

6.858 Lecture 3

Baggy bounds continued:
Example code (assume that slot_size=16)

char *p = malloc(44);
//Note that the nearest power of 2 (i.e.,
//64 bytes) are allocated. So, there are
//64/(slot_size) = 4 bounds table entries
//that are set to log_2(64) = 6.
char *q = p + 60;
//This access is ok: It's past p's object
//size of 44, but still within the baggy
//bounds of 64.
char *r = q + 16;
//ERROR: r is now at an offset of 60+16=76
//from p. This means that r is (76-64)=12
//beyond the end of p. This is more than
//half a slot away, so baggy bounds will
//raise an error.
char *s = q + 8;
//s is now at an offset of 60+8=68 from p.
//So, s is only 4 bytes beyond the baggy
//bounds, which is less than half a slot
//away. No error is raised, but the OOB
//high-order bit is set in s, so that s
//cannot be derefernced.
char *t = s - 32;
//t is now back inside the bounds, so
//the OOB bit is cleared.

For OOB pointers, the	
 high	
 bit is set (if OOB within half	
 a slot).
• Typically,	
 OS	
 kernel lives	
 in upper half,	
 protects itself via paging	
 hardware.
• Q: Why	
 half a slot	
 for out-­‐of-­‐bounds?

So what's the answer to the homework problem

char *p = malloc(256);
char *q = p + 256;
char ch = *q; //Does this raise an exception?

//Hint: How big is the baggy bound for p?

Does baggy bounds checking have to instrument *every* memory address
computation and access? No: static analysis can prove that some addresses are
always safe to use. However,	
 some address calculations are "unsafe" in the sense

1

that	
 there's no way to statically determine bounds on their values. Such unsafe	

variables	
 need checks.

Handling	
 function call arguments is a bit tricky, because the x86 calling	
 convention	

is fixed,	
 i.e., the	
 hardware expects	
 certain	
 things	
 to	
 be	
 in certain	
 places on the stack.

However,	
 we can copy unsafe arguments to a separate area, and make sure that the
copied arguments are aligned and protected.

Q: Do we have to overwrite the original arguments with the copies values upon	

function	
 return?

• A: No, because	
 everything is pass-­‐by-­‐value	
 in C!

How	
 does baggy bounds checking ensure binary compatibility with existing	

libraries?	
 In particular,	
 how	
 does baggy bounds code interact with	
 pointers	
 to	

memory that was allocated by uninstrumented code?

Solution: Each	
 entry	
 in the	
 bounds	
 table	
 is initialized to the value 31, meaning that
the corresponding pointer has a memory bound of 2^31 (which is all of the
addressable memory). On memory allocation in *instrumented* code, bounds
entries	
 are	
 set as	
 previously	
 discussed, and reset to 31 when the memory is
deallocated. Memory allocated to uninstrumented code will never change bounds	

table entries from their default values of 31; so, when instrumented code interacts
with those pointers,	
 bound errors will	
 never happen.

Example:

Contiguous	
 range	
 of memory used for the heap

+-------------------+
| |
| |
| Heap allocated by |
| uninstrumented |---+
| code | \ Bounds table
 | | \
+-------------------+ \ +-----------+
	+->	
		Always 31
Heap allocated by		
instrumented code	+-----------+	
		Set using
	--------->	baggy bnds
+-------------------+ +-----------+

What	
 does this all mean?

2

• Can't detect out-­‐of-­‐bounds pointers generated in uninstrumented code.
• Can't detect when OOB pointer	
 passed	
 into	
 library	
 goes in-­‐bounds again.

o	 Q: Why?
o	 A: Because there is no pointer inspection in the uninstrumented code

which could clear the high-­‐order	
 OOB bit!
o	 Q: Why do they instrument strcpy() and memcpy()?
o	 A:	
 Because	
 otherwise,	
 those	
 functions	
 are uninstrumented code, and

suffer from the same problems that we just discussed. For example
off-­‐the-­‐shelf	
 strcpy()	
 does not ensure	
 that dest has	
 enough space	
 to	

store	
 src!

