
6.858 Quiz 2 Review

Android Security
Haogang Chen
Nov 24, 2014

1

Security layers

Layer Role

Reference
Monitor

Mandatory Access Control (MAC) for RPC: 
enforce access control policy for shared resources

Java VM Memory safety: 
(neither required nor trusted)

Linux 
Kernel

Isolation: apps run with different UIDs.
(principals are apps, as opposed to users)

 

2

Basic architecture
• Apps are composed of components

• 4 types of components

• Activity: UI, only one active at a time

• Service: background processing, RPC server

• Content provider: provides read/write RPC

• Broadcast receiver: listen for notifications

3

Intent: RPC primitive
• Has 4 fields

• Component: target

• Action: opcode

• Data: arguments

• Category: for filtering

• The reference monitor checks sender’s permission
labels upon message delivery.

4

Permission labels

• Application defines permissions as string labels

• <permission name=“com.android.phone.DIALPERM”></…>

• Application asks for permissions in its manifest

• <use-­‐permission name=“com.android.phone.DIALPERM”></…>

• Application assigns a type for each permission

5

Permission types

Type Reference Monitor’s grant policy

Normal Silent check, no user interaction required.
(no security guarantee for any serious use…)

Dangerous Ask the user upon app installation.
(useful when you want to interact with others’ apps)

Signature Silently grant to apps signed by the same developer.
(useful when you only talk to your own apps)

6

Implicit and broadcast intent
• Implicit intent

• Omit the “target” field; let Android figure out the receiver
• Receivers declare interested actions and categories using

intent filters

• Broadcast intent
• Problem: how to ensure only someone gets the broadcast?
• Solution: protected broadcast (not MAC)

• Request for a permission when broadcasting
sendBroadcast(intent, “perm.FRIEND_NEAR”)

 

7

Summary

• Permissions: “Who are allowed talk to me? ”

• Permission types: “How to grant permissions to an app? ”

• Intent filters: “What (implicit intent) do I want to see? ”

• Protected broadcast: “Who are allowed to see my
(broadcast) intent? ”

8

6.858 Quiz 2 Review

TaintDroid
Haogang Chen
Nov 24, 2014

9

Motivation
• Limitation of the reference manager

• “What resource can I access? ”

• No guarantee on how the data is being used.

• E.g., a photo editor can silently upload your
photo stream to its server

• TaintDroid: track information flow for sensitive data

10

Taint tracking basics
• Source: origin of sensitive data

• E.g., photos, contacts, GPS coordinates

• Sink: undesired destination

• E.g., network interface, TCB boundary

• Propagation: how information flows from source to sink

• E.g., variable copy, arithmetic operations, indexing,
message passing, system calls, file read/write.

11

Approach
• Attach a “tag” for each piece of sensitive data

• Propagate the tag together with the data

• Challenges

• Fine-grained tracking can be extremely slow

• Coarse-grained tracking introduces false positives

• Key contribution: trade-offs between performance
and accuracy

12

TaintDroid: multi-level tracking

13

Component Trusted? Action

System app. Taint Y

N

Y

Y

Y

Y

Y

source: annotate data from sensitive content
provider (e.g. camera app)

User app. User apps runs inside Java VMs. They are untrusted
and unmodified

Java VM Variable-level tracking: store and propagate taint
tags in shadow memory for every variable

RPC library Message-level tracking: propagate taint tags when
serializing/deserializing messages

Method-levelSystem
library

 tracking: annotate how taints
propagate among arguments and return values

Storage
library

File-level tracking: attach and propagate taint tags
in file’s extended attribute.

Network
library

Taint Sink: annotate the interface, and report any
tagged data that reaches the sink

14

Limitation of taint tracking
• Cannot capture control-flow dependencies

// “dirty” is tainted
int laundry(int dirty) {
 int clean;
 if (dirty == 0)
 clean = 0
 else if (dirty == 1)
 clean = 1
 else if (dirty == 2)
 clean = 2
 else …
 return clean;
}

15

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

