
                
                

    

      
           
        

             

 

 
 
 

 
 
 

 
     
     
     
     
 

 
 

 
                    
   
                    
                    
                    
   
                    
   
                    
                    
                    
                    
                    
   
                    
 

6.858 Lecture 2
REVIEW OF BUFFER	
  OVERFLOW ATTACKS

Last lecture, we looked at the basics of performing a buffer overflow	
  attack.	
  That	
  
attack leveraged several observations:

•	 Systems software is	
  often	
  written	
  in C (operating systems, file systems,
databases, compilers, network servers, command shells and console utilities)

•	 C is essentially	
  high-­‐level assembly, so . . .
o	 Exposes raw pointers to memory
o	 Does not perform	
  bounds-­‐checking	
  on arrays (b/c	
  the	
  hardware	
  

doesn't do this, and C wants to get	
  you	
  as close to the hardware as
possible)

• Attack also leveraged architectural knowledge about how x86	
  code works:
o	 The direction	
  that the	
  stack grows
o	 Layout of stack variables	
  (esp. arrays	
  and return addresses	
  for

functions)

void read_req() {

char buf[128];

int i;

gets(buf);

//. . . do stuff w/buf . . .


}


What does the compiler generate in terms of memory layout?

x86 stack	
  looks like this:
•	 %esp points	
  to	
  the	
  last (bottom-­‐most) valid thing on the stack.
•	 %ebp points	
  to	
  the	
  caller's	
  %esp value.

+------------------+
 
entry %ebp ----> | .. prev frame .. |


| | |

| | | stack grows down

+------------------+  |


entry %esp ----> |  return address | v
 
+------------------+
 

new %ebp ------> |  saved %ebp |

+------------------+
 
| buf[127] |

| ... |

| buf[0] |

+------------------+
 

new %esp ------> |  i |

+------------------+
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How does the	
  adversary	
  take	
  advantage	
  of this	
  code?
•	 Supply long input, overwrite	
  data on stack past buffer.
•	 Key observation	
  1: attacker can	
  overwrite the return address, make the

program	
  jump to a place of the attacker's choosing!
•	 Key observation	
  2: attacker can	
  set	
  return	
  address to the buffer itself,	
  include

some x86 code in there!

What	
  can	
  the attackers do once	
  they are	
  executing code?
•	 Use any privileges	
  of the	
  process! If the	
  process is running as	
  root or

Administrator, it can do whatever it wants on the system. Even if the process
is not running as root, it can send spam, read files, and interestingly,	
  attack or
subvert other machines behind the firewall.

•	 Hmmm, but why didn't the OS notice that the buffer has been	
  overrun?
o	 As far as the OS is aware, nothing strange has happened! Remember

that, to a first approximation, the OS only gets invoked by the web	
  
server	
  when the server does IO or IPC.	
  Other than	
  that,	
  the OS
basically sits back and lets the program	
  execute, relying on hardware	
  
page tables to prevent	
  processes from	
  tampering with each other's
memory. However, page table protections don't	
  prevent	
  buffer
overruns launched by a process "against	
  itself,"	
  since the overflowed	
  
buffer and the return	
  address and all of that	
  stuff are inside the
process's valid address space.

o	 Later	
  in this	
  lecture, we'll talk about things that	
  the OS *can*	
  do to
make buffer overflows more difficult.

FIXING	
  BUFFER OVERFLOWS

Approach	
  #1: Avoid bugs in C code.

Programmer should carefully check sizes of buffers, strings, arrays, etc. In
particular, the programmer should	
  use	
  standard	
  library	
  functions	
  that take buffer
sizes into	
  account (strncpy() instead	
  of strcpy(), fgets() instead	
  of
gets(), etc.).

Modern	
  versions of gcc and Visual	
  Studio warn	
  you	
  when a program	
  uses unsafe
functions	
  like	
  gets().	
  In	
  general,	
  YOU	
  SHOULD	
  NOT	
  IGNORE COMPILERWARNINGS.
Treat warnings like errors!

Good: Avoid problems in the first place!

Bad: It's hard to ensure that	
  code is bug-­‐free,	
  particularly if the	
  code base	
  is large.	
  
Also, the application itself may define buffer manipulation functions which do not
use	
  fgets() or strcpy() as primitives.

Approach	
  #2: Build tools to help programmers find bugs.
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For example, we can use static analysis to find problems in source	
  code before	
  it's	
  
compiled. Imagine that you had a function	
  like	
  this:

void foo(int *p){

int offset;

int *z = p + offset;

if(offset > 7){


bar(offset);

}


}
 

By statically	
  analyzing	
  the control	
  flow,	
  we can tell that	
  offset	
  is used without	
  being	
  
initialized. The if-­‐statement	
  also puts bounds on offset that we may be able to
propogate	
  to bar. We'll talk about static analysis more in later lectures.

