
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

  
 

 
 

 
 

 
 

 
 

 
 

6.858 Lecture 3

Baggy bounds continued:
Example code (assume that slot_size=16)

char *p = malloc(44); 
//Note that the nearest power of 2 (i.e., 
//64 bytes) are allocated. So, there are 
//64/(slot_size) = 4 bounds table entries 
//that are set to log_2(64) = 6. 
char *q = p + 60; 
//This access is ok: It's past p's object 
//size of 44, but still within the baggy 
//bounds of 64. 
char *r = q + 16; 
//ERROR: r is now at an offset of 60+16=76 
//from p. This means that r is (76-64)=12 
//beyond the end of p. This is more than 
//half a slot away, so baggy bounds will 
//raise an error. 
char *s = q + 8; 
//s is now at an offset of 60+8=68 from p. 
//So, s is only 4 bytes beyond the baggy 
//bounds, which is less than half a slot 
//away. No error is raised, but the OOB 
//high-order bit is set in s, so that s 
//cannot be derefernced. 
char *t = s - 32; 
//t is now back inside the bounds, so 
//the OOB bit is cleared. 

For OOB pointers, the	
  high	
  bit is set (if OOB within half	
  a slot).
• Typically,	
  OS	
  kernel lives	
  in upper half,	
  protects itself via paging	
  hardware.
• Q: Why	
  half a slot	
  for out-­‐of-­‐bounds?

So what's the answer to the homework problem

char *p = malloc(256); 
char *q = p + 256; 
char ch = *q; //Does this raise an exception? 

//Hint: How big is the baggy bound for p? 

Does baggy bounds checking have to instrument *every* memory address
computation and access? No: static analysis can prove that some addresses are
always safe to use. However,	
  some address calculations are "unsafe" in the sense
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that	
  there's no way to statically determine bounds on their values. Such unsafe	
  
variables	
  need checks.

Handling	
  function call arguments is a bit tricky, because the x86 calling	
  convention	
  
is fixed,	
  i.e., the	
  hardware expects	
  certain	
  things	
  to	
  be	
  in certain	
  places on the stack.

However,	
  we can copy unsafe arguments to a separate area, and make sure that the
copied arguments are aligned and protected.

Q: Do we have to overwrite the original arguments with the copies values upon	
  
function	
  return?

• A: No, because	
  everything is pass-­‐by-­‐value	
  in C!

How	
  does baggy bounds checking ensure binary compatibility with existing	
  
libraries?	
  In particular,	
  how	
  does baggy bounds code interact with	
  pointers	
  to	
  
memory that was allocated by uninstrumented code?

Solution: Each	
  entry	
  in the	
  bounds	
  table	
  is initialized to the value 31, meaning that
the corresponding pointer has a memory bound of 2^31 (which is all of the
addressable memory). On memory allocation in *instrumented* code, bounds
entries	
  are	
  set as	
  previously	
  discussed, and reset to 31 when the memory is
deallocated. Memory allocated to uninstrumented code will never change bounds	
  
table entries from their default values of 31; so, when instrumented code interacts
with those pointers,	
  bound errors will	
  never happen.

Example:

Contiguous	
  range	
  of memory used for the heap

+-------------------+  
| | 
| | 
| Heap allocated by | 
| uninstrumented |---+  
| code | \  Bounds table 
 | | \  
+-------------------+      \ +-----------+  
| | +->|  | 
| | | Always 31 | 
| Heap allocated by | | | 
| instrumented code | +-----------+  
| | | Set using | 
| |--------->| baggy bnds| 
+-------------------+  +-----------+  

What	
  does this all mean?
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• Can't detect out-­‐of-­‐bounds pointers generated in uninstrumented code.
• Can't detect when OOB pointer	
  passed	
  into	
  library	
  goes in-­‐bounds again.

o	 Q: Why?
o	 A: Because there is no pointer inspection in the uninstrumented code

which could clear the high-­‐order	
  OOB bit!
o	 Q: Why do they instrument strcpy() and memcpy()?
o	 A:	
  Because	
  otherwise,	
  those	
  functions	
  are uninstrumented code, and

suffer from the same problems that we just discussed. For example
off-­‐the-­‐shelf	
  strcpy()	
  does not ensure	
  that dest has	
  enough space	
  to	
  
store	
  src!

