6.858 Lecture 20
Android Security

Why this paper?
* Real system, widely used.
* (Careful security design (more so than for web or desktop applications).
o Principals = Applications (not users)
o Policy separate from code (manifests)
* Some problems inevitable, and instructive to see where problems come up.
* Butalso interesting to see how to design a reasonable security plan.

Threat model
* (Goal: Anyone can write an app that anyone can install
* Threats:

o Apps may have bugs
o Apps may be malicious

CVE database
* http://www.cvedetails.com/vulnerability-list/vendor_id-1224 /product_id-
19997 /Google-Android.html
* Some bugs but not overwhelming---is the security plan working?
o buffer overrun (still happens....)
* Of course, Android runs on Linux, and this includes Linux kernel problems

Overall plan:
* First understand how Android applications look like and work.
* Then discuss security mechanisms and policies.

What does an Android application look like?
* Four types of components:
o Activity: Ul component of app, typically one activity per "screen".
o Service: background processing, can be invoked by other components.
o Content provider: a SQL database that can be accessed by other
components.
o Broadcast receiver: gets broadcast announcements from other
components.
* Each application also has private file storage.
* Application typically written in Java.
* Runs on a Linux kernel + Android "platform" (will get to it shortly).
* Application also has a manifest declaring its permissions (later).
* Entire application is signed by the developer.

Activity: can draw on the screen, get user input, etc.
* Only one activity is running at a time.
* Helps users reason about security of inputs.

http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html

¢ [Ifuseris running bank app (activity), no other activity gets user's input.

Intent: basic messaging primitive in Android.
* Represents app's intent to do something / interact with another component.

Intent fields:
* Component: name of component to route the request to (just a string).
o E.g, com.google.someapp/ComponentName
* Action: the opcode for this message (just a string).
o E.g, android.intent.action.MAIN, android.intent.action.DIAL, ..
* Data: URI of data for the action (just a string).
o E.g,tel:16172536005, content://contacts/people/1 (for DIAL).
o Also includes the MIME type of the data.
¢ (Category: a filtering mechanism for finding where to send intent.
o E.g, android.intent.category.BROWSABLE means safe to invoke from
browser, for action android.intent.action.VIEW, which views the URI in
data.

* Explicit intents: component name specified.

* Implicit intents: no component name, so the system must figure it out.
o Looks at action, data, category.
o Could also ask the user what app to use, if multiple components match.
o E.g, user clicks on an address -- what map application to open?

RPC to services.
¢ Initial communication to a service happens by sending an intent.
* Service can also define an RPC protocol for clients to use.

o More efficient than sending intents each time.

o Client "binds" a connection to a service.

Networking -- accessing the Internet.
* Workjust as in any other Linux system.
* Application can use sockets directly, or via Java's networking libraries.

Why do we need a new app model? (Or, what's wrong with existing models?)
* Desktop applications:
o -: Not much isolation between applications.
o -: Every app has full privileges, any one malicious app can take over.
o +: Applications can easily interact with one another, share files.
o +: User can choose app for each task (email app, image viewer, etc).
* Web/browser-based applications:
o +: No need to install applications or worry about local state.
: Requires a server in the typical model (hard to use offline).
: Limited interactions between applications.
: Interactions that do exist are typically hard-wired to particular URLs.

@)
@)
@)

= E.g, links to a contact manager app's URL: user cannot choose new
one.
= (Getting better: "Web intents" are trying to solve this problem.
o -:Somewhat limited functionality for purely client-side applications.
= Getting better: camera, location info, local storage, worker
threads...

How does Android's application model handle app interaction, user choosing app?
* Mostly based on intents.

* If multiple apps could perform an operation, send implicit intent.

* Android framework decides which app gets the intent; could ask user.

How does Android's application model handle app isolation?
* Each application's processes run under a separate UID in Linux.

o Exception: one developer can stick multiple applications into one UID.
* Each application gets its own Java runtime (but that's mostly by convention).
* Javainterpreter not trusted or even required; kernel enforces isolation.