How can baggy	
 bits	
 leverage	
 64-­‐bit	
 address spaces?
• Can	
 get rid of the table storing bounds information, and put it in the pointer.

Regular pointer
+---------------+-------+------------------------+
| zero | size | supported addr space |
+---------------+-------+------------------------+

21 5 	 38

 OOB pointer
+--------+------+-------+------------------------+

 | offset | size | zero | supported addr space |
+--------+------+-------+------------------------+

13 5 8 	 38

This is similar to a fat pointer, but has the advantages that:
1) tagged	
 pointers are the same size as regular pointers
2) writes	
 to them are atomic

so programmer expectations are not broken, and data layouts stay the same.
Also note that, using tagged pointers, we can now keep track of OOB pointers that	
 go
much further out-­‐of-­‐bounds.	
 This is because now we can tag pointers with an offset	

indicating	
 how far	
 they are from their base pointer. In the 32-­‐bit	
 world,	
 we couldn't
track	
 OOB offsets without	
 having	
 an additional	
 data	
 structure!

Can	
 you still launch a buffer overflow attack in a baggy bounds system? Yes,	
 because
the	
 world	
 is filled	
 with	
 sadness.

•	 Could	
 exploit a vulnerability in uninstrumented libraries.
•	 Could	
 exploit temporal vulnerabilities (use-­‐after-­‐free).
• Mixed buffers and code pointers:

struct {
void (*f) (void);
char buf[256];

} my_type;

3

Note	
 that *f	
 is not an	
 allocated	
 type,	
 so there	
 are	
 no bounds checks associated with
its	
 dereference during invocation.	
 Thus, if s.buf	
 is overflowed	
 (e.g., by	
 a bug in	
 an
uninstrumented library) and s.f is corrupted, the invocation	
 of f will	
 not	
 cause a
bounds error!

Would re-­‐ordering	
 f and	
 buf	
 help?
•	 Might	
 break	
 applications that	
 depend on	
 struct	
 layout.
• Might not help if this is an array of (struct my_type)'s

In general,	
 what are	
 the costs of bounds checking?
•	 Space overhead	
 for bounds information (fat pointer or baggy bounds table).
•	 Baggy bounds also has space overhead for extra padding memory used by buddy

allocator (although some amount of overhead is intrinsic to all popular
algorithms for dynamic memory allocation).

•	 CPU overheads	
 for pointer arithmetic, dereferencing.
•	 False alarms!

o	 Unused out-­‐of-­‐bounds pointers.
o	 Temporary out-­‐of-­‐bounds	
 pointers by more than slot_size/2.
o	 Conversion	
 from pointer to integers and back.
o	 Passing out-­‐of-­‐bounds pointer into unchecked code (the	
 high	
 address	
 bit

is set,	
 so if the	
 unchecked code does arithmetic using that pointer,	

insanity may ensue).

• Requires a significant amount of compiler support

So, baggy bounds checking is an approach for mitigating buffer overflows	
 in buggy	

code.

Mitigation approach 3: non-­‐executable	
 memory (AMD's NX bit, Windows
DEP, W^X, ...)

•	 Modern hardware allows specifying read, write, and execute perms for memory
(R, W permissions were there a long time ago; execute is recent.)

•	 Can	
 mark the stack non-­‐executable,	
 so that	
 adversary	
 cannot	
 run their code.
•	 More generally, some systems enforce "W^X", meaning all memory is either	

writable,	
 or executable,	
 but not	
 both.	
 (Of course,	
 it's OK to be neither.)
o	 Advantage: Potentially works without any application changes.
o	 Advantage: The hardware is watching you all of the time, unlike the OS.
o	 Disadvantage: Harder	
 to dynamically generate code (esp. with W^X).

§ JITs like Java runtimes, Javascript engines, generate x86 on	
 the fly.
§ Can work around	
 it, by	
 first writing, then changing to executable.

Mitigation approach 4: randomized memory addresses (ASLR, stack
randomization, ...