How can baggy	
  bits	
  leverage	
  64-­‐bit	
  address spaces?
• Can	
  get rid of the table storing bounds information, and put it in the pointer.

Regular pointer 
+---------------+-------+------------------------+  
| zero | size | supported addr space | 
+---------------+-------+------------------------+  

21 5 	 38 

 OOB pointer 
+--------+------+-------+------------------------+  

        | offset | size |  zero | supported addr space | 
+--------+------+-------+------------------------+  

13 5 8 	 38  

This is similar to a fat pointer, but has the advantages that:
1) tagged	
  pointers are the same size as regular pointers
2) writes	
  to them are atomic

so programmer expectations are not broken, and data layouts stay the same.
Also note that, using tagged pointers, we can now keep track of OOB pointers that	
  go
much further out-­‐of-­‐bounds.	
  This is because now we can tag pointers with an offset	
  
indicating	
  how far	
  they are from their base pointer. In the 32-­‐bit	
  world,	
  we couldn't
track	
  OOB offsets without	
  having	
  an additional	
  data	
  structure!

Can	
  you still launch a buffer overflow attack in a baggy bounds system? Yes,	
  because
the	
  world	
  is filled	
  with	
  sadness.

•	 Could	
  exploit a vulnerability in uninstrumented libraries.
•	 Could	
  exploit temporal vulnerabilities (use-­‐after-­‐free).
• Mixed buffers and code pointers:

struct { 
void (*f) (void); 
char buf[256]; 

} my_type;  

3



 

 
 

 
 

 
 

 
 
 
 

 

 

 
 

 
 
 

 
 

Note	
  that *f	
  is not an	
  allocated	
  type,	
  so there	
  are	
  no bounds checks associated with
its	
  dereference during invocation.	
  Thus, if s.buf	
  is overflowed	
  (e.g., by	
  a bug in	
  an
uninstrumented library) and s.f is corrupted, the invocation	
  of f will	
  not	
  cause a
bounds error! 

Would re-­‐ordering	
  f and	
  buf	
  help?
•	 Might	
  break	
  applications that	
  depend on	
  struct	
  layout.
• Might not help if this is an array of (struct my_type)'s

In general,	
  what are	
  the costs of bounds checking?
•	 Space overhead	
  for bounds information (fat pointer or baggy bounds table).
•	 Baggy bounds also has space overhead for extra padding memory used by buddy

allocator (although some amount of overhead is intrinsic to all popular
algorithms for dynamic memory allocation).

•	 CPU overheads	
  for pointer arithmetic, dereferencing.
•	 False alarms!

o	 Unused out-­‐of-­‐bounds pointers.
o	 Temporary out-­‐of-­‐bounds	
  pointers by more than slot_size/2.
o	 Conversion	
  from pointer to integers and back.
o	 Passing out-­‐of-­‐bounds pointer into unchecked code (the	
  high	
  address	
  bit

is set,	
  so if the	
  unchecked code does arithmetic using that pointer,	
  
insanity may ensue).

• Requires a significant amount of compiler support

So, baggy bounds checking is an approach for mitigating buffer overflows	
  in buggy	
  
code.

Mitigation approach 3: non-­‐executable	
  memory (AMD's NX bit, Windows
DEP, W^X, ...)

•	 Modern hardware allows specifying read, write, and execute perms for memory
(R, W permissions were there a long time ago; execute is recent.)

•	 Can	
  mark the stack non-­‐executable,	
  so that	
  adversary	
  cannot	
  run their code.
•	 More generally, some systems enforce "W^X", meaning all memory is either	
  

writable,	
  or executable,	
  but not	
  both.	
  (Of course,	
  it's OK to be neither.)
o	 Advantage: Potentially works without any application changes.
o	 Advantage: The hardware is watching you all of the time, unlike the OS.
o	 Disadvantage: Harder	
  to dynamically generate code (esp. with W^X).

§ JITs like Java runtimes, Javascript engines, generate x86 on	
  the fly.
§ Can work around	
  it, by	
  first writing, then changing to executable.

