
6.858 Fall 2014 Lab 1: Buffer overflows
Handed out: Lecture 1
Parts 1 and 2 due: Two days after Lecture 3 (5:00pm)
All parts due: Two days after Lecture 5 (5:00pm)

Introduction
You will do a sequence of labs in 6.858. These sequence of labs will give you practical experience with common attacks and counter
measures. To make the issues concrete, you will explore the attacks and counter meatures in the context of the zoobar web
application in the following ways:

Lab 1: you will explore the base structure of the zoobar web application, and use buffer overrun attacks to break its security
properties.
Lab 2: you will improve zoobar web application by using privilege separation, so that if one components is compromised, the
adversary doesn't have control over the whole web application.
Lab 3: you will build a program analysis tool (likely based on symbolic execution) to find bugs in Python code such as the
zoobar web application.
Lab 4: you will perform a security audit of two other student's solutions. You probably want to do a good job in lab 2 and lab
3.
Lab 5: you will improve the zoobar application against browser attacks.
Lab 6: you will extend the zoobar application to support javascript user profiles in a secure manner.

Lab 1 will introduce you to buffer overflow vulnerabilities, in the context of a web server called zookws. The zookws web server is
running a simple python web application, zoobar, where users transfer "zoobars" (credits) between each other. You will find buffer
overflows in the zookws web server code, write exploits for the buffer overflows to inject code into the server, figure out how to
bypass non-executable stack protection, and finally look for other potential problems in the web server implementation. Later labs
look at other security aspects of the zoobar and zookws infrastructure.

Each lab requires you to learn a new programming language or some other piece of infrastructure. For example, in this lab you must
become intimate familiar with certain aspects of the C language, x86 assembly language, gdb, etc. The labs do so because that allows
you to understand attacks and defenses in realistic situations. Often you need to understand certain parts of this new infrastructure in
detail; security weaknesses often show up in corner cases, and so you need to understand the details to craft exploits and design
defenses for those corner cases. These two factors (new infrastructure and details) can make the labs time consuming. You should
start early on the labs and work on them daily for some limited time (each lab has several exercises), instead of trying to do all
exercises in a single shot before the deadline. You should also try to understand the necessary details, instead of muddling your way
through the exercises. If you don't, the labs will take a lot of time. If you get stuck on a detail, post a question on Piazza.

Several labs, including this lab, ask you to design exploits. These exploits are realistic enough that you might be able to use them for
a real attack, but you should not do so. The point of the designing exploits is to teach you how to defend against them, not how to use
them---attacking computer systems is illegal and can get you into serious trouble. Don't do it.

Lab infrastructure
Exploiting buffer overflows requires precise control over the execution environment. A small change in the compiler, environment
variables, or the way the program is executed can result in slightly different memory layout and code structure, thus requiring a
different exploit. For this reason, this lab uses a VMware virtual machine to run the vulnerable web server code.

To start working on this lab assignment, you should download the VMware Player, which can run virtual machines on Linux and
Windows systems. For Mac users, MIT has a site license for VMware Fusion. You can download VMware Fusion from this web
site.

Once you have VMware installed on your machine, you should download the course VM image, and unpack it on your computer.
This virtual machine contains an installation of Ubuntu 14.04.1 Linux, and the following accounts have been created inside the VM.

Username Password Description

You can use the
root 6858 root account to install new software packages into the VM, if you find

something missing, using apt-get install pkgname.

The
httpd 6858 httpd account is used to execute the web server, and contains the source code you will

need for this lab assignment, in /home/httpd/lab.

For Linux users, we've also tested running the course VM on KVM, which is built into the Linux kernel and should be much easier

1

1

http://www.vmware.com/products/player/
http://pdos.csail.mit.edu/~kolya/vm-6858.zip
http://www.linux-kvm.org/
http://ist.mit.edu/vmware-fusion/
http://ist.mit.edu/vmware-fusion/

to get working than VMware. KVM should be available through your distribution, and is preinstalled on Athena cluster computers;
on Debian or Ubuntu, try apt-get install qemu-kvm. Once installed, you should be able to run a command like
kvm -m 512 -net nic -net user,hostfwd=tcp:127.0.0.1:2222-:22,hostfwd=tcp:127.0.0.1:8080-:8080 vm-6858.vmdk to
run the VM and forward the relevant ports.