“Fuzzers” that supply random inputs can be effective for finding bugs.	
  Note	
  that
fuzzing can be combined with static analysis to maximize code coverage!

Bad: Difficult to prove the complete absence of bugs, esp. for unsafe	
  code like	
  C.

Good:	
  Even partial analysis is useful, since programs should become strictly less
buggy. For example, baggy bounds checking cannot catch all memory errors, but it
can detect many important kinds.

Approach	
  #3: Use a memory-­‐safe	
  language	
  (JavaScript,	
  C#, Python).

Good: Prevents memory corruption errors by not exposing raw memory addresses
to the programmer, and by automatically handling	
  garbage	
  collection.

Bad: Low-­‐level	
  runtime code DOES use raw memory addresses. So, that runtime
core still needs to	
  be	
  correct.	
  For example, heap spray attacks:

• https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworab
han.pdf

• https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-
part-11-heap-spraying-demystified/

Bad: Still	
  have a lot	
  of legacy	
  code in unsafe languages (FORTRAN and COBOL	
  oh
noes).

Bad: Maybe you	
  need access to low-­‐level	
  hardware features b/c,	
  e.g.,	
  you're writing	
  
a device driver.

Bad: Perf is worse than	
  a fine-­‐tuned C application?
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• Used to be a bigger problem, but hardware and high-­‐level	
  languages are
getting better.

o JIT compilation FTW!
o asm.js is within 2x of native C++ perf! [http://asmjs.org/faq.html]

• Use careful coding to	
  avoid garbage	
  collection jitter in critical	
  path.
• Maybe you're a bad person/language chauvinist who doesn't know how to

pick the right	
  tool for the	
  job.	
  If	
  your	
  task is I/O-­‐bound,	
  raw compute speed is
much less important. Also, don't be the chump who writes text manipulation
programs in C.

All 3 above approaches are	
  effective	
  and	
  widely	
  used, but buffer overflows	
  are	
  still a
problem in practice.

• Large/complicated legacy code written in C is very prevalent.
• Even	
  newly written code in C/C++	
  can have memory errors.

How	
  can we mitigate buffer overflows despite buggy code?
• Two	
  things	
  going on in a "traditional"	
  buffer overflow:

o Adversary gains control over execution (program counter).
o Adversary executes some malicious code.

• What	
  are the difficulties to these two steps?
o Requires	
  overwriting	
  a code pointer (which is later invoked).

Common	
  target is a return address	
  using a buffer	
  on the	
  stack. Any
memory error could potentially work, in practice. Function pointers,
C++ vtables, exception handlers, etc.

o Requires some interesting code in process's memory. This is often
easier	
  than	
  #1, because:

§ it's	
  easy	
  to	
  put code	
  in a buffer,	
  and
§ the process already contains a lot	
  of code that might be

exploitable.
o However, the	
  attacker	
  needs	
  to	
  put this	
  code in a predictable	
  location,

so that the	
  attacker	
  can	
  set the code pointer	
  to	
  point to	
  the	
  evil code!

Mitigation approach 1: canaries (e.g., StackGuard,	
  gcc's SSP)

Idea: OK to overwrite	
  code	
  ptr,	
  as long as we catch it before invocation.

One of the earlier systems: StackGuard
• Place	
  a canary on the	
  stack upon entry,	
  check canary value before return.
• Usually	
  requires source code; compiler inserts canary checks.
• Q: Where is the canary on the stack diagram?

o A: Canary	
  must go "in front of" return address on the stack,	
  so that
any overflow	
  which rewrites return address will	
  also rewrite canary.

4
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| |

+------------------+
 

entry %esp ----> |  return address | ^
 
+------------------+  |


new %ebp ------> |  saved %ebp | |

+------------------+  |

| CANARY | | Overflow goes

+------------------+  | this way.

| buf[127] | |

| ... | |

| buf[0] | |

+------------------+
 
| |


Q: Suppose that the compiler always made the canary 4 bytes	
  of the	
  'a'	
  character.	
  
What's wrong	
  with this?

• A: Adversary can include the appropriate canary value in the	
  buffer	
  overflow!

So, the canary must be either hard to guess,	
  or it can be	
  easy to	
  guess but still
resilient against buffer overflows. Here are examples of these approaches.