Mitigation approach 4: randomized memory addresses (ASLR, stack
randomization, ...
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Observation: Many attacks use hardcoded addresses in	
  shellcode! [The attacker
grabs	
  a binary	
  and uses gdb to figure	
  out where stuff	
  lives.]

•	 So, we can make it difficult for the	
  attacker	
  to	
  guess	
  a valid code pointer. 
o	 Stack randomization: Move stack to random locations, and/or place

padding between stack variables. This makes it more difficult for 
attackers to determine: 

§ Where the return	
  address for the current	
  frame	
  is located
§ Where the attacker's shellcode buffer will	
  be located

o	 Randomize entire address space (Address Space Layout Randomization):
randomize the stack, the heap, location of DLLs, etc. 

§ Rely on the fact that a lot of code is relocatable.
§ Dynamic loader can choose random address for each library,	
  

program.
§ Adversary doesn't know address of system(), etc.

o	 Can this	
  still be	
  exploited? 
§ Adversary might guess randomness. Especially on 32-­‐bit

machines, there aren't many random bits (e.g., 1 bit belongs to
kernel/user mode divide, 12 bits can't be randomized because
memory-­‐mapped pages need to be aligned with page boundaries,	
  
etc.).

§ For example, attacker could buffer overflow and try to overwrite
the return	
  address with the address of usleep(16),	
  and then	
  seeing	
  
if the connection	
  hangs for 16 seconds, or if it crashes (in	
  which	
  
case the server forks a new ASLR process with the same ASLR
offsets). usleep() could be in	
  one of 2^16 or 2^28 places. [Mor
details: https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf]

o ASLR is more practical on 64-­‐bit machines (easily 32 bits of randomness). 
• -­‐Adversary might extract randomness. 

o	 Programs might generate a stack trace or error message which contains a 
pointer. 

o	 If adversaries can run some code, they might be able to extract real 
addresses (JIT'd code?). 

o	 Cute	
  address	
  leak in Flash's	
  Dictionary	
  (hash	
  table): 
1) Get	
  victim to visit your Flash-­‐enabled	
  page	
  (e.g., buy an ad). 
2) Hash	
  table internally computes hash value of keys.
3) Hash	
  value	
  of integers	
  is the	
  integer. 
4) Hash	
  value	
  of object	
  is its memory address. 
5) Iterating	
  over a hash table is done from lowest hash	
  key	
  to	
  highest

hash	
  key. 
6) So,	
  the attacker creates	
  a Dictionary,	
  inserts	
  a string	
  object which 

has	
  shellcode,	
  and	
  then	
  inserts a bunch of numbers into the 
Dictionary. 
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7) By	
  iterating	
  through	
  the Dictionary,	
  the attacker can determine
where the string	
  object	
  lives by seeing which integers the object	
  
reference	
  falls	
  between!

8) Now,	
  overwrite	
  a code pointer	
  with	
  the	
  shellcode address and
bypass ASLR!

•	 Adversary might not care exactly where to jump.
o	 Ex: "Heap	
  spraying": fill memory w/ shellcode so that a random jump is

OK!
•	 Adversary might exploit some code that's not randomized (if such code exists).
•	 Some other interesting uses of randomization:

o	 System call randomization (each process has its	
  own	
  system call
numbers).

o	 Instruction set randomization so that attacker cannot easily determine
what	
  "shellcode"	
  looks like for a particular program instantiation.

o	 *Ex: Imagine that the processor had a special register	
  to	
  hold	
  a "decoding
key."	
  Each installation of a particular	
  application	
  is associated	
  with	
  a
random key. Each machine instruction in the application is XOR'ed	
  with	
  
this key.	
  When	
  the OS launches the process,	
  it sets the decoding	
  ke
register, and	
  the processor uses this key to decode	
  instructions before
executing them.

Which buffer overflow	
  defenses are used in	
  practice?
•	 gcc and MSVC enable stack canaries	
  by default.
•	 Linux and Windows include ASLR and NX by default.
•	 Bounds checking is not as common, due to:

1) Performance	
  overheads
2) Need	
  to	
  recompile program
3) False	
  alarms: Common	
  theme in security tools: false alarms preven

adoption	
  of tools! Often,	
  zero false alarms with some misses better than
zero misses but false alarms.