4

Observation: Many attacks use hardcoded addresses in	
 shellcode! [The attacker
grabs	
 a binary	
 and uses gdb to figure	
 out where stuff	
 lives.]

•	 So, we can make it difficult for the	
 attacker	
 to	
 guess	
 a valid code pointer.
o	 Stack randomization: Move stack to random locations, and/or place

padding between stack variables. This makes it more difficult for
attackers to determine:

§ Where the return	
 address for the current	
 frame	
 is located
§ Where the attacker's shellcode buffer will	
 be located

o	 Randomize entire address space (Address Space Layout Randomization):
randomize the stack, the heap, location of DLLs, etc.

§ Rely on the fact that a lot of code is relocatable.
§ Dynamic loader can choose random address for each library,	

program.
§ Adversary doesn't know address of system(), etc.

o	 Can this	
 still be	
 exploited?
§ Adversary might guess randomness. Especially on 32-­‐bit

machines, there aren't many random bits (e.g., 1 bit belongs to
kernel/user mode divide, 12 bits can't be randomized because
memory-­‐mapped pages need to be aligned with page boundaries,	

etc.).

§ For example, attacker could buffer overflow and try to overwrite
the return	
 address with the address of usleep(16),	
 and then	
 seeing	

if the connection	
 hangs for 16 seconds, or if it crashes (in	
 which	

case the server forks a new ASLR process with the same ASLR
offsets). usleep() could be in	
 one of 2^16 or 2^28 places. [Mor
details: https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf]

o ASLR is more practical on 64-­‐bit machines (easily 32 bits of randomness).
• -­‐Adversary might extract randomness.

o	 Programs might generate a stack trace or error message which contains a
pointer.

o	 If adversaries can run some code, they might be able to extract real
addresses (JIT'd code?).

o	 Cute	
 address	
 leak in Flash's	
 Dictionary	
 (hash	
 table):
1) Get	
 victim to visit your Flash-­‐enabled	
 page	
 (e.g., buy an ad).
2) Hash	
 table internally computes hash value of keys.
3) Hash	
 value	
 of integers	
 is the	
 integer.
4) Hash	
 value	
 of object	
 is its memory address.
5) Iterating	
 over a hash table is done from lowest hash	
 key	
 to	
 highest

hash	
 key.
6) So,	
 the attacker creates	
 a Dictionary,	
 inserts	
 a string	
 object which

has	
 shellcode,	
 and	
 then	
 inserts a bunch of numbers into the
Dictionary.

5

https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf

7) By	
 iterating	
 through	
 the Dictionary,	
 the attacker can determine
where the string	
 object	
 lives by seeing which integers the object	

reference	
 falls	
 between!

8) Now,	
 overwrite	
 a code pointer	
 with	
 the	
 shellcode address and
bypass ASLR!

•	 Adversary might not care exactly where to jump.
o	 Ex: "Heap	
 spraying": fill memory w/ shellcode so that a random jump is

OK!
•	 Adversary might exploit some code that's not randomized (if such code exists).
•	 Some other interesting uses of randomization:

o	 System call randomization (each process has its	
 own	
 system call
numbers).

o	 Instruction set randomization so that attacker cannot easily determine
what	
 "shellcode"	
 looks like for a particular program instantiation.

o	 *Ex: Imagine that the processor had a special register	
 to	
 hold	
 a "decoding
key."	
 Each installation of a particular	
 application	
 is associated	
 with	
 a
random key. Each machine instruction in the application is XOR'ed	
 with	

this key.	
 When	
 the OS launches the process,	
 it sets the decoding	
 ke
register, and	
 the processor uses this key to decode	
 instructions before
executing them.

Which buffer overflow	
 defenses are used in	
 practice?
•	 gcc and MSVC enable stack canaries	
 by default.
•	 Linux and Windows include ASLR and NX by default.
•	 Bounds checking is not as common, due to:

1) Performance	
 overheads
2) Need	
 to	
 recompile program
3) False	
 alarms: Common	
 theme in security tools: false alarms preven

adoption	
 of tools! Often,	
 zero false alarms with some misses better than
zero misses but false alarms.