•	 “Terminator canary”:	
  four	
  bytes	
  (0, CR, LF, -­‐1)
o	 Idea: Many C functions treat	
  these	
  characters as terminators(e.g.,

gets(), sprintf()). As a result, if the canary matches one of these
terminators, then further writes won't happen.

• Random	
  canary generated at program	
  init time: Much more common today
(but,	
  you need good randomness!).

What	
  kinds of vulnerabilities will	
  a stack	
  canary not	
  catch?
•	 Overwrites	
  of function	
  pointer	
  variables	
  before	
  the	
  canary.
•	 Attacker can overwrite a data pointer, then leverage it to do arbitrary mem	
  

writes.

int *ptr = ...;

char buf[128];

gets(buf); //Buffer is overflowed, and overwrites ptr.

*ptr = 5; //Writes to an attacker-controlled address!


//Canaries can't stop this kind of thing.
 

•	 Heap object overflows	
  (function pointers, C++ vtables).
• malloc/free overflows

int main(int argc, char **argv) {

char *p, *q;
 

p = malloc(1024);

q = malloc(1024);
 

5



              
    
                  

        

        

 

    

         

        

 

 
 

 
 
 
 

             
             
             
             
             
             
             
 
 
             
             
             
             
             
             
             
             
             
             
             

 
 
 
  

 

if(argc >= 2)

strcpy(p, argv[1]);


free(q);

free(p);

return 0;


}


Assume that the two blocks of memory belonging to p and q are adjacent/nearby	
  in	
  
memory.
Assume that malloc and free represent memory blocks like this:

+----------------+  

| |

| App data |

| | Allocated memory block

+----------------+     

| size |

+----------------+  


+----------------+
 
| size |

+----------------+
 
| ...empty... |

+----------------+  

| bkwd ptr |

+----------------+          

| fwd ptr | Free memory block

+----------------+     

| size |

+----------------+ 


So, the buffer overrun	
  in p will overwrite	
  the size value in q's memory	
  block!	
  Why is
this a problem?

When free() merges two adjacent free blocks, it needs to manipulate bkwd and fwd
pointers, and the pointer calculation	
  uses size to determine where the free memory
block	
  structure lives!

p = get_free_block_struct(size);

bck = p->bk;

fwd = p->fd;

fwd->bk = bck; //Writes memory!

bck->fd = fwd;  //Writes memory!


The free memory block is represented as a C struct;	
  by	
  corrupting	
  the	
  size value,	
  the
attacker can force free() to operate on	
  a fake	
  struct that resides in attacker-­‐
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controlled memory and has attacker-­‐controlled	
  values for the	
  forward	
  and	
  
backwards pointers.

If the attacker knows how free()	
  updates the pointers,	
  he can	
  use that	
  update code
to write an arbitrary value to an arbitrary place. For example, the attacker can
overwrite a return	
  address.

Actual details are a bit more complicated; if you're interested	
  in gory details, go 
here: http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

The high-­‐level	
  point	
  is that	
  stack	
  canaries won't prevent	
  this attack, because	
  the
attacker is "skipping over" the canary and writing	
  directly	
  to	
  the	
  return address!

So, stack canaries	
  are	
  one	
  approach for mitigating buffer overflows	
  in buggy	
  code.

Mitigation approach 2: bounds checking.

Overall goal: prevent pointer misuse by checking if pointers are in	
  range.

Challenge:	
  In C, it can be	
  hard	
  to	
  differentiate	
  between	
  a valid pointer and an invalid
pointer. For example, suppose that a program allocates an array of characters …

char x[1024];
 

… as	
  well as a pointer to some place in that array, e.g.,

char *y = &x[107];
 

Is it OK to increment y to access subsequent elements?
• If x represents a string buffer, maybe yes.
• If x represents a network message, maybe no.

Life is even more complicated if the program uses unions.

union u{

int i;

struct s{


int j;

int k;


};

};

int *ptr = &(u.s.k); //Does this point to valid data?
 

The problem is that, in C,	
  a pointer does not encode information about the intended
usage semantics for that pointer. So, a lot of tools don't	
  try to guess those semantics.
Instead, the tools have a less lofty goal than "totally correct" pointer semantics: the
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tools just	
  enforce the memory bounds on heap objects and stack objects. At a high
level,	
  here's the goal: For a pointer	
  p'	
  that's derived from	
  p, p' should only be
dereferenced to access the valid memory region that belongs to p.

Enforcing memory bounds is a weaker goal than enforcing "totally correct"	
  pointer
semantics. Programs can still shoot themselves in the foot by trampling on their
memory in nasty ways (e.g.,	
  in the union example, the application may write to ptr
even though	
  it's	
  not defined).