RETURN-­‐ORIENTED PROGRAMMING	
  (ROP)

ASLR and DEP are very powerful defensive techniques.
•	 DEP prevents the attacker from executing stack code of his or her choosing
•	 ASLR prevents the attacker from determining where shellcode or return	
  

addresses are located.
•	 However, what if the	
  attacker	
  could	
  find	
  PREEXISTING	
  CODE with KNOWN

FUNCTIONALITY	
  that was located at a KNOWN LOCATION?	
  Then, the	
  attacker	
  
could	
  invoke	
  that code to	
  do evil.

o	 Of course,	
  the preexisting	
  code isn't	
  *intentionally* evil,	
  since it is a
normal part of the application.

o	 However, the	
  attacker	
  can pass	
  that code unexpected arguments, or jum
to the middle of the code and only	
  execute	
  a desired piece of that code.
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These kinds	
  of attacks	
  are	
  called	
  return-­‐oriented	
  programming, or	
  ROP.	
  To
understand how ROP works, let's examine a simple C program that has a securit
vulnerability. 

void run_shell(){ 
system("/bin/bash"); 

}  

void process_msg(){ 
char buf[128]; 
gets(buf); 

}  

Let's imagine that the system does not use ASLR or stack canaries, but it does use
DEP. process_msg() has an obvious buffer overflow,	
  but the attacker can't	
  use this
overflow to execute shellcode in buf, since DEP makes the stack non-­‐executable.	
  
However, that run_shell()	
  function looks tempting . . . how can the attacker execute
it?
1) Attacker	
  disassembles the program and figures out where the starting	
  address of 

run_shell().
2) The	
  attacker	
  launches	
  th buffer	
  overflow,	
  and overwrites	
  the	
  return	
  address	
  of 

process_msg() with the address of run_shell(). Boom! The attacker now has 
access to a shell	
  which runs with the privileges of the application. 

+------------------+  
entry %ebp ----> | .. prev frame .. | 

| | 
| | 
+------------------+  

entry %esp ----> | return address | ^ <--Gets overwritten  
+------------------+ |  with address of  

new %ebp ------> | saved %ebp | | run_shell() 
 +------------------+ | 
| buf[127] | | 
| ... | | 
| buf[0] | | 

new %esp ------> +------------------+  

That's	
  a straightforward	
  extension	
  of the	
  buffer	
  overflows	
  that we've already looked
at. But how can we pass arguments to the function that we're jumping to?

char *bash_path = "/bin/bash";  

void run_cmd(){  
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system("/something/boring"); 
}  

void process_msg(){ 
char buf[128]; 
gets(buf); 

}  

In this case, the argument that we want to pass to is already located in the progra
code. There's also a preexisting call to system(), but that	
  call	
  isn't passing	
  the
argument that we want.

We know that system() must be getting linked to our program. So, using our trust
friend gdb,	
  we	
  can	
  find where the system() function is located, and where bash_path
is located.

To call system() with the bash_path argument, we have to set	
  up the stack	
  in	
  the
way that system() expects when we jump to it. Right after we jump to system()
system() expects this to be on the stack:

| ... | 
+------------------+  
| argument | The system() argument. 
+------------------+  

%esp ----> | return addr | Where system() should 
+------------------+  ret after it has  

finished.  

So, the buffer overflow	
  needs to set up a stack that
looks like this:

 +------------------+  
entry %ebp ----> | .. prev frame .. | 

| | 
| | 
| - - - - - - - - | ^  
| | |Address of bash_path 
+ - - - - - - - - | |  
| | |Junk return addr for 
+------------------+ |  system() 

entry %esp ----> | return address | |Address of system() 
+------------------+ |  

new %ebp ------> |  saved %ebp | |Junk 
+------------------+ | 
| buf[127] | | 
| ... | |Junk 
| buf[0] | | 

new %esp ------> +------------------+ |  
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In essence,	
  what we've done	
  is set	
  up a fake	
  calling frame for the system() call! In
other	
  words,	
  we've simulated what the compiler would do if it actually wanted to
setup a call to system().

