
6.858 Fall 2014 Lab 5: Browser security
Handed out: Lecture 14
Due: Two days after Lecture 17 (5:00pm)

Introduction
This lab will introduce you to browser-based attacks, as well as to how one might go about preventing
them.

When working on the exercises, you may find the following hints and tools useful:

Firefox's JavaScript console and DOM inspector, both accessible from the Tools menu. The
JavaScript console lets you see which exceptions are being thrown and why. The DOM Inspector
lets you peek at the structure of the page and the properties and methods of each node it contains.
(If the DOM Inspector isn't installed, make sure it's selected when you install Mozilla Firefox.) You
might also want to try Firebug. In Firefox 16, these tools are accessible from the Web Developer
menu item under the Tools menu.
You may need to use CSS to make your attacks invisible to the user. You should know what basic
syntax like <style>.warning{display:none}</style> means, and you should feel free to use
stealthy attributes like style="display: none; visibility: hidden; height: 0; width: 0;
position: absolute" in the HTML of your attacks. Beware that frames and images may behave
strangely with display: none, so you might want to use visibility: hidden instead. For
instance, to create a hidden iframe, try <iframe style="visibility: hidden" ...>.
You can use the LiveHTTPHeaders browser extension to see the cookies and form data that a
browser sends.
If you need to encode certain special characters in URL parameters, such as newlines, percents, or
ampersands, take a look at encodeURIComponent and decodeURIComponent.
Beware of Race Conditions: Depending on how you write your code, all four of these attacks could
potentially have race conditions. Attacks that fail on the grader's browser during grading will
receive less than full credit. To ensure that you receive full credit, you should wait after making an
outbound network request rather than assuming that the request will be sent immediately. You may
find the load event on the iframe element helpful.

Network setup
For this lab, you will be crafting attacks in your web browser that exploit vulnerabilities in the zoobar
web application. To ensure that your exploits work on our machines when we grade your lab, we need to
agree on the URL that refers to the zoobar web site. For the purposes of this lab, your zoobar web site
must be running on http://localhost:8080/. If you have been using your VM's IP address, such as
http://192.168.177.128:8080/, it will not work in this lab.

If you are using KVM or VirtualBox, the instructions we provided in lab 1 already ensure that port 8080
on localhost is forwarded to port 8080 in the virtual machine. If you are using VMware, we will use
ssh's port forwarding feature to expose your VM's port 8080 as http://localhost:8080/. First find
your VM IP address. You can do this by going to your VM and typing ifconfig. (This is the same IP
address you have been using for past labs.) Then configure SSH port forwarding as follows (which
depends on your SSH client):

For Mac and Linux users: open a terminal on your machine (not in your VM) and run

1

https://developer.mozilla.org/en/CSS/Getting_Started/Selectors
https://developer.mozilla.org/en/CSS/visibility
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/decodeURIComponent
https://addons.mozilla.org/en-US/firefox/addon/1843
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/encodeURIComponent
http://livehttpheaders.mozdev.org/installation.html
https://developer.mozilla.org/en/CSS/position
https://developer.mozilla.org/en/CSS/display
https://developer.mozilla.org/en/CSS/height
https://developer.mozilla.org/en/CSS/width
https://developer.mozilla.org/en/CSS/Getting_Started/Selectors


$ ssh -L localhost:8080:localhost:8080 httpd@VM-IP-ADDRESS
httpd@VM-IP-ADDRESS's password: 6858

For Windows users, this should be an option in your SSH client. In PuTTY, follow these
instructions. Use 8080 for the source port and localhost:8080 for the remote port.

The forward will remain in affect as long as the SSH connection is open.

Setting up the web server
Before you begin working on these exercises, please use Git to commit your Lab 3 solutions, fetch the
latest version of the course repository, and then create a local branch called lab5 based on our lab5
branch, origin/lab5. Do not merge your lab 2 and 3 solutions into lab 5. Here are the shell commands:

httpd@vm-6858:~$ cd lab
httpd@vm-6858:~/lab$ git commit -am 'my solution to lab3'
[lab3 c54dd4d] my solution to lab3
 1 files changed, 1 insertions(+), 0 deletions(-)
httpd@vm-6858:~/lab$ git pull
Already up-to-date.
httpd@vm-6858:~/lab$ git checkout -b lab5 origin/lab5
Branch lab5 set up to track remote branch lab5 from origin.
Switched to a new branch 'lab5'
httpd@vm-6858:~/lab$ make
...