However, bounds	
  checking is still useful because	
  it prevents *arbitrary* memory
overwrites. The program	
  can only trample its memory if that memory is actually
allocated! THIS IS CONSIDERED	
  PROGRESS IN	
  THEWORLD	
  OF	
  C.

A drawback of bounds checking is that it typically requires changes to the compiler,
and programs must be recompiled with the new compiler. This is a problem	
  if you
only	
  have	
  access to binaries.

What	
  are some approaches for implementing bounds checking?

Bounds	
  checking	
  approach #1: Electric	
  fences
• This is an old approach that had the virtue of being simple.
• Idea: Align each heap object with a guard page, and use page tables to ensure

that	
  accesses to the guard	
  page cause a fault.

+---------+
 
| Guard |

| | ^
 
+---------+  | Overflows cause a page exception

| Heap | |

| obj | |

+---------+
 

• This is a convenient debugging	
  technique, since	
  a heap	
  overflow will
immediately cause a crash, as opposed to silently corrupting the heap and
causing a failure at some indeterminate time in the future.

• Big	
  advantage: Works without source code-­‐-­‐-­‐don't need to	
  change compilers
or recompile programs! [You *do* need to relink them	
  so that they use a new
version of malloc which implements electric fences.]

• Big	
  disadvantage: Huge overhead!	
  There's only	
  one object per page, and you
have the overhead of a dummy page which isn't used for "real"	
  data.

• Summary:	
  Electric	
  fences can be useful	
  as debugging	
  technique, and they	
  can
prevent some buffer overflows for heap objects. However, electric	
  fences
can't protect the	
  stack,	
  and the memory overhead is too high to use in
production systems.

Bounds	
  checking	
  approach #2: Fat pointer
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Idea: Modify	
  the pointer representation	
  to	
  include	
  bounds information. Now, a
pointer includes a memory address and bounds information about an object that
lives in that memory region.

Ex:
Regular 32-bit pointer  

+-----------------+
 
| 4-byte address  |

+-----------------+
 

Fat pointer (96 bits)

+-----------------+----------------+---------------------+
 
| 4-byte obj_base | 4-byte obj_end | 4-byte curr_address |

+-----------------+----------------+---------------------+
 

You need to modify the compiler and recompile the programs to use the fat pointers.
The compiler generates code to abort the program	
  if it dereferences a pointer whose
address is outside of its own base...end range.

int *ptr = malloc(sizeof(int) * 2);

while(1){


*ptr = 42; <----------|
 
ptr++; |


} |

__________________________|

|


This line	
  checks	
  the	
  current address	
  of the	
  pointer	
  and ensures that it's	
  in-­‐bounds.	
  
Thus, this	
  line	
  will fail during the	
  third	
  iteration	
  of the	
  loop.

Problem	
  #1: It can be expensive to check all pointer dereferences. The C community
hates	
  things	
  that are expensive,	
  because	
  C is all about SPEED SPEED SPEED.

Problem	
  #2: Fat pointers are incompatible with a lot of existing	
  software.
•	 You can't pass a fat pointer to an unmodified library.
•	 You	
  can't	
  use fat	
  pointers in	
  fixed-­‐size	
  data structures.	
  For example,

sizeof(that_struct)will	
  change!
•	 Updates	
  to	
  fat pointers	
  are not atomic, because they span multiple words.

Some programs assume that pointer writes are atomic.

Bounds	
  checking	
  approach #3: Use shadow data structures	
  to	
  keep track	
  of
bounds information (Jones and Kelly, Baggy).

Basic	
  idea: For each allocated object,	
  store	
  how big	
  the object is. For example:
Record the value passed to malloc:

char *p = malloc(mem_size);

For static	
  variables, the values are determined by the compiler:
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char p[256];

For each	
  pointer, we	
  need	
  to	
  interpose	
  on two	
  operations:

•	 pointer arithmetic:	
  char *q = p + 256; 
• pointer dereferencing: char ch = *q;

Q: Why	
  do we need to interpose on	
  dereference?	
  Can't	
  we do just arithmetic?
•	 A: An invalid pointer isn't always a bug! For example, a pointer to one

element past the last item	
  of an array might be used as a stopping	
  test	
  in a
loop. Applications can also do goofy stuff like:

o	 Simulating 1-­‐indexed	
  arrays
o	 Computing p+(a-­‐b) as (p+a)-­‐b
o Generating	
  OOB pointers that	
  are later checked for validity

So, the mere creation of invalid	
  pointer	
  shouldn't cause	
  program	
  to fail.