You can either log into the virtual machine using its console, or you can use ssh to log into the virtual machine over the (virtual)
network. To determine the virtual machine's IP address, log in as root on the console and run /sbin/ifconfig eth0. (If using KVM
with the command above, then ssh -p 2222 httpd@localhost should work.)

The files you will need for this and subsequent lab assignments in this course is distributed using the Git version control system. You
can also use Git to keep track of any changes you make to the initial source code. Here's an overview of Git and the Git user's
manual you may find useful.

repository is available at git://g.csail.mit.edu/6.858-lab-2014. Alternately, download lab1.zip from the Labs
on the MIT OpenCourseWare site. To begin with, log into the VM using the httpd account and clone the source
follows.

httpd@vm-6858:~$ git clone git://g.csail.mit.edu/6.858-lab-2014 lab
Initialized empty Git repository in /home/httpd/lab/.git/

httpd@vm-6858:~$ cd lab
httpd@vm-6858:~/lab$

proceed with this lab assignment, make sure you can compile the zookws web server:

httpd@vm-6858:~/lab$ make
zookld.c -c -o zookld.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE -fno-stack-protector
http.c -c -o http.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE -fno-stack-protector

zookld.o http.o -lcrypto -o zookld
zookfs.c -c -o zookfs.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE -fno-stack-protector

zookfs.o http.o -lcrypto -o zookfs
zookfs zookfs-nxstack
zookd.c -c -o zookd.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE -fno-stack-protector

zookd.o http.o -lcrypto -o zookd
zookd-nxstack

zookfs zookfs-exstack
execstack -s zookfs-exstack

zookd-exstack
execstack -s zookd-exstack

zookfs.c -c -o zookfs-withssp.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE
http.c -c -o http-withssp.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE

zookfs-withssp.o http-withssp.o -lcrypto -o zookfs-withssp
zookd.c -c -o zookd-withssp.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE

zookd-withssp.o http-withssp.o -lcrypto -o zookd-withssp
 -c -o shellcode.o shellcode.S
-S -O binary -j .text shellcode.o shellcode.bin

run-shellcode.c -c -o run-shellcode.o -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE -fno-stack-protector
run-shellcode.o -lcrypto -o run-shellcode

shellcode.o
httpd@vm-6858:~/lab$

server consists of the following components.

zookld, a launcher daemon that launches services configured in the file zook.conf.
zookd, a dispatcher that routes HTTP requests to corresponding services.
zookfs and other services that may serve static files or execute dynamic scripts.

After zookld launches configured services, zookd listens on a port (8080 by default) for incoming HTTP requests and reads the first
line of each request for dispatching. In this lab, zookd is configured to dispatch every request to the zookfs service, which reads the
rest of the request and generates a response from the requested file. Most HTTP-related code is in http.c. Here is a tutorial of the
HTTP protocol.

There are two versions of the web server you will be using:

zookld, zookd-exstack, zookfs-exstack, as configured in the file zook-exstack.conf;
zookld, zookd-nxstack, zookfs-nxstack, as configured in the file zook-nxstack.conf.

In the first one, the *-exstack binaries have an executable stack, which makes it easier to inject executable code given a stack buffer
overflow vulnerability. The *-nxstack binaries in the second version have a non-executable stack, and you will write exploits that
bypass non-executable stacks later in this lab assignment.

In order to run the web server in a predictable fashion---so that its stack and memory layout is the same every time---you will use the
clean-env.sh script. This is the same way in which we will run the web server during grading, so make sure all of your exploits
work on this configuration!

2

, which

The course Git
section of 6.858
code for lab 1 as

...