RETURN-­‐ORIENTED PROGRAMMING	
 (ROP)

ASLR and DEP are very powerful defensive techniques.
•	 DEP prevents the attacker from executing stack code of his or her choosing
•	 ASLR prevents the attacker from determining where shellcode or return	

addresses are located.
•	 However, what if the	
 attacker	
 could	
 find	
 PREEXISTING	
 CODE with KNOWN

FUNCTIONALITY	
 that was located at a KNOWN LOCATION?	
 Then, the	
 attacker	

could	
 invoke	
 that code to	
 do evil.

o	 Of course,	
 the preexisting	
 code isn't	
 intentionally evil,	
 since it is a
normal part of the application.

o	 However, the	
 attacker	
 can pass	
 that code unexpected arguments, or jum
to the middle of the code and only	
 execute	
 a desired piece of that code.

6

These kinds	
 of attacks	
 are	
 called	
 return-­‐oriented	
 programming, or	
 ROP.	
 To
understand how ROP works, let's examine a simple C program that has a securit
vulnerability.

void run_shell(){
system("/bin/bash");

}

void process_msg(){
char buf[128];
gets(buf);

}

Let's imagine that the system does not use ASLR or stack canaries, but it does use
DEP. process_msg() has an obvious buffer overflow,	
 but the attacker can't	
 use this
overflow to execute shellcode in buf, since DEP makes the stack non-­‐executable.	

However, that run_shell()	
 function looks tempting . . . how can the attacker execute
it?
1) Attacker	
 disassembles the program and figures out where the starting	
 address of

run_shell().
2) The	
 attacker	
 launches	
 th buffer	
 overflow,	
 and overwrites	
 the	
 return	
 address	
 of

process_msg() with the address of run_shell(). Boom! The attacker now has
access to a shell	
 which runs with the privileges of the application.

+------------------+
entry %ebp ----> | .. prev frame .. |

| |
| |
+------------------+

entry %esp ----> | return address | ^ <--Gets overwritten
+------------------+ | with address of

new %ebp ------> | saved %ebp | | run_shell()
 +------------------+ |
buf[127]	
...	
buf[0]	

new %esp ------> +------------------+

That's	
 a straightforward	
 extension	
 of the	
 buffer	
 overflows	
 that we've already looked
at. But how can we pass arguments to the function that we're jumping to?

char *bash_path = "/bin/bash";

void run_cmd(){

7

system("/something/boring");
}

void process_msg(){
char buf[128];
gets(buf);

}

In this case, the argument that we want to pass to is already located in the progra
code. There's also a preexisting call to system(), but that	
 call	
 isn't passing	
 the
argument that we want.

We know that system() must be getting linked to our program. So, using our trust
friend gdb,	
 we	
 can	
 find where the system() function is located, and where bash_path
is located.

To call system() with the bash_path argument, we have to set	
 up the stack	
 in	
 the
way that system() expects when we jump to it. Right after we jump to system()
system() expects this to be on the stack:

| ... |
+------------------+
| argument | The system() argument.
+------------------+

%esp ----> | return addr | Where system() should
+------------------+ ret after it has

finished.

So, the buffer overflow	
 needs to set up a stack that
looks like this:

 +------------------+
entry %ebp ----> | .. prev frame .. |

| |
| |
| - - - - - - - - | ^
| | |Address of bash_path
+ - - - - - - - - | |
| | |Junk return addr for
+------------------+ | system()

entry %esp ----> | return address | |Address of system()
+------------------+ |

new %ebp ------> | saved %ebp | |Junk
+------------------+ |
| buf[127] | |
| ... | |Junk
| buf[0] | |

new %esp ------> +------------------+ |

8

In essence,	
 what we've done	
 is set	
 up a fake	
 calling frame for the system() call! In
other	
 words,	
 we've simulated what the compiler would do if it actually wanted to
setup a call to system().

