, obviously you would write secure equals true. And if the

check failed, then we can-- I don't know. It doesn't matter. If it signals an error, execution stops

with this error description.

Finally, we can create this function that tells who the user is logged in as by getting the current

cookie value. And then it might be none if the user hasn't logged in yet, in which case, we can

have a different error message. Or it might be some record of exactly the type we used up

there. So I'll just copy some of this here. Let's run the same check there. If it worked, then we'll

just return the ID part of the record that we just verified against the database. Otherwise,

[INAUDIBLE].

So let me just type check this to see if this is on track, that part-- Oops, capital Id. All right, so

the important is there's all those implementation details. But from outside this module, we think

of it in terms of the interface up there. There are some unknown types of IDs and passwords.

This table of users expressed in terms of them were allowed to turn strings into IDs and

passwords, but not the other way around. And we have these two methods to log in in the first

place and to check which user is logged in at this point. Any question about this? Yeah.

STUDENT: Do you need to expose the user table?

ADAM CHLIPALA: Because I want to use it as a foreign key later. That was the reason I did it. It's not that great

of a reason. All right, so we're almost at the point where I can show you CSRF protection in

action.

We have to actually start logging in. So that's easy enough to do. OK, so what can we do

here? Let's just add another part of this page that says, here's where you log in. This is the

form.

This is where you would put the username and the password. And then click on the button. It's

trying to go to call a function called login, which we'll define in a moment. Let's define login as

a function that does these things. It's actually just a wrapper around calling the login function

from that module where we take each of the components and convert it from string to the



abstract types.

That's what read error is doing. Error means if it doesn't work, just abort execution instead of

signaling the failure with a special return value. Here's both of those, login and then jump to

main. So now we should be able to log in. Let's check if that's true.

OK, so that was [INAUDIBLE]. We'll probably want to create an account to allow us to log in.

So let me [INAUDIBLE]. So now I should be able to log in as a. OK, and take my word for it.

There's now a cookie set to record that information.

And then let's go back in the chat room and send a message. We didn't actually add any

access control here yet. So there's not much going on here. But we can check to see.

There's a cookie. But the system has determined that we're not using the cookie. When we

submit this form, the cookie is not read. So there's actually no need to add any CSRF

protection here yet. So now we have to add the way to use the cookie. And then we should

see the protection appear. Yeah.

STUDENT: What are the contents of the cookie?

ADAM CHLIPALA: What are the contents of the cookie? The contents are exactly what you'd expect from the

code. In other words, the cookie is declared as having type this record, an ID, and a password.

So that's exactly what's in there in a particular serialized form.

So now let's actually use the cookie. And we should hopefully see despite the fact we're going

to use the cookie indirectly, because we're going to use it in the room module, which doesn't

even have the cookie in scope. But we'll call methods of the user module, which indirectly are

using the cookie. And then the system will realize that means we have dependency on it.

So let's make this really simple and just say call the whoami method. And I'm actually just

going to ignore this. Or we can do this. Let's decide this a user we created is really special.

And only this user is allowed to post anything. And we'll fail if we're not a. All right, let's see if

this works. Did I forget a slash somewhere? Oh, yeah. [INAUDIBLE].

Oh, I expect him to be a string. But it's actually an ID. So let's just read a into an ID just like we

did below to process login. And we haven't exposed that the ID type supports equality testing.

So I'll just add that to the user module. And then that should work.



ID supports equality testing. And we should be OK. So now we've brought in the interface.

Now we can do more things with the ID, which could trigger some security issues. But it lets us

add this access control check, so let's see how that works, go back to the main page to

[INAUDIBLE].

All right, now the form automatically has a hidden input name sig, which is a cryptographic

signature of the values of all of the cookies. And it's signed using a key that's a secret for the

server. And when the form is submitted, the application knows, because the compiler told it,

that it should be checking signatures for the following set of operations. In this case, the only

one is this say operation. Yeah.

STUDENT: Does the signature have any sort of time stamp as well?

ADAM CHLIPALA: It does not have a time stamp.

STUDENT: Otherwise, if the attacker ever saw this live, they could pretend to be the user. It never expires.

ADAM CHLIPALA: It never expires, right. So that's something that could be changed just by modifying the

language implementation without modifying the applications, and then deployed instantly. But

it's not there now. And I can see why that could be a useful thing to add. Question, yeah.

STUDENT: You could also fix that by just putting an [INAUDIBLE] as well.

ADAM CHLIPALA: That's true. You're right, you can change the application to purposely modify the cookie data

frequently enough that the signature would go out of date. That's also true. So we've got 10

minutes left. Any requests for things that someone particularly wants to see before class is

over? I can start showing some Ajax stuff by default if no one has another request. Yeah.

STUDENT: Can you remap the URLs?

ADAM CHLIPALA: You can, yes. So what remapping would you like to see?

STUDENT: Any. I just want to see how it's done.

ADAM CHLIPALA: OK, so the compiler is assigning-- as we can see back over here, we called the say function.

And basically, that function call is serialized as a particular URL form. Maybe we don't like that

form. We decide we're going to rewrite URL so say is inside the room module, inside demo.