What if the string "/bin/bash" was not in the program
We could include that	
  string	
  in	
  the buffer overflow, and then have the argument to
system() point to the string.

| h\0 | ^ 
| - - - - - - - - | |  
| /bas | | 
| - - - - - - - - | |  
| /bin | | <-------------------+ 
| - - - - - - - - | |  | 
| | | Address of bash_path-+ 
+ - - - - - - - - | |  
| | | Junk return addr from 
 +------------------+ |  system() 

entry %esp -> |  return address | | Address of system() 
 +------------------+ | 

new %ebp ---> |  saved %ebp | | Junk 
+------------------+ | 
| buf[127] | | 
| ... | | Junk 
| buf[0] | | 

new %esp ---> +------------------+ |  

Note that, in these examples, I've been assuming that the attacker used a junk return	
  
address from system(). However,	
  the attacker could set it to something useful. In
fact, by setting it to something useful,	
  the attacker can chain calls	
  together!

GOAL: We want to call system("/bin/bash") multiple times. Assume that we've
found	
  three	
  addresses:

1) The	
  address of system()
2) The	
  address	
  of the	
  string	
  "/bin/bash"
3) The	
  address	
  of these	
  x86	
  opcodes:
• pop %eax	
   //Pops the top-­‐of-­‐stack and	
  puts	
  it in %eax
• ret //Pops	
  the	
  top-­‐of-­‐stack and	
  puts	
  it in %eip

These opcodes are an example of a "gadget." Gadgets are preexisting	
  instruction	
   
sequences	
  that can be	
  strung	
  together	
  to	
  create	
  an	
  exploit.	
  Note	
  that there are user-
friendly tools to help you extract gadgets from preexisting binaries (e.g. msfelfscan).
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 | | ^ 
+ - - - - - - + | 
| | | Address of bash_path -+ Fake calling  
+ - - - - - - + | | frame for 

(4) 	 | | | Address of pop/ret -+ system()  
+ - - - - - - + |  

(3) 	 | | | Address of system() 
+ - - - - - - + |  

(2) 	 | | | Address of bash_path -+ Fake calling  
+ - - - - - - + | | frame for 

(1) 	 | | | Address of pop/ret -+ system()  
+--------------+ | 

entry %esp-> |return address| | Address of system() 
+--------------+ |  

new %ebp --> | saved %ebp | | Junk 
+--------------+ | 
| buf[127] | | 
| ... | | Junk 

new %esp --> | 	 buf[0] | | 
+--------------+ |  

So, how does this work? Remember that the return instruction pops the top of the
stack and	
  puts	
  it into	
  %eip.

1) The	
  overflowed function terminates by issuing ret. Ret pops off the top-­‐of-­‐
the-­‐stack	
  (the address of system()) and sets %eip to it. system() starts
executing,	
  and %esp is now at (1), and	
  points	
  to	
  the	
  pop/ret gadget.

2) system()	
  finishes execution and calls ret. %esp goes from (1)-­‐-­‐>(2)	
  as	
  the	
  ret 
instruction	
  pops the	
  top of the	
  stack and	
  assigns	
  it to	
  %eip. %eip is now the
start of the	
  pop/ret gadget.

3) The	
  pop instruction	
  in the	
  pop/ret gadget discards	
  the bash_path variable 
from the stack. %esp is now at (3). We are still	
  in	
  the pop/ret	
  gadget!

4) The	
  ret instruction	
  in the	
  pop/ret gadget pops the top-­‐of-­‐the-­‐stack and	
  puts 
it	
  into %eip.	
  Now	
  we're in system() again, and %esp is (4).

And so on and so forth. Basically, we've created a new type of machine that is driven
by the stack	
  pointer instead of the regular instruction pointer! As the stack pointe
moves down the stack,	
  it executes gadgets whose code comes from preexisting	
  
program code, and whose data comes from stack data created	
  by	
  the	
  buffer	
  
overflow. This attack evades	
  DEP protections-­‐-­‐we're not	
  generating any new	
  code,	
  
just invoking preexisting	
  code!