Before you

cc
cc
cc -m32
cc
cc -m32
cp
cc
cc -m32
cp zookd
cp

cp zookd

cc
cc
cc -m32
cc
cc -m32
cc -m32
objcopy
cc
cc -m32
rm

The zookws web

2

http://eagain.net/articles/git-for-computer-scientists/
http://www.garshol.priv.no/download/text/http-tut.html
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://git-scm.com/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/labs/MIT6_858F14_lab1.zip
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

The reference binaries of zookws are provided in bin.tar.gz, which we will use for grading. Make sure your exploits work on those
binaries.

Now, make sure you can run the zookws web server and access the zoobar web application from a browser running on your
machine, as follows:

httpd@vm-6858:~/lab$ /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:0c:29:57:90:a1
 inet addr:172.16.91.143 Bcast:172.16.91.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe57:90a1/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:149 errors:0 dropped:0 overruns:0 frame:0
 TX packets:94 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:15235 (15.2 KB) TX bytes:12801 (12.8 KB)
 Interrupt:19 Base address:0x2000

httpd@vm-6858:~/lab$./clean-env.sh ./zookld zook-exstack.conf

The /sbin/ifconfig command will give you the virtual machine's IP address. In this particular example, you would want to open
your browser and go to the URL http://172.16.91.143:8080/. (If you're using KVM with the command above, just access
http://localhost:8080/ on your host.) If something doesn't seem to be working, try to figure out what went wrong, or contact the
course staff, before proceeding further.

Part 1: Finding buffer overflows
In the first part of this lab assignment, you will find buffer overflows in the provided web server. Read Aleph One's article, Smashing
the Stack for Fun and Profit, as well as this paper, to figure out how buffer overflows work.

Exercise 1. Study the web server's code, and find examples of code vulnerable to memory corruption through a buffer
overflow. Write down a description of each vulnerability in the file /home/httpd/lab/bugs.txt; use the format
described in that file. For each vulnerability, describe the buffer which may overflow, how you would structure the
input to the web server (i.e., the HTTP request) to overflow the buffer, and whether the vulnerability can be prevented
using stack canaries. Locate at least 5 different vulnerabilities.

You can use the command make check-bugs to check if your bugs.txt file matches the required format, although the
command will not check whether the bugs you listed are actual bugs or whether your analysis of them is correct.

Now, you will start developing exploits to take advantage of the buffer overflows you have found above. We have provided template
Python code for an exploit in /home/httpd/lab/exploit-template.py, which issues an HTTP request. The exploit template takes
two arguments, the server name and port number, so you might run it as follows to issue a request to zookws running on localhost:

httpd@vm-6858:~/lab$./clean-env.sh ./zookld zook-exstack.conf &
[1] 2676
httpd@vm-6858:~/lab$./exploit-template.py localhost 8080
HTTP request:
GET / HTTP/1.0

...
httpd@vm-6858:~/lab$

You are free to use this template, or write your own exploit code from scratch. Note, however, that if you choose to write your own
exploit, the exploit must run correctly inside the provided virtual machine.

You will find gdb useful in building your exploits. As zookws forks off many processes, it can be difficult to debug the correct one.
The easiest way to do this is to run the web server ahead of time with clean-env.sh and then attaching gdb to an already-running
process with the -p flag. To help find the right process for debugging, zookld prints out the process IDs of the child processes that it
spawns. You can also find the PID of a process by using pgrep; for example, to attach to zookd-exstack, start the server and, in
another shell, run

httpd@vm-6858:~/lab$ gdb -p $(pgrep zookd-exstack)
...
0x4001d422 in __kernel_vsyscall ()
(gdb) break your-breakpoint
Breakpoint 1 at 0x1234567: file zookd.c, line 999.
(gdb) continue
Continuing.

3

3

http://css.csail.mit.edu/6.858/2014/readings/buffer-overflows.pdf
http://www.phrack.com/issues.html?issue=49&id=14#article
http://www.phrack.com/issues.html?issue=49&id=14#article

Keep in mind that a process being debugged by gdb will not get killed even if you terminate the parent zookld process using ^C. If
you are having trouble restarting the web server, check for leftover processes from the previous run, or be sure to exit gdb before
restarting zookld.

