

6.858 Lecture 2
REVIEW OF BUFFER	
 OVERFLOW ATTACKS

Last lecture, we looked at the basics of performing a buffer overflow	
 attack.	
 That	

attack leveraged several observations:

•	 Systems software is	
 often	
 written	
 in C (operating systems, file systems,
databases, compilers, network servers, command shells and console utilities)

•	 C is essentially	
 high-­‐level assembly, so . . .
o	 Exposes raw pointers to memory
o	 Does not perform	
 bounds-­‐checking	
 on arrays (b/c	
 the	
 hardware	

doesn't do this, and C wants to get	
 you	
 as close to the hardware as
possible)

• Attack also leveraged architectural knowledge about how x86	
 code works:
o	 The direction	
 that the	
 stack grows
o	 Layout of stack variables	
 (esp. arrays	
 and return addresses	
 for

functions)

void read_req() {

char buf[128];

int i;

gets(buf);

//. . . do stuff w/buf . . .

}

What does the compiler generate in terms of memory layout?

x86 stack	
 looks like this:
•	 %esp points	
 to	
 the	
 last (bottom-­‐most) valid thing on the stack.
•	 %ebp points	
 to	
 the	
 caller's	
 %esp value.

+------------------+

entry %ebp ----> | .. prev frame .. |

| | |

| | | stack grows down

+------------------+ |

entry %esp ----> | return address | v

+------------------+

new %ebp ------> | saved %ebp |

+------------------+

| buf[127] |

| ... |

| buf[0] |

+------------------+

new %esp ------> | i |

+------------------+

1

How does the	
 adversary	
 take	
 advantage	
 of this	
 code?
•	 Supply long input, overwrite	
 data on stack past buffer.
•	 Key observation	
 1: attacker can	
 overwrite the return address, make the

program	
 jump to a place of the attacker's choosing!
•	 Key observation	
 2: attacker can	
 set	
 return	
 address to the buffer itself,	
 include

some x86 code in there!

What	
 can	
 the attackers do once	
 they are	
 executing code?
•	 Use any privileges	
 of the	
 process! If the	
 process is running as	
 root or

Administrator, it can do whatever it wants on the system. Even if the process
is not running as root, it can send spam, read files, and interestingly,	
 attack or
subvert other machines behind the firewall.

•	 Hmmm, but why didn't the OS notice that the buffer has been	
 overrun?
o	 As far as the OS is aware, nothing strange has happened! Remember

that, to a first approximation, the OS only gets invoked by the web	

server	
 when the server does IO or IPC.	
 Other than	
 that,	
 the OS
basically sits back and lets the program	
 execute, relying on hardware	

page tables to prevent	
 processes from	
 tampering with each other's
memory. However, page table protections don't	
 prevent	
 buffer
overruns launched by a process "against	
 itself,"	
 since the overflowed	

buffer and the return	
 address and all of that	
 stuff are inside the
process's valid address space.

o	 Later	
 in this	
 lecture, we'll talk about things that	
 the OS *can*	
 do to
make buffer overflows more difficult.

FIXING	
 BUFFER OVERFLOWS

Approach	
 #1: Avoid bugs in C code.

Programmer should carefully check sizes of buffers, strings, arrays, etc. In
particular, the programmer should	
 use	
 standard	
 library	
 functions	
 that take buffer
sizes into	
 account (strncpy() instead	
 of strcpy(), fgets() instead	
 of
gets(), etc.).

Modern	
 versions of gcc and Visual	
 Studio warn	
 you	
 when a program	
 uses unsafe
functions	
 like	
 gets().	
 In	
 general,	
 YOU	
 SHOULD	
 NOT	
 IGNORE COMPILERWARNINGS.
Treat warnings like errors!

Good: Avoid problems in the first place!

Bad: It's hard to ensure that	
 code is bug-­‐free,	
 particularly if the	
 code base	
 is large.	

Also, the application itself may define buffer manipulation functions which do not
use	
 fgets() or strcpy() as primitives.

Approach	
 #2: Build tools to help programmers find bugs.

2

For example, we can use static analysis to find problems in source	
 code before	
 it's	

compiled. Imagine that you had a function	
 like	
 this:

void foo(int *p){

int offset;

int *z = p + offset;

if(offset > 7){

bar(offset);

}

}

By statically	
 analyzing	
 the control	
 flow,	
 we can tell that	
 offset	
 is used without	
 being	

initialized. The if-­‐statement	
 also puts bounds on offset that we may be able to
propogate	
 to bar. We'll talk about static analysis more in later lectures.