What are per-app UIDs good for?
* One app cannot directly manipulate another app's processes, files.
* Each app has private directory (/data/data/appname).
o Stores preferences, sqlite DBs for content providers, cached files, etc.

What's missing from UID isolation: access control to shared resources.
* Network access.

* Removable sd card.

* Devices (camera, compass, etc).

¢ Intents: who can send, what intents, to whom?

* And we also need to somehow determine the policy for all of this.

First, mechanism: how does Android control access to all of the above?
¢ Network access: GIDs.

o Special group IDs define what apps can talk to the network.
GID AID NET BT ADMIN (3001): can create low-level bluetooth sockets

GID AID NET BT (3002) : can create bluetooth socket

GID AID INET (3003) : can create IP socket

GID AID NET RAW (3004) : can create raw socket

GID AID NET ADMIN (3005) : can change network config (ifconfig, ..)

o Requires kernel changes to do this.
o Each app gets a subset of these group IDs, depending on its privileges.
o No finer-grained control of network communication.
= E.g, could have imagined per-IP-addr or per-origin-like policies.
* Access to removable sd card.
o Why not use file system permissions?
= Want to use FAT file system on SD card, to allow access on other
devices.

= FAT file system has no notion of file ownership, permissions, etc.
o Kernel treats all SD card files as owned by special group sdcard_rw
(1015).
o Apps that should have access to SD card have this GID in their group list.
o No finer-grained isolation within the entire SD card.
* Devices.
o Device files (/dev/camera, /dev/compass, etc) owned by special groups.
o Apps run with appropriate groups in their group list.
* Intents.
o All intents are routed via a single trusted "reference monitor".
o Runs in the system_server process.
o Reference monitor performs intent resolution (where to send intent?), for
implicit intents. [ref: ActivityStack.startActivityMayWait]
o Reference monitor checks permissions, based on intent and who sent it.
[ref: ActivityStack.startActivityLocked]
o Routes intent to the appropriate application process, or starts a new one.
¢ Why not just use intents for everything, instead of special groups?
o Efficiency: want direct access to camera, network, SD card files.
o Sending everything via intents could impose significant overhead.

How does the reference monitor decide whether to allow an intent?
* "Labels" assigned to applications and components.
o Eachlabelis a free-form string.
o Commonly written as Java-style package names, for uniqueness.
o E.g, com.android.phone.DIALPERM.
* Each component has a single label that protects it.
o Any intents to that component must be sent by app that has that label.
o E.g, phone dialer service is labeled with ..DIALPERM.
o For content providers, two labels: one for read, one for write.
* An application has a list of labels it is authorized to use.
o E.g,ifapp can dial the phone, ..DIALPERM is in its label set.
* Other permissions (network, devices, SD card) map to special label strings.
o E.g.,android.permission.INTERNET translates to app running w/ GID
3003.

How does an application get permissions for a certain set of labels?

* Each app comes with a manifest declaring permissions (labels) the app needs.
* Also declares the labels that should protect each of its components.

* When app is installed, Android system asks user if it's ok to install app.

* Provides list of permissions that the application is requesting.

At one point, Android allowed users to set fine-grained permission choices.
* Android 4.3 introduced the "permission manager".

* Apparently this was removed in Android 4.4.

* Possible reason: developers want predictable access to things.

Who defines permissions?
* Apps define permissions themselves (recall: just free-form strings).
* Android system defines perms for built-in resources (camera, network, etc).
o Can list with 'adb shell pm list permissions -g'.
* Built-in applications define permissions for services they provide.
o E.g.,read/write contacts, send SMS message, etc.
* Defining a permission means specifying:
o User-visible name of the permission.
o Description of the permission for the user.
o Grouping permission into some categories (costs money, private data,
etc).
o Type of permission: "normal”, "dangerous", and "signature".