What if the string "/bin/bash" was not in the program
We could include that	
 string	
 in	
 the buffer overflow, and then have the argument to
system() point to the string.

| h\0 | ^
- - - - - - - -	
/bas	
- - - - - - - -	
/bin	
- - - - - - - -	
+ - - - - - - - - | |
| | | Junk return addr from
 +------------------+ | system()

entry %esp -> | return address | | Address of system()
 +------------------+ |

new %ebp ---> | saved %ebp | | Junk
+------------------+ |
| buf[127] | |
| ... | | Junk
| buf[0] | |

new %esp ---> +------------------+ |

Note that, in these examples, I've been assuming that the attacker used a junk return	

address from system(). However,	
 the attacker could set it to something useful. In
fact, by setting it to something useful,	
 the attacker can chain calls	
 together!

GOAL: We want to call system("/bin/bash") multiple times. Assume that we've
found	
 three	
 addresses:

1) The	
 address of system()
2) The	
 address	
 of the	
 string	
 "/bin/bash"
3) The	
 address	
 of these	
 x86	
 opcodes:
• pop %eax	
 //Pops the top-­‐of-­‐stack and	
 puts	
 it in %eax
• ret //Pops	
 the	
 top-­‐of-­‐stack and	
 puts	
 it in %eip

These opcodes are an example of a "gadget." Gadgets are preexisting	
 instruction	

sequences	
 that can be	
 strung	
 together	
 to	
 create	
 an	
 exploit.	
 Note	
 that there are user-
friendly tools to help you extract gadgets from preexisting binaries (e.g. msfelfscan).

9

 | | ^
+ - - - - - - + |
| | | Address of bash_path -+ Fake calling
+ - - - - - - + | | frame for

(4) 	 | | | Address of pop/ret -+ system()
+ - - - - - - + |

(3) 	 | | | Address of system()
+ - - - - - - + |

(2) 	 | | | Address of bash_path -+ Fake calling
+ - - - - - - + | | frame for

(1) 	 | | | Address of pop/ret -+ system()
+--------------+ |

entry %esp-> |return address| | Address of system()
+--------------+ |

new %ebp --> | saved %ebp | | Junk
+--------------+ |
| buf[127] | |
| ... | | Junk

new %esp --> | 	 buf[0] | |
+--------------+ |

So, how does this work? Remember that the return instruction pops the top of the
stack and	
 puts	
 it into	
 %eip.

1) The	
 overflowed function terminates by issuing ret. Ret pops off the top-­‐of-­‐
the-­‐stack	
 (the address of system()) and sets %eip to it. system() starts
executing,	
 and %esp is now at (1), and	
 points	
 to	
 the	
 pop/ret gadget.

2) system()	
 finishes execution and calls ret. %esp goes from (1)-­‐-­‐>(2)	
 as	
 the	
 ret
instruction	
 pops the	
 top of the	
 stack and	
 assigns	
 it to	
 %eip. %eip is now the
start of the	
 pop/ret gadget.

3) The	
 pop instruction	
 in the	
 pop/ret gadget discards	
 the bash_path variable
from the stack. %esp is now at (3). We are still	
 in	
 the pop/ret	
 gadget!

4) The	
 ret instruction	
 in the	
 pop/ret gadget pops the top-­‐of-­‐the-­‐stack and	
 puts
it	
 into %eip.	
 Now	
 we're in system() again, and %esp is (4).

And so on and so forth. Basically, we've created a new type of machine that is driven
by the stack	
 pointer instead of the regular instruction pointer! As the stack pointe
moves down the stack,	
 it executes gadgets whose code comes from preexisting	

program code, and whose data comes from stack data created	
 by	
 the	
 buffer	

overflow. This attack evades	
 DEP protections-­‐-­‐we're not	
 generating any new	
 code,	

just invoking preexisting	
 code!

