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I XFI 

Consider the following assembly code, which zeroes out 256 bytes of memory pointed to by the EAX register. 
This code will execute under XFI. XFI’s allocation stack is not used in this code. 

You will need fill in the verification states for this code, which would be required for the verifier to check the 
safety of this code, along the lines of the example shown in Figure 4 of the XFI paper. Following the example 
from the paper, possible verification state statements include: 

valid[regname+const, regname+const)
 
origSSP = regname+const
 
retaddr = Mem[regname]
 

where regname and const are any register names and constant expressions, respectively. Include all 
verification states necessary to ensure safety of the subsequent instruction, and to ensure that the next 
verification state is legal. 

1 x86 instructions Verification state
 
2
 

3 mrguard(EAX, 0, 256)
 
4 (1)
 
5 ECX := EAX # current pointer
 
6 EDX := EAX+256 # end of 256-byte array
 
7
 

8 loop:
 
9 (2)
 

10 Mem[ECX] := 0 
11 ECX := ECX+4 
12 (3) 
13 if ECX+4 > EDX, jmp out 
14 (4) 
15 jmp loop 
16 

17 out: 
18 ... 
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1. [5 points]: What are the verification states needed at location marked (1)? 

Answer: 

• valid[EAX-0, EAX+256) is the only verification state that can be inferred at this point. 

2. [5 points]: What are the verification states needed at location marked (2)? 

Answer: 

• valid[EAX-0, EAX+256), from above. 

• valid[ECX-0, ECX+4), to satisfy the subsequent write to 4 bytes at ECX. 

• valid[ECX-0, EDX+0), to represent the loop condition. 

3. [5 points]: What are the verification states needed at location marked (3)? 

Answer: 

• valid[EAX-0, EAX+256), from above. 

• valid[ECX-4, EDX+0), the loop condition updated with new value of ECX. 

4. [5 points]: What are the verification states needed at location marked (4)? 

Answer: 

• valid[EAX-0, EAX+256), from above. 

• valid[ECX-4, EDX+0), from above. 

• valid[ECX-0, ECX+4), inferred from the check just before. 

Note that these verification states must imply (i.e., be at least as strong) as the verification states at (2). 

3 



II ForceHTTPS
 

5. [10 points]: Suppose bank.com uses and enables ForceHTTPS, and has a legitimate SSL 
certificate signed by Verisign. Which of the following statements are true? 

A. True / False ForceHTTPS prevents the user from entering their password on a phishing web site 
impersonating bank.com.
 

Answer: False.
 

B. True / False ForceHTTPS ensures that the developer of the bank.com web site cannot acciden­
tally load Javascript code from another web server using <SCRIPT SRC=...>.
 

Answer: False.
 

C. True / False ForceHTTPS prevents a user from accidentally accepting an SSL certificate for 
bank.com that’s not signed by any legitimate CA.
 

Answer: True.
 

D. True / False ForceHTTPS prevents a browser from accepting an SSL certificate for bank.com 
that’s signed by a CA other than Verisign.
 

Answer: False.
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III Zoobar security
 

Ben Bitdiddle is working on lab 2. For his privilege separation, he decided to create a separate database 
to store each user’s zoobar balance (instead of a single database called zoobars that stores everyone’s 
balance). He stores the zoobar balance for user x in the directory /jail/zoobar/db/zoobars.x, and 
ensures that usernames cannot contain slashes or null characters. When a user first registers, the login service 
must be able to create this database for the user, so Ben sets the permissions for /jail/zoobar/db to 
0777. 

6. [4 points]: Explain why this design may be a bad idea. Be specific about what an adversary would 
have to do to take advantage of a weakness in this design. 

Answer: Since the directory is world-writable, an adversary could replace the contents of an arbitrary 
database, by first renaming the existing database’s subdirectory to some unused name, and then creating 
a fresh directory (database) with the desired name of the database. For example, the adversary could 
replace all passwords with ones that the adversary chooses. 

Answer: If an attacker can compromise any service, he can rename the zoobars.x file, since the 
directory is world-writable and not sticky, and replace it with a new one. (He can also replace the file 
with a symbolic link to an interesting other file that the zoobar-handling user can write to, and mount 
something along the lines of a confused-deputy attack.) 

Full credit was also given for creating a directory before the user gets created; partial credit was given 
for removing a directory (since you cannot remove a non-empty directory you don’t have permissions 
on). 
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Ben Bitdiddle is now working on lab 3. He has three user IDs for running server-side code, as suggested in 
lab 2 (ignoring transfer logging): 

•	 User ID 900 is used to run dynamic python code to handle HTTP requests (via zookfs). The database 
containing user profiles is writable only by uid 900. 