What do the three types of permission mean?
* Normal:
o Benign permissions that could let an app annoy the user, but not drastic.
= E.g,SET_WALLPAPER.
» diff $(pm list permissions -g -d) and $(pm list permissions -g)
o System doesn't bother asking the user about "normal” permissions.
o Why bother having them at all?
= (Canreview if really interested.
= Least-privilege, if application is compromised later.
* Dangerous:
o Could allow an app to do something dangerous.
o E.g, internet access, access to contact information, etc.
e Signature:
o Can only be granted to apps signed by the same developer.
o Think ForceHTTPS: want to prevent user from accidentally giving it away.

Why do this checking in the reference monitor, rather than in each app?
* Convenience, so programmers don't forget.
o Could doitin alibrary on the application side.
* Intent might be routed to different components based on permissions.
o Don't want to send an intent to component A that will reject it, if another
component B is willing to accept it.
* Mandatory access control (MAC): permissions specified separately from code.
o Aside: annoyance, MAC is an overloaded acronym.
= Media Access Control -- MAC address in Ethernet.
= Message Authentication Code -- the thing that Kerberos v4 lacked.
o Want to understand security properties of system without looking at
code.
* Contrast: discretionary access control (DAC) in Unix.
o Each app sets its own permissions on files.
o Permissions can be changed by the app over time.

o Hard to tell what will happen just by looking at current file perms.
* Apps can also perform their own checks. [ref: checkCallingPermission()]
o Breaks the MAC model a bit: can't just look at manifest.
o Necessary because one service may export different RPC functions, want
different level of protection for each.
o Reference monitor just checks if client can access the entire service.

Who can register to receive intents?
* Any app can specify it wants to receive intents with arbitrary parameters.
* E.g, can create activity with an intent filter (in manifest):

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http" android:host="web.mit.edu" />
</intent-filter>

¢ Isthis a problem? Why or why not?
¢ System will prompt user whenever they click on a link to http://web.mit.edu/.
o Only "top-level" user clicks translate to intents, not web page
components.
* Might be OK if user is prompted.
o Even then, what if your only map app is "bad": steals addresses sent to it?
* Not so great for broadcast intents, which go to all possible recipients.

* Controlling the distribution of broadcast intents.
o In paper's example, want FRIEND_NEAR intents to not be disclosed to
everyone.
o Solution: sender can specify extra permission label when sending bcast
intent.
o Reference monitor only sends this intent to recipients that have that
label.

* How to authenticate the source of intents?
o Generally using a permission label on the receiving component.
* Don't necessarily care who sender is, as long as it had the right
perms.
o Turns out apps often forgot to put perm restrictions on broadcast
receivers.
= Paper at Usenix Security 2011: "permission re-delegation attacks".
= E.g, can create an alarm that beeps and vibrates forever.
= E.g, can send messages to the settings bcast receiver to toggle wifi,
etc.
o One solution in android: "protected broadcasts" (not complete, but..)

http://web.mit.edu/

= Reference monitor special-cases some intent actions (e.g., system
bootup).
= Only system processes can send those broadcast intents.

Can a sender rely on names to route intents to a specific component?

* More broadly, how does android authenticate names? (App names, perm
names.)

* No general plan, just first-come-first-served.

¢ System names (apps, permissions, etc) win in this model.

* Other apps could be preempted by a malicious app that comes first.

* (Could send sensitive data to malicious app, by using app's name.

* Could trust intent from malicious app, by looking at its sender name.

* Could set lax permissions by using a malicious app's perm by name.

What happens if two apps define the same permission name?
* First one wins.
* Malicious app could register some important perm name as "normal".
* Any app (including malicious app) can get this permission now.
¢ Other apps that rely on this perm will be vulnerable to malicious app.
o Even if victim app defines its own perms and is the only one that uses it.
(E.g., signature perms.)
* Possibly better: reject installing an app if perm is already defined.
o Allows an app to assume its own perms are correctly defined.
o Still does not allow an app to assume anything about other app/perm
names.

If app names are not authenticated, why do applications need signatures?
* Representing a developer.
* No real requirement for a CA.
* Helps Android answer three questions:
o Did this new version of an app come from the same developer as the old
one? (if so, can upgrade.)
o Did these two apps come from the same developer? (if so, can request
same UID.)
o Did the app come from same developer as the one that defined a
permission? (if so, can get access to signature-level perms.)