Stack reading:	
  defeating	
  canaries
Assumptions

1) The	
  remote server has a buffer overflow vulnerability.
2) Server crashes	
  and restarts	
  if a canary	
  value	
  is set to an incorrect	
  value. 
3) When	
  the server respawns,	
  the canary is NOT re-­‐randomized,	
  and the ASLR 

is NOT	
  re-­‐randomized,	
  e.g.,	
  because the server uses Linux's PIE mechanism,
and fork() is used to make new workers and not execve().

So, to determine an 8-­‐byte canary value:
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char canary[8]; 
for(int i = 1; i <= 8; i++){ //For each canary byte… 

for(char c = 0; c < 256; c++){  //…guess the value. 
canary[i-1] = c; 
server_crashed = try_i_byte_overflow(i, canary); 

if(!server_crashed){ 
//We've discovered i-th byte of the 
//the canary! 
break; 

} 
} 

} 
//At this point we have the canary, but remember that the 
//attack assumes that the server uses the same canary after 
//a crash.  

Guessing the	
  correct value	
  for a byte	
  takes	
  128 guesses on average,	
  so on	
  a 32-­‐bit	
  
system, we only need 4*128=512 guesses to determine the canary (on a 64-­‐bit	
  
system, we need 8*128=1024).

•	 Much faster than	
  brute force attacks on	
  the canary (2^15 or 2^27 expected 
guesses on 32/64 bit systems with 16/28 bits of ASLR randomness).

• Brute force attacks can use the usleep(16) probe	
  that we discussed earlier. 
Canary	
  reading can be	
  extended	
  to	
  reading arbitrary	
  values that the	
  buffer	
  overflow
can overwrite!

So, we've discussed how we can defeat randomized canaries if canaries	
  are	
  not
changed when	
  a server regenerates. We've also shown	
  how	
  to use gdb	
  and gadgets
to execute preexisting functions in the program using arguments that	
  the attacker
controls.	
  But what if the	
  server DOES use ASLR? This prevents you from usin
offline	
  analysis to find where the preexisting	
  functions are?

This is what the	
  paper	
  for today's	
  lecture	
  discussed. That paper assumed that we're
using	
  a 64-­‐bit	
  machine, so that's what we'll assume in this lecture from now on. For
the purposes of this discussion, the main change is that function arguments are now
passed in registers	
  instead	
  of on the	
  stack.

Blind	
  Return-­‐oriented	
  Programming	
  

STEP 1: Find a stop gadget
A stop gadget is a return address that points to code that will hang the program, but
not crash	
  it. Once the attacker can defeat	
  canaries,	
  he can overwrite the overflown	
  
function's	
  return	
  address	
  and	
  start guessing locations for a stop	
  gadget.	
  If the client
network	
  connection suddenly closes, the guessed address was not	
  a stop	
  gadget.	
  If
the connection	
  stays open, the gadget	
  is a stop	
  gadget.

STEP 2: Find	
  gadgets that pop stack entries.
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Once you	
  have a stop	
  gadget,	
  you	
  can use it	
  to find other	
  gadgets	
  that pop entries	
  off
of the	
  stack and into	
  registers. There are	
  three	
  building	
  blocks	
  to	
  locate	
  stack
popping gadgets:

• probe: Address of a potential stack popping gadget 
• stop: Address of a stop gadget 
• crash: Address of non-­‐executable	
  code	
  (0x0) 

Example: Find a gadget that pops one thing off the stack.

sleep(10) 
^ ^  

+--- pop rax  / \  
| ret / \  
| \--->[stop]  0x5.... 0x5....  
| [trap] 0x0 0x0 <-----------------+  
+----------[probe] 0x4...8  0x4...c -->xor rax, rax | Crash! 

ret | 
\__________|  

After you do this a bunch of times, you'll have a collection	
  of gadgets	
  that pop one
thing from the stack and	
  then	
  return.	
  However,	
  you won't know which *register*	
  
those gadgets store the popped value in. You	
  need to know	
  which registers are used
to store data so that you can	
  issue	
  a system	
  call. Each system call expects	
  its	
  
arguments to be in a specific set of registers.