•	 User ID 901 is used to run the authentication service, which provides an interface to obtain a token 
given a username and password, and to check if some token for a username is valid. The database 
containing user passwords and tokens is stored in a DB that is readable and writable only by uid 901. 

•	 User ID 902 is used to run the transfer service, which provides an interface to transfer zoobar credits 
from user A to user B, as long as a token for user A is provided. The database storing zoobar balances 
is writable only by uid 902. The transfer service invokes the authentication service to check whether a 
token is valid. 

Recall that to run Python profile code for user A, Ben must give the profile code access to A’s token (the 
profile code may want to transfer credits to visitors, and will need this token to invoke the transfer service). 

To support Python profiles, Ben adds a new operation to the authentication service’s interface, where the 
caller supplies an argument username, the authentication service looks up the profile for username, runs 
the profile’s code with a token for username, and returns the output of that code. 

7. [4 points]: Ben discovers that a bug in the HTTP handling code (running as uid 900) can allow an 
adversary to steal zoobars from any user. Explain how an adversary can do this in Ben’s design. 

Answer: An adversary can modify an arbitrary user’s profile and inject Python code that will transfer 
all of the user’s zoobars to the adversary’s account. 
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8. [8 points]: Propose a design change that prevents attackers from stealing zoobars even if they 
compromise the HTTP handling code. Do not make any changes to the authentication or transfer 
services (i.e., code running as uid 901 and 902). 

Answer: Use a separate service, running as a separate uid, to edit profiles. Make sure the profile 
database is writable only by this new service’s uid. Require the user’s token to be passed to this service 
when editing a user’s profile. Have this profile-editing service check the token using the authentication 
service. 

Note that this only prevents attacking users who never log in, as the HTTP service can get the token of 
any user who does log in. An argument that compromising the HTTP service gets you wide latitude in 
compromising any user’s activity would have been accepted for full credit. 
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IV Baggy bounds checking
 

Consider a system that runs the following code under the Baggy bounds checking system, as described in the 
paper by Akritidis et al, with slot size=16: 

1 struct sa {
 
2 char buf[32];
 
3 void (*f) (void);
 
4 };
 
5
 

6 struct sb {
 
7 void (*f) (void);
 
8 char buf[32];
 
9 };
 

10 

11 void handle(void) { 
12 printf("Hello.\n"); 
13 } 
14 

15 void buggy(char *buf, void (**f) (void)) { 
16 *f = handle; 
17 gets(buf); 
18 (*f) (); 
19 } 
20 

21 void test1(void) { 
22 struct sa x; 
23 buggy(x.buf, &x.f); 
24 } 
25 

26 void test2(void) { 
27 struct sb x; 
28 buggy(x.buf, &x.f); 
29 } 
30 

31 void test3(void) { 
32 struct sb y; 
33 struct sa x; 
34 buggy(x.buf, &y.f); 
35 } 
36 

37 void test4(void) { 
38 struct sb x[2]; 
39 buggy(x[0].buf, &x[1].f); 
40 } 

Assume the compiler performs no optimizations and places variables on the stack in the order declared, the 
stack grows down (from high address to low address), that this is a 32-bit system, and that the address of 
handle contains no zero bytes. 
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9. [6 points]: 

A. True / False If function test1 is called, an adversary can construct an input that will cause the 
program to jump to an arbitrary address.
 

Answer: True. (If you overflow x.buf into x.f, you remain within the allocation bounds of x.)
 

B. True / False If function test2 is called, an adversary can construct an input that will cause the 
program to jump to an arbitrary address.
 

Answer: False. (If you overflow x.buf into any higher location, like the return pointer, you exceed the
 
allocation bounds of x.)
 

C. True / False	 If function test3 is called, an adversary can construct an input that will cause the 
program to jump to an arbitrary address. 

Answer: False. (If you overflow x.buf into any higher location, like y, you exceed the allocation 
bounds of x.) 

D.	 True / False If function test4 is called, an adversary can construct an input that will cause the 
program to jump to an arbitrary address.
 

Answer: True. (If you overflow x[0] into x[1], you remain within the allocation bounds of the array x.)
 

For the next four questions, determine what is the minimum number of bytes that an adversary has to provide 
as input to cause this program to likely crash, when running different test functions. Do not count the newline 
character that the adversary has to type in to signal the end of the line to gets. Recall that gets terminates 
its string with a zero byte. 

10. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
 
likely cause a program running test1 to crash?
 