When a process being debugged by gdb forks, by default gdb continues to debug the parent process and does not attach to the child.
Since zookfs forks a child process to service each request, you may find it helpful to have gdb attach to the child on fork, using the
command set follow-fork-mode child. We have added that command to /home/httpd/lab/.gdbinit, which will take effect if
you start gdb in that directory.

For this and subsequent exercises, you may need to encode your attack payload in different ways, depending on which vulnerability
you are exploiting. In some cases, you may need to make sure that your attack payload is URL-encoded; that is, use + instead of
space and %2b instead of +. Here is a URL encoding reference and a handy conversion tool. You can also use quoting functions in the
python urllib module to URL encode strings. In other cases, you may need to include binary values into your payload. The Python
struct module can help you do that. For example, struct.pack("<I", x) will produce a 4-byte (32-bit) binary encoding of the
integer x.

Exercise 2. Pick two buffer overflows out of what you have found for later exercises (although you can change your
mind later, if you find your choices are particularly difficult to exploit). The first must overwrite a return address on the
stack, and the second must overwrite some other data structure that you will use to take over the control flow of the
program.

Write exploits that trigger them. You do not need to inject code or do anything other than corrupt memory past the end
of the buffer, at this point. Verify that your exploit actually corrupts memory, by either checking the last few lines of
dmesg | tail, using gdb, or observing that the web server crashes.

Provide the code for the exploits in files called exploit-2a.py and exploit-2b.py, and indicate in answers.txt
which buffer overflow each exploit triggers. If you believe some of the vulnerabilities you have identified in Exercise 1
cannot be exploited, choose a different vulnerability.

You can check whether your exploits crash the server as follows:

httpd@vm-6858:~/lab$ make check-crash

Part 2: Code injection
In this part, you will use your buffer overflow exploits to inject code into the web server. The goal of the injected code will be to
unlink (remove) a sensitive file on the server, namely /home/httpd/grades.txt. Use the *-exstack binaries, since they have an
executable stack that makes it easier to inject code. The zookws web server should be started as follows.

httpd@vm-6858:~/lab$./clean-env.sh ./zookld zook-exstack.conf

We have provided Aleph One's shell code for you to use in /home/httpd/lab/shellcode.S, along with Makefile rules that produce
/home/httpd/lab/shellcode.bin, a compiled version of the shell code, when you run make. Aleph One's exploit is intended to
exploit setuid-root binaries, and thus it runs a shell. You will need to modify this shell code to instead unlink
/home/httpd/grades.txt.

To help you develop your shell code for this next exercise, we have provided a program called run-shellcode that will run your
binary shell code, as if you correctly jumped to its starting point. For example, running it on Aleph One's shell code will cause the
program to execve("/bin/sh"), thereby giving you another shell prompt:

httpd@vm-6858:~/lab$./run-shellcode shellcode.bin
$

When developing an exploit, you will have to think about what values are on the stack, so that you can modify them accordingly. For
your reference, here is what the stack frame of some function foo looks like; here, foo has a local variable char buf[256]:

 +------------------+
 | ... |
 | stack frame of |
 | foo's caller |
 | ... |
 +------------------+
 | return address | (4 bytes)
 | to foo's caller |
 +------------------+

4

4

http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.dommermuth-1.com/protosite/experiments/encode/index.html
http://docs.python.org/2/library/struct.html

 %ebp ------> | saved %ebp | (4 bytes)
 +------------------+
 | ... |
 +------------------+
 | buf[255] |
 | ... |
 buf ------> | buf[0] |
 +------------------+

Note that the stack grows down in this figure, and memory addresses are increasing up.