“Fuzzers” that supply random inputs can be effective for finding bugs.	
 Note	
 that
fuzzing can be combined with static analysis to maximize code coverage!

Bad: Difficult to prove the complete absence of bugs, esp. for unsafe	
 code like	
 C.

Good:	
 Even partial analysis is useful, since programs should become strictly less
buggy. For example, baggy bounds checking cannot catch all memory errors, but it
can detect many important kinds.

Approach	
 #3: Use a memory-­‐safe	
 language	
 (JavaScript,	
 C#, Python).

Good: Prevents memory corruption errors by not exposing raw memory addresses
to the programmer, and by automatically handling	
 garbage	
 collection.

Bad: Low-­‐level	
 runtime code DOES use raw memory addresses. So, that runtime
core still needs to	
 be	
 correct.	
 For example, heap spray attacks:

• https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworab
han.pdf

• https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-
part-11-heap-spraying-demystified/

Bad: Still	
 have a lot	
 of legacy	
 code in unsafe languages (FORTRAN and COBOL	
 oh
noes).

Bad: Maybe you	
 need access to low-­‐level	
 hardware features b/c,	
 e.g.,	
 you're writing	

a device driver.

Bad: Perf is worse than	
 a fine-­‐tuned C application?

3

https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworabhan.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworabhan.pdf
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

• Used to be a bigger problem, but hardware and high-­‐level	
 languages are
getting better.

o JIT compilation FTW!
o asm.js is within 2x of native C++ perf! [http://asmjs.org/faq.html]

• Use careful coding to	
 avoid garbage	
 collection jitter in critical	
 path.
• Maybe you're a bad person/language chauvinist who doesn't know how to

pick the right	
 tool for the	
 job.	
 If	
 your	
 task is I/O-­‐bound,	
 raw compute speed is
much less important. Also, don't be the chump who writes text manipulation
programs in C.

All 3 above approaches are	
 effective	
 and	
 widely	
 used, but buffer overflows	
 are	
 still a
problem in practice.

• Large/complicated legacy code written in C is very prevalent.
• Even	
 newly written code in C/C++	
 can have memory errors.

How	
 can we mitigate buffer overflows despite buggy code?
• Two	
 things	
 going on in a "traditional"	
 buffer overflow:

o Adversary gains control over execution (program counter).
o Adversary executes some malicious code.

• What	
 are the difficulties to these two steps?
o Requires	
 overwriting	
 a code pointer (which is later invoked).

Common	
 target is a return address	
 using a buffer	
 on the	
 stack. Any
memory error could potentially work, in practice. Function pointers,
C++ vtables, exception handlers, etc.

o Requires some interesting code in process's memory. This is often
easier	
 than	
 #1, because:

§ it's	
 easy	
 to	
 put code	
 in a buffer,	
 and
§ the process already contains a lot	
 of code that might be

exploitable.
o However, the	
 attacker	
 needs	
 to	
 put this	
 code in a predictable	
 location,

so that the	
 attacker	
 can	
 set the code pointer	
 to	
 point to	
 the	
 evil code!

Mitigation approach 1: canaries (e.g., StackGuard,	
 gcc's SSP)

Idea: OK to overwrite	
 code	
 ptr,	
 as long as we catch it before invocation.

One of the earlier systems: StackGuard
• Place	
 a canary on the	
 stack upon entry,	
 check canary value before return.
• Usually	
 requires source code; compiler inserts canary checks.
• Q: Where is the canary on the stack diagram?

o A: Canary	
 must go "in front of" return address on the stack,	
 so that
any overflow	
 which rewrites return address will	
 also rewrite canary.

4

http://asmjs.org/faq.html

| |

+------------------+

entry %esp ----> | return address | ^

+------------------+ |

new %ebp ------> | saved %ebp | |

+------------------+ |

| CANARY | | Overflow goes

+------------------+ | this way.

| buf[127] | |

| ... | |

| buf[0] | |

+------------------+

| |

Q: Suppose that the compiler always made the canary 4 bytes	
 of the	
 'a'	
 character.	

What's wrong	
 with this?

• A: Adversary can include the appropriate canary value in the	
 buffer	
 overflow!

So, the canary must be either hard to guess,	
 or it can be	
 easy to	
 guess but still
resilient against buffer overflows. Here are examples of these approaches.