Stack reading:	
 defeating	
 canaries
Assumptions

1) The	
 remote server has a buffer overflow vulnerability.
2) Server crashes	
 and restarts	
 if a canary	
 value	
 is set to an incorrect	
 value.
3) When	
 the server respawns,	
 the canary is NOT re-­‐randomized,	
 and the ASLR

is NOT	
 re-­‐randomized,	
 e.g.,	
 because the server uses Linux's PIE mechanism,
and fork() is used to make new workers and not execve().

So, to determine an 8-­‐byte canary value:

10

char canary[8];
for(int i = 1; i <= 8; i++){ //For each canary byte…

for(char c = 0; c < 256; c++){ //…guess the value.
canary[i-1] = c;
server_crashed = try_i_byte_overflow(i, canary);

if(!server_crashed){
//We've discovered i-th byte of the
//the canary!
break;

}
}

}
//At this point we have the canary, but remember that the
//attack assumes that the server uses the same canary after
//a crash.

Guessing the	
 correct value	
 for a byte	
 takes	
 128 guesses on average,	
 so on	
 a 32-­‐bit	

system, we only need 4*128=512 guesses to determine the canary (on a 64-­‐bit	

system, we need 8*128=1024).

•	 Much faster than	
 brute force attacks on	
 the canary (2^15 or 2^27 expected
guesses on 32/64 bit systems with 16/28 bits of ASLR randomness).

• Brute force attacks can use the usleep(16) probe	
 that we discussed earlier.
Canary	
 reading can be	
 extended	
 to	
 reading arbitrary	
 values that the	
 buffer	
 overflow
can overwrite!

So, we've discussed how we can defeat randomized canaries if canaries	
 are	
 not
changed when	
 a server regenerates. We've also shown	
 how	
 to use gdb	
 and gadgets
to execute preexisting functions in the program using arguments that	
 the attacker
controls.	
 But what if the	
 server DOES use ASLR? This prevents you from usin
offline	
 analysis to find where the preexisting	
 functions are?

This is what the	
 paper	
 for today's	
 lecture	
 discussed. That paper assumed that we're
using	
 a 64-­‐bit	
 machine, so that's what we'll assume in this lecture from now on. For
the purposes of this discussion, the main change is that function arguments are now
passed in registers	
 instead	
 of on the	
 stack.

Blind	
 Return-­‐oriented	
 Programming	

STEP 1: Find a stop gadget
A stop gadget is a return address that points to code that will hang the program, but
not crash	
 it. Once the attacker can defeat	
 canaries,	
 he can overwrite the overflown	

function's	
 return	
 address	
 and	
 start guessing locations for a stop	
 gadget.	
 If the client
network	
 connection suddenly closes, the guessed address was not	
 a stop	
 gadget.	
 If
the connection	
 stays open, the gadget	
 is a stop	
 gadget.

STEP 2: Find	
 gadgets that pop stack entries.

11

Once you	
 have a stop	
 gadget,	
 you	
 can use it	
 to find other	
 gadgets	
 that pop entries	
 off
of the	
 stack and into	
 registers. There are	
 three	
 building	
 blocks	
 to	
 locate	
 stack
popping gadgets:

• probe: Address of a potential stack popping gadget
• stop: Address of a stop gadget
• crash: Address of non-­‐executable	
 code	
 (0x0)

Example: Find a gadget that pops one thing off the stack.

sleep(10)
^ ^

+--- pop rax / \
| ret / \
| \--->[stop] 0x5.... 0x5....
| [trap] 0x0 0x0 <-----------------+
+----------[probe] 0x4...8 0x4...c -->xor rax, rax | Crash!

ret |
__________|

After you do this a bunch of times, you'll have a collection	
 of gadgets	
 that pop one
thing from the stack and	
 then	
 return.	
 However,	
 you won't know which *register*	

those gadgets store the popped value in. You	
 need to know	
 which registers are used
to store data so that you can	
 issue	
 a system	
 call. Each system call expects	
 its	

arguments to be in a specific set of registers.

Note	
 that we	
 also	
 don't know the	
 location	
 of the syscall()	
 library	
 function.