Answer: 32 (by overwriting x.f with a NUL byte, and jumping to it). Overwriting 64 bytes would
 
cause a baggy bounds exception, but you can crash the program earlier.
 

11. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
 
likely cause a program running test2 to crash?
 

Answer: 60 (via a baggy bounds exception).
 

12. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to 
likely cause a program running test3 to crash? 

Answer: 64 (via a baggy bounds exception). 
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13. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
 
likely cause a program running test4 to crash?
 

Answer: 32 (by overwriting x[1].f with a NUL byte, and jumping to it). Overwriting 124 bytes would
 
cause a baggy bounds exception, but you can crash the program earlier.
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V Browser security
 

The same origin policy generally does not apply to images or scripts. What this means is that a site may 
include images or scripts from any origin. 

14. [3 points]: Explain why including images from other origins may be a bad idea for user privacy. 

Answer: The other origin’s server can track visitors to the page embedding images from that server. 

15. [3 points]: Explain why including scripts from another origin can be a bad idea for security. 

Answer: The other origin’s server must be completely trusted, since the script runs with the privileges 
of the embedding page. For example, the script’s code can access and manipulate the DOM of the 
embedding page, or access and send out the cookies from the embedding page. 

16. [4 points]: In general, access to the file system by JavaScript is disallowed as part of JavaScript 
code sandboxing. Describe a situation where executing JavaScript code will lead to file writes. 

Answer: Setting a cookie in Javascript typically leads to a file write, since the browser usually stores 
cookies persistently. Loading images can cause the image content to be saved in the cache (in some 
local file). 
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VI Static analysis 

Consider the following snippet of JavaScript code: 

1 var P = false;
 
2
 

3 function foo() {
 
4 var t1 = new Object();
 
5 var t2 = new Object();
 
6 var t = bar(t1, t2);
 
7 P = true;
 
8 }
 
9
 

10 function bar(x, y) {
 
11 var r = new Object();
 
12 if (P) {
 
13 r = x;
 
14 } else {
 
15 r = y;
 
16 }
 
17
 

18 return r;
 
19 }
 

A flow sensitive pointer analysis means that the analysis takes into account the order of statements in the 
program. A flow insensitive pointer analysis does not consider the order of statements. 

17. [4 points]: Assuming no dead code elimination is done, a flow-insensitive pointer analysis (i.e., 
one which does not consider the control flow of a program) will conclude that variable t in function 
foo may point to objects allocated at the following line numbers: 

A. True / False	 Line 1
 

Answer: False.
 

B. True / False	 Line 4
 

Answer: True.
 

C. True / False	 Line 5
 

Answer: True.
 

D.	 True / False Line 11
 

Answer: True.
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18. [4 points]: Assuming no dead code elimination is done, a flow-sensitive pointer analysis (i.e., 
one which considers the control flow of a program) will conclude that variable t in function foo may 
point to objects allocated at the following line numbers: 

A. True / False	 Line 1 

Answer: False. 

B. True / False	 Line 4 

Answer: True. 

C. True / False	 Line 5 

Answer: True. 

D.	 True / False Line 11 

Answer: False. 

19. [2 points]: At runtime, variable t in function foo may only be observed pointing to objects 
allocated at the following line numbers: 

A. True / False	 Line 1 

Answer: False. 

B. True / False	 Line 4 

Answer: True. 

C. True / False	 Line 5 

Answer: True. 

D.	 True / False Line 11 

Answer: False. 
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20. [2 points]: Do you think a sound analysis that supports the eval construct is going to be precise?
 
Please explain.
 

Answer: No, because it is difficult to statically reason about the code that may be executed at runtime
 
when eval is invoked, unless the analysis can prove that arbitrary code cannot be passed to eval at
 
runtime, and can statically analyze all possible code strings that can be passed to eval.
 

21. [4 points]: What is one practical advantage of the bottom-up analysis of the call graph described
 
in the PHP paper by Xie and Aiken (discussed in class)?
 

Answer: Performance and scalability, by not analyzing functions that are not invoked by application
 
code, and by summarizing the effects of the function once and reusing that information for inter-

procedural analysis.
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VII 6.858 

We’d like to hear your opinions about 6.858, so please answer the following questions. (Any answer, except 
no answer, will receive full credit.) 

22. [2 points]: How could we make the ideas in the course easier to understand?
 

Answer: Any answer received full credit.
 

23. [2 points]: What is the best aspect of 6.858 so far?
 

Answer: Any answer received full credit.
 

24. [2 points]: What is the worst aspect of 6.858 so far?
 

Answer: Any answer received full credit.
 

End of Quiz
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