•	 “Terminator canary”:	
 four	
 bytes	
 (0, CR, LF, -­‐1)
o	 Idea: Many C functions treat	
 these	
 characters as terminators(e.g.,

gets(), sprintf()). As a result, if the canary matches one of these
terminators, then further writes won't happen.

• Random	
 canary generated at program	
 init time: Much more common today
(but,	
 you need good randomness!).

What	
 kinds of vulnerabilities will	
 a stack	
 canary not	
 catch?
•	 Overwrites	
 of function	
 pointer	
 variables	
 before	
 the	
 canary.
•	 Attacker can overwrite a data pointer, then leverage it to do arbitrary mem	

writes.

int *ptr = ...;

char buf[128];

gets(buf); //Buffer is overflowed, and overwrites ptr.

*ptr = 5; //Writes to an attacker-controlled address!

//Canaries can't stop this kind of thing.

•	 Heap object overflows	
 (function pointers, C++ vtables).
• malloc/free overflows

int main(int argc, char **argv) {

char *p, *q;

p = malloc(1024);

q = malloc(1024);

5

if(argc >= 2)

strcpy(p, argv[1]);

free(q);

free(p);

return 0;

}

Assume that the two blocks of memory belonging to p and q are adjacent/nearby	
 in	

memory.
Assume that malloc and free represent memory blocks like this:

+----------------+

| |

| App data |

| | Allocated memory block

+----------------+

| size |

+----------------+

+----------------+

| size |

+----------------+

| ...empty... |

+----------------+

| bkwd ptr |

+----------------+

| fwd ptr | Free memory block

+----------------+

| size |

+----------------+

So, the buffer overrun	
 in p will overwrite	
 the size value in q's memory	
 block!	
 Why is
this a problem?

When free() merges two adjacent free blocks, it needs to manipulate bkwd and fwd
pointers, and the pointer calculation	
 uses size to determine where the free memory
block	
 structure lives!

p = get_free_block_struct(size);

bck = p->bk;

fwd = p->fd;

fwd->bk = bck; //Writes memory!

bck->fd = fwd; //Writes memory!

The free memory block is represented as a C struct;	
 by	
 corrupting	
 the	
 size value,	
 the
attacker can force free() to operate on	
 a fake	
 struct that resides in attacker-­‐

6

controlled memory and has attacker-­‐controlled	
 values for the	
 forward	
 and	

backwards pointers.

If the attacker knows how free()	
 updates the pointers,	
 he can	
 use that	
 update code
to write an arbitrary value to an arbitrary place. For example, the attacker can
overwrite a return	
 address.

Actual details are a bit more complicated; if you're interested	
 in gory details, go
here: http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

The high-­‐level	
 point	
 is that	
 stack	
 canaries won't prevent	
 this attack, because	
 the
attacker is "skipping over" the canary and writing	
 directly	
 to	
 the	
 return address!

So, stack canaries	
 are	
 one	
 approach for mitigating buffer overflows	
 in buggy	
 code.

Mitigation approach 2: bounds checking.

Overall goal: prevent pointer misuse by checking if pointers are in	
 range.

Challenge:	
 In C, it can be	
 hard	
 to	
 differentiate	
 between	
 a valid pointer and an invalid
pointer. For example, suppose that a program allocates an array of characters …

char x[1024];

… as	
 well as a pointer to some place in that array, e.g.,

char *y = &x[107];

Is it OK to increment y to access subsequent elements?
• If x represents a string buffer, maybe yes.
• If x represents a network message, maybe no.

Life is even more complicated if the program uses unions.

union u{

int i;

struct s{

int j;

int k;

};

};

int *ptr = &(u.s.k); //Does this point to valid data?

The problem is that, in C,	
 a pointer does not encode information about the intended
usage semantics for that pointer. So, a lot of tools don't	
 try to guess those semantics.
Instead, the tools have a less lofty goal than "totally correct" pointer semantics: the

7

http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

tools just	
 enforce the memory bounds on heap objects and stack objects. At a high
level,	
 here's the goal: For a pointer	
 p'	
 that's derived from	
 p, p' should only be
dereferenced to access the valid memory region that belongs to p.

Enforcing memory bounds is a weaker goal than enforcing "totally correct"	
 pointer
semantics. Programs can still shoot themselves in the foot by trampling on their
memory in nasty ways (e.g.,	
 in the union example, the application may write to ptr
even though	
 it's	
 not defined).

However, bounds	
 checking is still useful because	
 it prevents *arbitrary* memory
overwrites. The program	
 can only trample its memory if that memory is actually
allocated! THIS IS CONSIDERED	
 PROGRESS IN	
 THEWORLD	
 OF	
 C.