Note	
  that we	
  also	
  don't know the	
  location	
  of the syscall()	
  library	
  function.

STEP 3: Find syscall() and determine which registers the pop gadgets use
pause()	
  is a system call that takes no arguments (and thus ignores everything	
  in	
  the
registers). To find pause(),	
  the	
  attacker	
  chains	
  all of the "pop x; ret"	
  gadgets on the
stack,	
  pushing	
  the system call number for pause() as the "argument" for each	
  
gadget. At the bottom of the chain, the attacker places the guessed address for
syscall().

| | ^ 
+ - - - - - - - - + |  
| | | Guessed addr of syscall() 
+ - - - - - - - - + |  
| | | ... 
+ - - - - - - - - + |  
| | | Sys call # for pause 
+ - - - - - - - - + |  
| | | Address of pop rsi; ret //Gadget 2 
+ - - - - - - - - + |  
| | | Sys call # for pause 
+------------------+ | 

entry %esp ----> | return address | | Address of pop rdi; ret //Gadget 1 
+------------------+ |  

new %ebp ------> | saved %ebp | | Junk 
+------------------+ | 
| buf[127] | |  
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| ... | | Junk 
new %esp ------> | buf[0] | | 

+------------------+ |  

So, at the end of this chain, the pop gadgets have placed the syscall number for
pause()	
  in a bunch of registers,	
  hopefully	
  including	
  rax,	
  which	
  is the one that
syscall()	
  looks	
  in to	
  find the	
  the	
  syscall number.

Once this mega-­‐gadget	
  induces a pause, we know that we've determined the
location	
  of syscall().	
  Now	
  we need to determine which gadget pops the top-­‐of-­‐the
stack into	
  rax.	
  The attacker	
  can	
  figure	
  this	
  out by process-­‐of-­‐elimination:	
  iterativel
try just	
  one gadget and see	
  if you can	
  invoke	
  pause().

To identify	
  arbitrary	
  "pop x;	
  ret"	
  gadgets,	
  you can use tricks with other system calls
that	
  use the x register that	
  you're trying	
  to find.

So, the outcome of this phase is knowledge of "pop x; ret"	
  gadgets, location of
syscall().

STEP 4: Invoke write()
Now we	
  want to	
  invoke	
  the	
  write	
  call on the	
  network socket that the	
  server has	
  with	
  
the attacker's client.	
  We	
  need the	
  following	
  gadgets:

pop rdi; ret (socket) 
pop rsi; ret (buffer) 
pop rdx; ret (length) 
pop rax; ret (write syscall number) 
syscall  

We have to guess the socket	
  value,	
  but that's fairly	
  easy	
  to	
  do, since Linux restricts	
  
processes to 1024 simultaneously open file descriptors, and new	
  file descriptors
have	
  to	
  be	
  the	
  lowest one available (so guessing a small file descriptor works well	
  in	
  
practice).

To test whether	
  we've	
  guessed the	
  correct file descriptor, simply try the write and
see if we receive anything!	
  

Once we have the socket number, we issue a write, and for the data	
  to send . . . we
send a pointer to the program's .text segment! This allows the attacker to read the
program's code (which was randomized but now totally known to the attacker!)
Now the attacker can find more powerful gadgets directly,	
  and	
  leverage	
  those	
  
gadgets to open a shell.

Defenses	
  against BROP
•	 Re-­‐randomize	
  the canaries and the address space after each crash! 

o	 Use exec()	
  instead	
  of fork()	
  to	
  create processes,	
  since	
  fork()	
  copies the 
address space	
  of the	
  parent to	
  the	
  child. 
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o	 Interesting,	
  Windows is vulnerable	
  to	
  BROP because Windows has no 
fork()	
  equivalent. 

•	 Sleep-­‐on-­‐crash? 
o	 Now a BROP	
  attack is a denial-­‐of-­‐service! 

•	 Bounds-­‐checking? 
o	 Up to 2x performance overhead . . . 

More info on	
  ROP and x86 calling	
  conventions:

•	 http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to 
return-oriented-programming

•	 https://cseweb.ucsd.edu/~hovav/dist/rop.pdf 
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