When you're constructing an exploit, you will often need to know the addresses of specific stack locations, or specific functions, in a
particular program. The easiest way to do this is to use gdb. For example, suppose you want to know the stack address of the pn[]
array in the http_serve function in zookfs-exstack, and the address of its saved %ebp register on the stack. You can obtain them
using gdb as follows:

httpd@vm-6858:~/lab$ gdb -p $(pgrep zookfs-exstack)
...
0x40022416 in __kernel_vsyscall ()
(gdb) break http_serve
Breakpoint 1 at 0x8049415: file http.c, line 248.
(gdb) continue
Continuing.

Be sure to run gdb from the ~/lab directory, so that it picks up the set follow-fork-mode child command from ~/lab/.gdbinit.
Now you can issue an HTTP request to the web server, so that it triggers the breakpoint, and so that you can examine the stack of
http_serve:

[New process 1339]
[Switching to process 1339]

Breakpoint 1, http_serve (fd=3, name=0x8051014 "/") at http.c:248
248 void (*handler)(int, const char *) = http_serve_none;
(gdb) print &pn
$1 = (char (*)[1024]) 0xbfffd10c
(gdb) info registers
eax 0x3 3
ecx 0x400bdec0 1074519744
edx 0x6c6d74 7105908
ebx 0x804a38e 134521742
esp 0xbfffd0a0 0xbfffd0a0
ebp 0xbfffd518 0xbfffd518
esi 0x0 0
edi 0x0 0
eip 0x8049415 0x8049415 <http_serve+9>
eflags 0x200286 [PF SF IF ID]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb)

From this, you can tell that, at least for this invocation of http_serve, the pn[] buffer on the stack lives at address 0xbfffd10c, and
the value of %ebp (which points at the saved %ebp on the stack) is 0xbfffd518.

Now it's your turn to develop an exploit.

Exercise 3. Starting from one of your exploits from Exercise 2, construct an exploit that hijacks control flow of the web
server and unlinks /home/httpd/grades.txt. Save this exploit in a file called exploit-3.py.

Explain in answers.txt whether or not the other buffer overflow vulnerabilities you found in Exercise 1 can be
exploited in this manner.

Verify that your exploit works; you will need to re-create /home/httpd/grades.txt after each successful exploit run.

Suggestion: first focus on obtaining control of the program counter. Sketch out the stack layout that you expect the
program to have at the point when you overflow the buffer, and use gdb to verify that your overflow data ends up where
you expect it to. Step through the execution of the function to the return instruction to make sure you can control what
address the program returns to. The next, stepi, info reg, and disassemble commands in gdb should prove helpful.

Once you can reliably hijack the control flow of the program, find a suitable address that will contain the code you
want to execute, and focus on placing the correct code at that address---e.g. a derivative of Aleph One's shell code.

5

5

Note: SYS_unlink, the number of the unlink syscall, is 10 or '\n' (newline). Why does this complicate matters? How
can you get around it?

You can check whether your exploit works as follows:

httpd@vm-6858:~/lab$ make check-exstack

The test either prints "PASS" or fails. We will grade your exploits in this way. If you use another name for the exploit script, change
Makefile accordingly.

The standard C compiler used on Linux, gcc, implements a version of stack canaries (called SSP). You can explore whether GCC's
version of stack canaries would or would not prevent a given vulnerability by using the SSP-enabled versions of the web server
binaries (zookd-withssp and zookfs-withssp), by using the zook-withssp.conf config file when starting zookld.

Submit your answers to the first two parts of this lab assignment by running make submit-a. Alternatively, run
make prepare-submit-a. The resulting lab1a-handin.tar.gz file will be graded.

Part 3: Return-to-libc attacks
Many modern operating systems mark the stack non-executable in an attempt to make it more difficult to exploit buffer overflows. In
this part, you will explore how this protection mechanism can be circumvented. Run the web server configured with binaries that
have a non-executable stack, as follows.

httpd@vm-6858:~/lab$./clean-env.sh ./zookld zook-nxstack.conf

The key observation to exploiting buffer overflows with a non-executable stack is that you still control the program counter, after a
RET instruction jumps to an address that you placed on the stack. Even though you cannot jump to the address of the overflowed
buffer (it will not be executable), there's usually enough code in the vulnerable server's address space to perform the operation you
want.