A drawback of bounds checking is that it typically requires changes to the compiler,
and programs must be recompiled with the new compiler. This is a problem	
 if you
only	
 have	
 access to binaries.

What	
 are some approaches for implementing bounds checking?

Bounds	
 checking	
 approach #1: Electric	
 fences
• This is an old approach that had the virtue of being simple.
• Idea: Align each heap object with a guard page, and use page tables to ensure

that	
 accesses to the guard	
 page cause a fault.

+---------+

| Guard |

| | ^

+---------+ | Overflows cause a page exception

| Heap | |

| obj | |

+---------+

• This is a convenient debugging	
 technique, since	
 a heap	
 overflow will
immediately cause a crash, as opposed to silently corrupting the heap and
causing a failure at some indeterminate time in the future.

• Big	
 advantage: Works without source code-­‐-­‐-­‐don't need to	
 change compilers
or recompile programs! [You *do* need to relink them	
 so that they use a new
version of malloc which implements electric fences.]

• Big	
 disadvantage: Huge overhead!	
 There's only	
 one object per page, and you
have the overhead of a dummy page which isn't used for "real"	
 data.

• Summary:	
 Electric	
 fences can be useful	
 as debugging	
 technique, and they	
 can
prevent some buffer overflows for heap objects. However, electric	
 fences
can't protect the	
 stack,	
 and the memory overhead is too high to use in
production systems.

Bounds	
 checking	
 approach #2: Fat pointer

8

Idea: Modify	
 the pointer representation	
 to	
 include	
 bounds information. Now, a
pointer includes a memory address and bounds information about an object that
lives in that memory region.

Ex:
Regular 32-bit pointer

+-----------------+

| 4-byte address |

+-----------------+

Fat pointer (96 bits)

+-----------------+----------------+---------------------+

| 4-byte obj_base | 4-byte obj_end | 4-byte curr_address |

+-----------------+----------------+---------------------+

You need to modify the compiler and recompile the programs to use the fat pointers.
The compiler generates code to abort the program	
 if it dereferences a pointer whose
address is outside of its own base...end range.

int *ptr = malloc(sizeof(int) * 2);

while(1){

*ptr = 42; <----------|

ptr++; |

} |

__________________________|

|

This line	
 checks	
 the	
 current address	
 of the	
 pointer	
 and ensures that it's	
 in-­‐bounds.	

Thus, this	
 line	
 will fail during the	
 third	
 iteration	
 of the	
 loop.

Problem	
 #1: It can be expensive to check all pointer dereferences. The C community
hates	
 things	
 that are expensive,	
 because	
 C is all about SPEED SPEED SPEED.

Problem	
 #2: Fat pointers are incompatible with a lot of existing	
 software.
•	 You can't pass a fat pointer to an unmodified library.
•	 You	
 can't	
 use fat	
 pointers in	
 fixed-­‐size	
 data structures.	
 For example,

sizeof(that_struct)will	
 change!
•	 Updates	
 to	
 fat pointers	
 are not atomic, because they span multiple words.

Some programs assume that pointer writes are atomic.

Bounds	
 checking	
 approach #3: Use shadow data structures	
 to	
 keep track	
 of
bounds information (Jones and Kelly, Baggy).

Basic	
 idea: For each allocated object,	
 store	
 how big	
 the object is. For example:
Record the value passed to malloc:

char *p = malloc(mem_size);

For static	
 variables, the values are determined by the compiler:

9

char p[256];

For each	
 pointer, we	
 need	
 to	
 interpose	
 on two	
 operations:

•	 pointer arithmetic:	
 char *q = p + 256;
• pointer dereferencing: char ch = *q;

Q: Why	
 do we need to interpose on	
 dereference?	
 Can't	
 we do just arithmetic?
•	 A: An invalid pointer isn't always a bug! For example, a pointer to one

element past the last item	
 of an array might be used as a stopping	
 test	
 in a
loop. Applications can also do goofy stuff like:

o	 Simulating 1-­‐indexed	
 arrays
o	 Computing p+(a-­‐b) as (p+a)-­‐b
o Generating	
 OOB pointers that	
 are later checked for validity

So, the mere creation of invalid	
 pointer	
 shouldn't cause	
 program	
 to fail.

Q: Why do we need to interpose on arithmetic? Can't we do just dereference?
•	 A: Interposing on arithmetic is what allows us to track the provenance of

pointers and set	
 the OOB bit. Without the OOB, we won't	
 be able to tell	
 when	

a derived pointer goes outside of the bounds of its base object.