STEP 3: Find syscall() and determine which registers the pop gadgets use
pause()	
 is a system call that takes no arguments (and thus ignores everything	
 in	
 the
registers). To find pause(),	
 the	
 attacker	
 chains	
 all of the "pop x; ret"	
 gadgets on the
stack,	
 pushing	
 the system call number for pause() as the "argument" for each	

gadget. At the bottom of the chain, the attacker places the guessed address for
syscall().

| | ^
+ - - - - - - - - + |
| | | Guessed addr of syscall()
+ - - - - - - - - + |
| | | ...
+ - - - - - - - - + |
| | | Sys call # for pause
+ - - - - - - - - + |
| | | Address of pop rsi; ret //Gadget 2
+ - - - - - - - - + |
| | | Sys call # for pause
+------------------+ |

entry %esp ----> | return address | | Address of pop rdi; ret //Gadget 1
+------------------+ |

new %ebp ------> | saved %ebp | | Junk
+------------------+ |
| buf[127] | |

12

| ... | | Junk
new %esp ------> | buf[0] | |

+------------------+ |

So, at the end of this chain, the pop gadgets have placed the syscall number for
pause()	
 in a bunch of registers,	
 hopefully	
 including	
 rax,	
 which	
 is the one that
syscall()	
 looks	
 in to	
 find the	
 the	
 syscall number.

Once this mega-­‐gadget	
 induces a pause, we know that we've determined the
location	
 of syscall().	
 Now	
 we need to determine which gadget pops the top-­‐of-­‐the
stack into	
 rax.	
 The attacker	
 can	
 figure	
 this	
 out by process-­‐of-­‐elimination:	
 iterativel
try just	
 one gadget and see	
 if you can	
 invoke	
 pause().

To identify	
 arbitrary	
 "pop x;	
 ret"	
 gadgets,	
 you can use tricks with other system calls
that	
 use the x register that	
 you're trying	
 to find.

So, the outcome of this phase is knowledge of "pop x; ret"	
 gadgets, location of
syscall().

STEP 4: Invoke write()
Now we	
 want to	
 invoke	
 the	
 write	
 call on the	
 network socket that the	
 server has	
 with	

the attacker's client.	
 We	
 need the	
 following	
 gadgets:

pop rdi; ret (socket)
pop rsi; ret (buffer)
pop rdx; ret (length)
pop rax; ret (write syscall number)
syscall

We have to guess the socket	
 value,	
 but that's fairly	
 easy	
 to	
 do, since Linux restricts	

processes to 1024 simultaneously open file descriptors, and new	
 file descriptors
have	
 to	
 be	
 the	
 lowest one available (so guessing a small file descriptor works well	
 in	

practice).

To test whether	
 we've	
 guessed the	
 correct file descriptor, simply try the write and
see if we receive anything!	

Once we have the socket number, we issue a write, and for the data	
 to send . . . we
send a pointer to the program's .text segment! This allows the attacker to read the
program's code (which was randomized but now totally known to the attacker!)
Now the attacker can find more powerful gadgets directly,	
 and	
 leverage	
 those	

gadgets to open a shell.

Defenses	
 against BROP
•	 Re-­‐randomize	
 the canaries and the address space after each crash!

o	 Use exec()	
 instead	
 of fork()	
 to	
 create processes,	
 since	
 fork()	
 copies the
address space	
 of the	
 parent to	
 the	
 child.

13

o	 Interesting,	
 Windows is vulnerable	
 to	
 BROP because Windows has no
fork()	
 equivalent.

•	 Sleep-­‐on-­‐crash?
o	 Now a BROP	
 attack is a denial-­‐of-­‐service!

•	 Bounds-­‐checking?
o	 Up to 2x performance overhead . . .

More info on	
 ROP and x86 calling	
 conventions:

•	 http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to
return-oriented-programming

•	 https://cseweb.ucsd.edu/~hovav/dist/rop.pdf

14

https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming
http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

15

http://ocw.mit.edu
http://ocw.mit.edu/terms