Thus, to bypass a non-executable stack, you need to first find the code you want to execute. This is often a function in the standard
library, called libc, such as execl, system, or unlink. Then, you need to arrange for the stack to look like a call to that function with
the desired arguments, such as system("/bin/sh"). Finally, you need to arrange for the RET instruction to jump to the function you
found in the first step. This attack is often called a return-to-libc attack. This article contains a more detailed description of this style
of attack.

In the next exercise, you will need to understand the calling convention for C functions. For your reference, consider the following
simple C program:

void
foo(int x, char *msg, int y)
{
 /* ... */
}

void
bar(void)
{
 int a = 3;
 foo(5, "Hello, world!", 7);
}

The stack layout when bar invokes foo, just after the program counter has switched to the beginning of foo, looks like this:

 +------------------+
 %ebp ------> | saved %ebp | (4 bytes)
 +------------------+
 | ... |
 +------------------+
 bar's a ------> | 3 | (4 bytes)
 +------------------+
 | ... |
 +------------------+
 | 7 | (4 bytes)
 +------------------+
 | pointer to | ------> "Hello, world!", somewhere in memory
 | string | (4 bytes)
 +------------------+
 | 5 | (4 bytes)
 +------------------+

6

6

http://css.csail.mit.edu/6.858/2014/readings/return-to-libc.pdf

 | return address | (4 bytes)
 %esp ------> | into bar |
 +------------------+
 | |

When foo starts running, the first thing it will do is save the %ebp register on the stack, and set the %ebp register to point at this saved
value on the stack, so the stack frame will look like the one shown just above Exercise 3.

Exercise 4. Starting from your two exploits in Exercise 2, construct two exploits that take advantage of those
vulnerabilities to unlink /home/httpd/grades.txt when run on the binaries that have a non-executable stack. Name
these new exploits exploit-4a.py and exploit-4b.py.

Although in principle you could use shellcode that's not located on the stack, for this exercise you should not inject any
shellcode into the vulnerable process. You should use a return-to-libc (or at least a call-to-libc) attack where you vector
control flow directly into code that existed before your attack.

In answers.txt, explain whether or not the other buffer overflow vulnerabilities you found in Exercise 1 can be
exploited in this same manner.

You can test your exploits as follows:

httpd@vm-6858:~/lab$ make check-libc

The test either prints two "PASS" messages or fails. We will grade your exploits in this way. If you use other names for the exploit
scripts, change Makefile accordingly.

Part 4: Fixing buffer overflows and other bugs
Now that you have figured out how to exploit buffer overflows, you will try to find other kinds of vulnerabilities in the same code.
As with many real-world applications, the "security" of our web server is not well-defined. Thus, you will need to use your
imagination to think of a plausible threat model and policy for the web server.

Exercise 5. Look through the source code and try to find more vulnerabilities that can allow an attacker to compromise
the security of the web server. Describe the attacks you have found in answers.txt, along with an explanation of the
limitations of the attack, what an attacker can accomplish, why it works, and how you might go about fixing or
preventing it. You should ignore bugs in zoobar's code. They will be addressed in future labs.

One approach for finding vulnerabilities is to trace the flow of inputs controlled by the attacker through the server code.
At each point that the attacker's input is used, consider all the possible values the attacker might have provided at that
point, and what the attacker can achieve in that manner.

You should find at least two vulnerabilities for this exercise.

Finally, you will explore fixing some of the vulnerabilities you have found in this lab assignment.

Exercise 6. For each buffer overflow vulnerability you have found in Exercise 1, fix the web server's code to prevent
the vulnerability in the first place. Do not rely on compile-time or runtime mechanisms such as stack canaries,
removing -fno-stack-protector, baggy bounds checking, etc.

You are done! Submit your answers to the lab assignment by running make submit. Alternatively, run make prepare-submit. The
resulting lab1-handin.tar.gz file will be graded.

77

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