Challenge 1: How do we find the bounds information for a regular	
 pointer, i.e., a
pointer that's in-­‐bounds?

Naive: Use a hash table or interval tree to map addresses to bounds.
Good: Space	
 efficient (only	
 store	
 info for in-­‐use	
 pointers,	
 not all possible addresses).
Bad: Slow lookup (multiple memory accesses per look-­‐up).

Naive: Use an array to store bounds info for *every* memory address.
Good: Fast!
Bad: Really high memory overhead.

Challenge 2: How do we	
 force out-­‐of-­‐bounds pointer dereferences to fail?

Naive: Instrument every pointer dereference.
Good: Uh, it works.
Bad: Expensive-­‐-­‐-­‐we have	
 to	
 execute	
 extra code for every dereference!

The baggy	
 bounds	
 approach:	
 5 tricks
•	 Round up each allocation to a power of 2,	
 and align	
 the start of the	
 allocation	

to that	
 power of 2.
•	 Express each range limit as log_2(alloc_size).	
 For 32-­‐bit	
 pointers,	
 only need 5

bits to express the possible ranges.
•	 Store limit info in a linear array: fast	
 lookup	
 with one byte	
 per entry. Also, we

can use virtual memory to allocate the array	
 on-­‐demand!
• Allocate memory at slot granularity	
 (e.g., 16 bytes): fewer	
 array	
 entries.

10

Ex:
slot_size = 16

p = malloc(16); table[p/slot_size] = 4;

p = malloc(32); table[p/slot_size] = 5;

table[(p/slot_size) + 1] = 5;

Now,	
 given a known	
 good pointer p, and a derived	
 pointer p', we can test whether p'
is valid	
 by checking whether both pointers have the same prefix	
 in their address	

bits,	
 and they only differ in their	
 e least significant bits,	
 where	
 e is equal to the
logarithm	
 of the allocation size.

C code
-­‐-­‐-­‐-­‐-­‐-­‐
p' = p + i;

Bounds check
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
size = 1 << table[p >> log_of_slot_size];

base = p & ~(size - 1);

(p' >= base) && ((p' - base) < size)

Optimized bounds check
-­‐
(p^p') >> table[p >> log_of_slot_size] == 0

• Use virtual memory system	
 to prevent out-­‐of-­‐bound derefs: set most
significant bit	
 in	
 an OOB pointer, and then mark pages in the upper half of
the address space as inaccessible. So, we don't have to instrument pointer
dereferences to prevent bad memory accesses!

Example code (assume that slot_size=16):

char *p = malloc(44);

//Note that the nearest power of 2 (i.e.,

//64 bytes) are allocated. So, there are

//64/(slot_size) = 4 bounds table entries

//that are set to log_2(64) = 6.

char *q = p + 60;

//This access is ok: It's past p's object

//size of 44, but still within the baggy

//bounds of 64.

char *r = q + 16;

//r is now at an offset of 60+16=76 from

11

//p. This means that r is (76-64)=12 bytes

//beyond the end of p. This is more than

//half a slot away, so baggy bounds will

//raise an error.

char *s = q + 8;

//s is now at an offset of 60+8=68 from p.

//So, s is only 4 bytes beyond the baggy

//bounds, which is les than half a slot

//away. No error is raised, but the OOB

//high-order bit is set in s, so that s

//cannot be dereferenced.

char *t = s - 32;

//t is now back inside the bounds, so

//the OOB bit is cleared.

For OOB pointers, the	
 high	
 bit is set (if OOB within half	
 a slot).
• Typically,	
 OS	
 kernel lives	
 in upper half,	
 protects	
 itself via paging

hardware.
• Q: Why	
 half a slot	
 for out-­‐of-­‐bounds?

So what's the answer to the homework problem?

char *p = malloc(256);

char *q = p + 256;

char ch = *q; //Does this raise an exception?

//Hint: How big is the baggy bound for p?

ADDITIONAL/SUPPLEMENTAL INFO
===============================
Some bugs in the baggy bounds	
 paper:
Figure	
 3, explicit bounds	
 check should	
 generate	
 the size like this:
size = 1 << table[p >> log_of_slot_size]

Figure 3, optimized bounds check should be
(p^p') >> table[p >> log_of_slot_size] == 0

Figures	
 5 and	
 18, pointer arithmetic code should be
char *p = &buf[i];

or
char *p = buf + i;

12

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