For those using the provided .zip files, please download lab5.zip from the MIT OpenCourseWare site.

Note that lab 5's source code is based on the initial web server from lab 1. It does not include privilege
separation or Python profiles.

Now you can start the zookws web server, as follows.

httpd@vm-6858:~$ ./zookld

Open your browser and go to the URL http://localhost:8080/. You should see the zoobar web
application. If you don't, go back and double-check your steps. If you cannot get the web server to work,
get in touch with course staff before proceeding further.

Crafting attacks
You will craft a series of attacks against the zoobar web site you have been working on in previous labs.
These attacks exploit vulnerabilities in the web application's design and implementation. Each attack
presents a distinct scenario with unique goals and constraints, although in some cases you may be able to
re-use parts of your code.

We will run your attacks after wiping clean the database of registered users (except the user named
"attacker"), so do not assume the presence of any other users in your submitted attacks.

You can run our tests with make check; this will execute your attacks against your server, and tell you
whether your exploits seem to be working correctly or not. As in previous labs, keep in mind that the
checks performed by make check are not exhaustive, especially with respect to race conditions.

2

http://web.archive.org/web/20140811071925/http://www.cs.uu.nl/technical/services/ssh/putty/puttyfw.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Exercises 1, 3, and 4, as well as the challenge exercise, require that the displayed site look a certain way.
The make check script is not quite smart enough to compare how the site looks like with and without
your attack, so you will need to do that comparison yourself (and so will we, during grading). When make
check runs, it generates reference images for what the attack page is supposed to look like (answer-
XX.ref.png) and what your attack page actually shows (answer-XX.png), and places them in the lab5-
tests/ directory. Make sure that your answer-XX.png screenshots look like the reference images in
answer-XX.ref.png.

To view these images from lab5-tests/, either copy them to your local machine, or run python -m
SimpleHTTPServer 8080 and view the images by visiting http://localhost:8080/lab5-tests/. Note
that SimpleHTTPServer caches responses, so you should kill and restart it after a make check run.

We will grade your attacks with default settings using the current version of Mozilla Firefox on Ubuntu
12.04 (as installed on, e.g., the Athena workstations) browser at the time the project is due. We chose this
browser for grading because it is widely available and can run on a variety of operating systems. There
are subtle quirks in the way HTML and JavaScript are handled by different browsers, and some attacks
that work or do not work in Internet Explorer or Chrome (for example) may not work in Firefox. In
particular, you should use the Mozilla way of adding listeners to events. We recommend that you test
your code on Firefox before you submit, to ensure that you will receive credit for your work.

For exercises 1 and 3, you will need a server-side script to automatically email information captured by
your client-side JavaScript code to the TAs for grading. We have provided this script for you. Please
review the instructions at http://css.csail.mit.edu/6.858/2014/labs/sendmail.php and use that URL in your
attack scripts to send emails. You may send as many emails as you like while working on the project, but
please do not attack or abuse the email script.

Exercise 1: Cookie Theft. Construct an attack that will steal a victim's cookie for the zoobar
site when the victim's browser opens a URL of your choosing. (You do not need to do
anything with the victim's cookie after stealing it, for the purposes of this exercise, although in
practice an attacker could use the cookie to impersonate the victim, and issue requests as if
they came from the victim.)

Your solution is a URL starting with
http://localhost:8080/zoobar/index.cgi/users?
The grader will already be logged in to the zoobar site before loading your URL.
Your goal is to steal the document cookie and email it to yourself using the email script.
Except for the browser address bar (which can be different), the grader should see a
page that looks exactly as it normally does when the grader visits
http://localhost:8080/zoobar/index.cgi/users. No changes to the site
appearance or extraneous text should be visible. Avoiding the red warning text is an
important part of this attack. (It's ok if the page looks weird briefly before correcting
itself.)

Hint: You will need to find a cross-site scripting vulnerability in the
/zoobar/index.cgi/users page, and then use it to inject Javascript code into the
browser. What input parameters from the HTTP request does the resulting
/zoobar/index.cgi/users page include? Which of them are not properly escaped?
Hint: To steal the cookie, read about how cookies are accessed from Javascript.