Better put this up top so it runs before these other rewrites-- rewrite url Demo/Room/say into



Demo/Room/speak. And hopefully that's what I want it to. Let's see what happens. Yep, and

you can have wild cards in those rules also to map one prefix to another one.

And the compiler will enforce that every function has a distinct URL schema. So if you add a

rule that causes a clash, you'll get [INAUDIBLE]. By default, the automatically generated URL

schemes are [INAUDIBLE]. You can break that by using this feature. Any other requests?

Yeah.

STUDENT: So you mentioned that the HTML [INAUDIBLE] is not compiler specific. It's like one is a library.

Are there other libraries for other formats as well?

ADAM CHLIPALA: There are other libraries that don't do type checking at the same level of richness. But for

instance, there's a library for serializing and de-serializing JSON. And most of the automated

way that's driven by type structure. So you can do things like that that aren't as integrated with

the compiler. Yeah.

STUDENT: Presumably you'd still want to write JavaScript. Is there any--

ADAM CHLIPALA: I don't. You do.

STUDENT: Right, no, but for, say, I don't know, you want to animate things on the page. There are still

things where--

ADAM CHLIPALA: Let me load the Ajax version of this. And that might answer your question. [INAUDIBLE].

All right, so this version has client side code. Let's just [INAUDIBLE].

Believe it or not, this time the add worked by an Ajax call. And you get things like, here's a

button tag. And it has an onclick attribute that when a user clicks the button, all this code here

runs on the client side. But it's Ur/Web code. It's not JavaScript code. The compiler translates

it into JavaScript for you and guarantees that it maintains the properties that we want for the

abstractions in our list, as long as the user isn't mucking around with it manually [INAUDIBLE].

STUDENT: I'm more thinking that there are a lot of [INAUDIBLE] libraries out there today that do useful

things, and in many cases complex things if you want to recode everything yourself. Is there

any way interfacing JavaScript from Ur/Web?

ADAM CHLIPALA: Yes, there's a foreign function interface, which lets you give Ur/Web function names to



JavaScript function names and call. But then whenever you use the foreign function interface,

you don't get all of these nice properties like construction anymore. You have to be very

careful.

And to some extend, you have to understand the implementations of some of these

abstractions to avoid disturbing them. While I have this code up here, let me just show you.

We still have the same say function as before, roughly. But now, instead of calling it via a link,

we just take the function call, which is populated with arguments that come about from the

context of this onclick handler.

And we just wrap that function called inside the RPC syntax. And that means this is a function

call on the client, but run the call itself on the server with access to the database and other

server resources, and then shift the result back over here. And it's written in this direct style

here instead of the callbacks that you need to use in JavaScript usually to accomplish a

remote server call [INAUDIBLE]. Yeah.

STUDENT: [INAUDIBLE]?

ADAM CHLIPALA: The client is allowed to call anything in scope. So you just have to use scope the way we

usually use it to hide private fields and so forth inside of an abstraction. I mean, because

there's a call here, the functions we're allowed to call are the ones whose names are in scope.

This name happens to not be in scope here. So we couldn't call it directly here. But because

it's in scope up there, we're allowed to call it. Did I see another hand?

Let's see, is there anything else interesting about this version that I wanted to mention? It

involves an implementation of a GUI widget using this functional reactive style, which is cool

from a programming modularity perspective but maybe less interesting from a security

perspective. But here's an example of calling a method of this abstraction of a portion of the

page that displays a list of lines of text that you can add to but never delete from.

And you can actually enforce that. Because we don't have the dom here. It's not that any part

of the code can reach into the document tree and mutate it and change the log and delete

lines that were previously added.

The more functional style here means you can actually have a GUI widget that owns a part of

the page and controls exactly what's shown there, and bugs and other code can't interfere



with computing what shows up there. This is probably good point to stop, unless there are any

last questions.

STUDENT: Channels?

ADAM CHLIPALA: Channels. I don't think there's enough time to properly demonstrate channels. But there's

code in the paper. And there are all sorts of demos and tutorials on the website for this project.

Yeah.

STUDENT: It's really hard writing correct [INAUDIBLE] and compilers. How do you mitigate problems that

might be present from the abstraction layers themselves?

ADAM CHLIPALA: Get people to use it and report bugs. That's the best I have for you. I guess the idea is

compilers like this should be written much less frequently than new applications. So to

condense all the bug finding in this one place is still an improvement, even if it's not done in a

particularly principled way. Yeah.

STUDENT: Just out of curiosity, how are [INAUDIBLE] files handled?

ADAM CHLIPALA: You can use that configuration file I showed to map them into parts of the URL space. Or you

can manually produce values in the program that stand for files and ask to return those as the

result of the page. There are a few different approaches. Yeah.

STUDENT: Why Ur?

ADAM CHLIPALA: You're asking how I chose the name?

STUDENT: Yeah, like why--

ADAM CHLIPALA: Oh, you're asking why you want to use this.

STUDENT: No, no, the name of the language, just out of curiosity.

ADAM CHLIPALA: So Ur language is a concept from linguistics to describe the language that is the ancestor of

the modern languages. And the idea is in this language, you can embed all sorts of other

languages inside it. So it's sort of the ancestor of all those.