How to give another app temporary permissions?
* URI delegation.
o Capability-style delegation of URI read /write access.
o System keeps track of delegated access by literal string URI.
= E.g,content://gmail/attachment/7
o Must remember to revoke delegated access!
= E.g., URI may mean another record at a later time..
= ref: grantUriPermission(), revokeUriPermission()

o Reference monitor keeps granted URIs in memory.
= ref: ActivityManagerService.mGrantedUriPermissions
o Grants are ephemeral, only last until a reboot.
Pending intents.
o Use case: callbacks into your application (e.g., from alarm/time service).
o system_server keeps track of pending intents in memory; ephemeral.
= ref: PendingIntentRecord.java
o Revocation problem, as with URI delegation.
"Breaks" the MAC model: can't quite reason about all security from manifest.

Where are apps stored?

Two options: internal phone memory or SD card.
Internal memory is always controlled by Android, so can assume it's safe.
Installing apps on SD card is more complicated, but desirable due to space.
o Threat models:
= Worried about malicious app modifying SD card data.
= Worried about malicious user making copies of a paid app.
o SD card uses FAT file system, no file permissions.
o Approach: encrypt/authenticate app code with a per-phone random key.
o Key stored in phone's internal flash, unique to phone.

How secure is the Android "platform"?

TCB: kernel + anything running as root.
Better than desktop applications:
o Most applications are not part of the TCB.
o Many fewer things running as root.
Some vulnerabilities show up in practice.
Bugs in the Linux kernel or in setuid-root binaries allow apps to get root.
o How to do better?
o Syscall filtering / seccomp to make it harder to exploit kernel bugs?
o Not clear.
Users inadvertently install malware applications with dangerous permissions.
o Actual common malware: send SMS messages to premium numbers.
o Attackers directly get money by deploying such malware.
o Why do users make such mistakes?
= One cause: some permissions necessary for both mundane +
sensitive tasks.
= E.g, accessing phone state / identity required to get a unique
device ID.
= (Causes unnecessary requests for dangerous permissions, de-
sensitizes user.
* Another cause: apps ask for permissions upfront "just in case".
= E.g, might need them later, but changing perms requires manual
update.
= Another cause: cannot say "no" to certain permissions.

(@]

= Another cause: copies of existing Android apps containing
malware.
How to fix?
* Find ways to allow more permissions "non-dangerous" without
asking user.
= Allow user to selectively disable certain permissions. (Some
research work on this, see refs below.)
= Static/runtime analysis and auditing -- implemented by Google
now.
* Looks for near-identical clones of existing popular apps.
* Runs apps for a little bit to determine what they do.
* Security researchers got a (non-root) shell on Google's app

scanner.
* Reasonably expected in retrospect: app scanner just runs
the app..
* Android's app market (Google Play) allows Google to remotely kill

an app.

Other model for security in mobile phone apps: i0S/iPhone.
Security mechanism: all apps run two possible UIDs.

@)
@)
@)
@)
@)

(@]

One UID for Apple apps, another for all other apps.

Historically made sense: only one app was active at a time.

With switch to multi-tasking apps, didn't change the UID model.

Instead, isolate apps using Apple's sandbox ("Seatbelt"?).

Apple applications not isolated from each other originally (unclear now?).
Thus, exploit of vulnerability in browser left all Apple apps "exposed".

Prompt for permissions at time of use.

@)
@)

Users can run app and not give it permissions (unlike Android).
"Normal" permissions not very meaningful in this model.

Apple approves apps in its app store, in part based on security eval.

(@]

"Reputation-based" system: hard to exploit many phones and avoid
detection.

References:
http://developer.android.com/guide/topics/security/security.html
http://research.microsoft.com/pubs/149596 /AppFence.pdf

http://css.csail.mit.edu/6.858/2012 /readings/ios-security-may12.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-

v1.0.pdf

http://developer.android.com/guide/topics/security/security.html
http://research.microsoft.com/pubs/149596/AppFence.pdf
http://css.csail.mit.edu/6.858/2012/readings/ios-security-may12.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