Please write your attack URL in a file named answer-1.txt. Your URL should be the only
thing on the first line of the file.

For exercise 1, you will want the server to reflect back certain character strings to the victim's browser.
However, the HTTP server performs URL decoding on your request before passing it on to the zoobar
code. Thus, you'll need to make sure that your attack code is URL-encoded. For example, use + instead of

3

https://developer.mozilla.org/en/DOM/element.addEventListener
http://css.csail.mit.edu/6.858/2014/labs/sendmail.php
http://www.mozilla.com/firefox/
http://css.csail.mit.edu/6.858/2014/labs/sendmail.php
https://developer.mozilla.org/en-US/docs/Web/API/document.cookie


space and %2b instead of +. Here is a URL encoding reference and a handy conversion tool. You can also
use quoting functions in the python urllib module or the JavaScript encodeURIComponent function to
URL encode strings.

Exercise 2: Cross-Site Request Forgery. Construct an attack that transfers zoobars from a
victim to the attacker, when the victim's browser opens an HTML document that you
construct. Do not exploit cross-site scripting vulnerabilities (where the server reflects back
attack code), such as the one involved in exercise 1 above, or logic bugs in transfer.py that
you fixed in lab 3.

Your solution is a short HTML document named answer-2.html that the grader will
open using the web browser.
Be sure that you do not load the answer-2.html file from
http://localhost:8080/..., because that would place it in the same origin as the site
being attacked, and therefore defeat the point of this exercise.
The grader (victim) will already be logged in to the zoobar site before loading your
page.
Your goal is to transfer 10 zoobars from the grader's account to the "attacker" account.
The browser should be redirected to http://css.csail.mit.edu/6.858/2014/ as soon
as the transfer is complete (so fast the user might not notice).
The location bar of the browser should not contain the zoobar server's name or address
at any point. This requirement is important, and makes the attack more challenging.

Hint: One way to construct the attack is to develop answer-2.html in small steps that
incrementally meet all the requirements.
Hint: You might find the target attribute of the HTML form element useful in making
your attack contained in a single page.

For exercise 2, you should test if your attack works by opening your answer-2.html file in your browser,
and seeing if you achieve the desired result while meeting the requirements for the attack.

For exercise 2, you will need to synthesize an HTTP POST request from your HTML page. To do so,
consider creating an HTML form whose action attribute points to .../index.cgi/transfer, and which
contains <input> fields with the necessary names and values. Look at the source of the HTML that's
generated by index.cgi/transfer to get an idea of what this form should look like. You can submit a
form by using JavaScript to invoke the click method on the submit button, or the submit method on the
form itself.

Exercise 3: Side Channels and Phishing. Construct an attack that will steal a victim's
zoobars, if the user is already logged in (using the attack from exercise 2), or will ask the
victim for their username and password, if they are not logged in. The attack scenario is that
the victim opens an HTML document that you constructed.

Your solution is an HTML document named answer-3.html that the grader will open
using the web browser.
As with the previous exercise, be sure that you do not load the answer-3.html file from
http://localhost:8080/.
The grader will run the code once while logged in to the zoobar site before loading your
page.
The grader will run the code a second time while not logged in to the zoobar site before
loading your page.
When the browser loads your document, the document should sniff out whether the user

4

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
http://www.dommermuth-1.com/protosite/experiments/encode/index.html
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://css.csail.mit.edu/6.858/2014


is logged into the zoobar site:
If the user is not logged in, present an HTML document visibly identical to the
zoobar login page, by copying the HTML from the real zoobar login page (this
should be self-contained in the HTML file you turn in):

When the "Log in" button is pressed, send the username and password
(separated by a comma) using the email script.
Once the email is sent, log the user into the real zoobar website (the
hostname should change to localhost:8080).
The behavior for the Register button is left unspecified.

If the user is logged in, then forward to the attack from exercise 2.

Hint: The same-origin policy generally does not allow your attack page to access the
contents of pages from another domain. What types of files can be loaded by your attack
page from another domain? Does the zoobar web application have any files of that type?
How can you infer whether the user is logged in or not, based on this?
Hint: develop your attack in steps, incrementally addressing all of the above
requirements.