Q: Why do we need to interpose on arithmetic? Can't we do just dereference?
•	 A: Interposing on arithmetic is what allows us to track the provenance of

pointers and set	
  the OOB bit. Without the OOB, we won't	
  be able to tell	
  when	
  
a derived pointer goes outside of the bounds of its base object.

Challenge 1: How do we find the bounds information for a regular	
  pointer, i.e., a
pointer that's in-­‐bounds?

Naive: Use a hash table or interval tree to map addresses to bounds.
Good: Space	
  efficient (only	
  store	
  info for in-­‐use	
  pointers,	
  not all possible addresses).
Bad: Slow lookup (multiple memory accesses per look-­‐up).

Naive: Use an array to store bounds info for *every* memory address.
Good: Fast!
Bad: Really high memory overhead.

Challenge 2: How do we	
  force out-­‐of-­‐bounds pointer dereferences to fail?

Naive: Instrument every pointer dereference.
Good: Uh, it works.
Bad: Expensive-­‐-­‐-­‐we have	
  to	
  execute	
  extra code for every dereference!

The baggy	
  bounds	
  approach:	
  5 tricks
•	 Round up each allocation to a power of 2,	
  and align	
  the start of the	
  allocation	
  

to that	
  power of 2.
•	 Express each range limit as log_2(alloc_size).	
  For 32-­‐bit	
  pointers,	
  only need 5

bits to express the possible ranges.
•	 Store limit info in a linear array: fast	
  lookup	
  with one byte	
  per entry. Also, we

can use virtual memory to allocate the array	
  on-­‐demand!
• Allocate memory at slot granularity	
  (e.g., 16 bytes): fewer	
  array	
  entries.
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Ex: 
slot_size = 16
 
p = malloc(16); table[p/slot_size] = 4;
 

p = malloc(32); table[p/slot_size] = 5;

table[(p/slot_size) + 1] = 5;
 

Now,	
  given a known	
  good pointer p, and a derived	
  pointer p', we can test whether p' 
is valid	
  by checking whether both pointers have the same prefix	
  in their address	
  
bits,	
  and they only differ in their	
  e least significant bits,	
  where	
  e is equal to the 
logarithm	
  of the allocation size.

C code
-­‐-­‐-­‐-­‐-­‐-­‐
p' = p + i;


Bounds check
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
size = 1 << table[p >> log_of_slot_size];

base = p & ~(size - 1);

(p' >= base) && ((p' - base) < size)
 

Optimized bounds check
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
(p^p') >> table[p >> log_of_slot_size] == 0


• Use virtual memory system	
  to prevent out-­‐of-­‐bound derefs: set most
significant bit	
  in	
  an OOB pointer, and then mark pages in the upper half of
the address space as inaccessible. So, we don't have to instrument pointer
dereferences to prevent bad memory accesses!

Example code (assume that slot_size=16):

char *p = malloc(44);

//Note that the nearest power of 2 (i.e.,

//64 bytes) are allocated. So, there are

//64/(slot_size) = 4 bounds table entries

//that are set to log_2(64) = 6.
 

char *q = p + 60;

//This access is ok: It's past p's object

//size of 44, but still within the baggy

//bounds of 64.
 

char *r = q + 16;

//r is now at an offset of 60+16=76 from
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//p. This means that r is (76-64)=12 bytes

//beyond the end of p. This is more than

//half a slot away, so baggy bounds will

//raise an error.
 

char *s = q + 8;

//s is now at an offset of 60+8=68 from p.

//So, s is only 4 bytes beyond the baggy

//bounds, which is les than half a slot

//away. No error is raised, but the OOB

//high-order bit is set in s, so that s

//cannot be dereferenced.
 

char *t = s - 32;

//t is now back inside the bounds, so

//the OOB bit is cleared.


For OOB pointers, the	
  high	
  bit is set (if OOB within half	
  a slot).
• Typically,	
  OS	
  kernel lives	
  in upper half,	
  protects	
  itself via paging

hardware.
• Q: Why	
  half a slot	
  for out-­‐of-­‐bounds?

So what's the answer to the homework problem?

char *p = malloc(256);

char *q = p + 256;

char ch = *q; //Does this raise an exception?


//Hint: How big is the baggy bound for p?


ADDITIONAL/SUPPLEMENTAL INFO
===============================
Some bugs in the baggy bounds	
  paper:
Figure	
  3, explicit bounds	
  check should	
  generate	
  the size like this:
size = 1 << table[p >> log_of_slot_size]


Figure 3, optimized bounds check should be
(p^p') >> table[p >> log_of_slot_size] == 0


Figures	
  5 and	
  18, pointer arithmetic code should be
char *p = &buf[i];

or
char *p = buf + i;
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