Exercise 4: Profile Worm. Create a worm that will transfer 1 zoobar from the victim to the
attacker, and spread to the victim's profile, when the victim views the profile of another
infected user. The scenario is that the first victim views the attacker's profile, and the worm
spreads onward from there.

Your solution is a profile that, when viewed, transfers 1 zoobar from the current user to
a user called "attacker" (that's the actual username) and replaces the profile of the
current user with itself (i.e., the attack profile code).
Your malicious profile should display the message Scanning for viruses... when
viewed, as if that was the entirety of the viewed profile.
To grade your attack, we will cut and paste the submitted profile code into the profile of
the "attacker" user, and view that profile using the grader's account. We will then view
the grader's profile with more accounts, checking for both the zoobar transfer and the
replication of profile code.
The transfer and replication should be reasonably fast (under 15 seconds). During that
time, the grader will not click anywhere.
During the transfer and replication process, the browser's location bar should remain at
http://localhost:8080/zoobar/index.cgi/users?user=username, where username
is the user whose profile is being viewed. The visitor should not see any extra graphical
user interface elements (e.g., frames), and the user whose profile is being viewed should
appear to have 10 zoobars, and no transfer log entries. These requirements make the
attack harder to spot for a user, and thus more realistic, but they make the attack also
harder to pull off.
You will not be graded on the corner case where the user viewing the profile has no
zoobars to send.

Hint: Start by writing a simple HTML profile and uploading it, just to familiarize
yourself with how an HTML profile works in zoobar. Next, develop the solution profile
in small steps (e.g., first arrange that the malicious profile code transfers 1 zoobar to the
attacker, and then make it spread to the visitor's profile).
Hint: This MySpace vulnerability may provide some inspiration.

Please write your profile in a file named answer-4.txt.

For exercise 4, you may need to create an iframe and access data inside of it. You can use the DOM

5

http://localhost:8080/
http://css.csail.mit.edu/6.858/2014/labs/sendmail.php
http://css.csail.mit.edu/6.858/2014/readings/advisory4.5.06.html


methods document.createElement and document.body.appendChild to do so. Getting access to form
fields in an iframe differs by browser, and only works for frames from the domain (according to the
same-origin policy). In Firefox, you can do iframe.contentDocument.forms[0].zoobars.value = 1;.
Another approach may be to use XMLHttpRequest instead of an iframe.

Challenge: Password Theft. Create an attack that will steal the victim's username and
password, even if the victim is diligent about entering their password only when the URL
address bar shows http://localhost:8080/zoobar/index.cgi/login.

Your solution is a short HTML document named answer-chal.html that the grader will
open using the web browser.
The grader will not be logged in to the zoobar web site before loading your page.
Upon loading your document, the browser should immediately be redirected to
http://localhost:8080/zoobar/index.cgi/login. The grader will enter a username
and password, and press the "Log in" button.
When the "Log in" button is pressed, send the username and password (separated by a
comma) using the email script.
The login form should appear perfectly normal to the user. No extraneous text (e.g.,
warnings) should be visible, and assuming the username and password are correct, the
login should proceed the same way it always does.

For this final attack, you may find that using alert() to test for script injection does not work; Firefox
blocks it when it's causing an infinite loop of dialog boxes. Try other ways to probe whether your code is
running, such as document.loginform.login_username.value=42.

Deliverables

Make sure you have the following files: answer-1.txt, answer-2.html, answer-3.html, answer-4.txt,
and if you are doing the challenge, answer-chal.html, containing each of your attacks. Feel free to
include any comments about your solutions in the answers.txt file (we would appreciate any feedback
you may have on this assignment).

Run make submit. The resulting lab5-handin.tar.gz will be graded. You're done!

Acknowledgments
Thanks to Stanford's CS155 course staff for the original version of this assignment.

6

https://developer.mozilla.org/en-US/docs/DOM/Node.appendChild
http://localhost:8080/zoobar/index.cgi/login
https://developer.mozilla.org/en/XMLHttpRequest
http://crypto.stanford.edu/cs155/
http://css.csail.mit.edu/6.858/2014/labs/sendmail.php
https://developer.mozilla.org/en-US/docs/DOM/document.createElement


MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



