
MITOCW | watch?v=GqmQg-cszw4

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu

PROFESSOR: In this class, this semester, the other co-lecturer is going to be James Mickens, who

is a visiting professor from Microsoft Research. He'll lecture on some other topics

like web security later on. But we'll decide later what's going on exactly, in terms of

the lecture split up. We also have four TAs this year, Stephen, Webb, [INAUDIBLE],

and James. And hopefully you'll meet them in office hours over the year if you need

help.

So the plan for this class is to understand how to build secure systems, why

computer systems sometimes are insecure and how we can make them better, and

what goes wrong. And in order to do this, there's not really a great textbook about

this topic. So instead, what we're going to do is, each lecture other than this one is

going to be focused around some research, typically a paper, that we'll assign on

the website and you guys should read ahead of time. And there are some question

that you should answer in the submission system about the paper. And submit your

own question by 10:00 PM before the lecture day.

And then when you come to lecture, we'll actually discuss the paper, figure out,

what is the system? What problem does it solve? When does it work? When does it

not work? Are these ideas any good in other cases? Et cetera. And hopefully,

through these case studies, we'll get some appreciation of how do we actually build

systems that are secure.

And we have some preliminary schedule up on the website. If there's other topics

you guys are particularly interested in, or if there's particular papers you're excited

about, just send us email and we'll see if we can fit them in or do something. We're

pretty flexible. So if there's anything that you'd like to hear more about, just let us

know.

1



And in a similar vein, if you ever have a question or if there's some mistake, just

interrupt and ask us what's going on in lecture, anytime. Security is, in many ways,

all about the details and getting everything right. And I will inevitably make mistakes.

So if something doesn't seem right, there's a good chance it's not. And you should

just interrupt and ask. And we'll figure out what's going on and what's the right way

to do things.

And I guess in terms of the class organization, the other large part of the class, in

addition to lectures, is going to be a series of lab assignments. The first one is

already posted on the website. And these lab assignments will help you go through

understanding the different range of security problems and how do you prevent

them in a simple web server. So in lab one, which is out right now, you'll actually

take a web server that we give you and find ways to exploit buffer overflow

vulnerabilities in it and take control of this website by just sending it carefully-crafted

requests and packets. And in other labs, you'll look at ways to defend the web

server, to find bugs in the code, to write worms that run in the user's browser, and

other kinds of interesting security problems.

One thing that surprises many students is that every lab uses a different language.

So lab one is all about C and Assembly. Lab two involves a lot of Python coding.

Lab three will be something else. Lab five will be JavaScript. And so on. This is sort

of inevitable. And I sort of apologize ahead of time that you're going to have to learn

all these languages if you haven't seen them already.

In some ways it's useful, because the real world is like this. All the systems are

complicated and composed of different parts. And in the long run, it'll be useful for

you, for your moral character or something like that, to learn this stuff. But it will take

some preparation, especially if you haven't seen these languages before. It might

be helpful to start early.

In particular, lab one is going to rely on a lot of subtle details of C and Assembly

code that we don't really teach in other classes here in as much detail. So it's

probably a good idea to start early. And we'll try to get the TAs to hold office hours

2



next week where we'll do some sort of a tutorial session where we can help you get

started with understanding what a binary program looks like, how to disassemble it,

how to figure out what's on the stack, and so on. All right.

And I guess the one other thing, we're actually videotaping lectures this year. So

you might be able to watch these online. We'll post them as soon as we get them

ourselves from the video people.

And the last bit of administrivia is you should, if you have questions online, we're

using Piazza, so I'm sure you've used this in other classes.

All right. So before we dive into security, I need to tell you one thing. There is a sort

of rules that MIT has for accessing MIT's network when you're, especially, doing

security research or playing with security problems, you should be aware that not

everything you can technically do is legal. And there's many things that you will

learn in this class that are technically possible. We'll understand how systems can

be broken or compromised. Doesn't mean you should go out and do this

everywhere. And there's this link in the lecture notes we'll post that has some rules

that are good guidelines. But in general, if you're in doubt, ask one of the lecturers

or a TA as to what you should do. And hopefully it's not too puzzling, what's going

on.

All right. So any questions about all this administrivia before we dive in? Feel free to

ask questions. OK.

So what is security? So we'll start with some basic stuff today. And we'll look at just

some general examples of why security is hard and what it means to try to build a

secure system. Because there's not really a paper, this will not have sort of deep

intellectual content, maybe, but it'll give you some background and context for how

to think about secure systems.

So security, in general, is all about achieving some goal when there is an adversary

present. So think of it as there's some bad guy out there that wants to make sure

you don't succeed. They want to steal your files. They want to delete your entire

3



hard drive contents. They want to make sure nothing works and your phone doesn't

connect, all these things, right? And a secure system is one that can actually do

something, regardless of what the bad guy is trying to do to you.

So it's kind of cool that we can actually potentially build systems that are resilient to

a whole range of bad guys, adversaries, attackers, whatever you want to call them.

And we can still build computer systems that allow us to get our work done.

And the general way to think about security is sort of break it up into three parts.

One part is roughly the policy that you want your system to enforce. This is roughly

the goal that you want to achieve. Like well, maybe, only I should be able to read

the grades file for 6.858. Or maybe the TAs as well, and all the co-lecturers, et

cetera. But there is some statement about what I want my system to be able to do.

And then, if you want sort of think about what kinds of policies you might write,

typical ones have to do with either confidentiality of data, so the grades file is only

accessible to the 6.858 course staff. Another example of a security policy has

something to do with integrity. For example, only the course staff can also modify

the grades file. Or only the course staff can upload the final grades to the registrar's

office. That'll be great.

Then you can also think about things like availability. So for example, a website

should be available, even if the bad guys try to take it down and mount some sort of

a DOS-- Denial of Service-- attack on it.

So this is all well and good. So these are the policies that we might actually care

about from a system. But because it's security, there's a bad guy involved. We need

to understand, what are we thinking the bad guy is going to do? And this is typically

what we call a threat model. And this is basically just a set of assumptions about the

bad guy or adversary.

And it's important to have some sort of assumptions about the bad guy because, if

the bad guy is omnipresent and is everywhere at once and you can do anything

they want, it's going to be hard to achieve some semblance of security. So for

4



example, you probably want to assume the bad guy doesn't exactly know your

password, or they don't actually have physical access to your phone and your keys

and your laptop. Otherwise, it's going to be hard to make some sort of progress in

this game. And turns out that while this is actually quite tricky to come up with, but I

guess one general rule is it's much better err on the side of caution and being

conservative in picking your threat model, because bad guy might always surprise

you in terms of what they might be able to do in practice.

And finally, in order to achieve security, in order to achieve our goal under the set of

assumptions, we're going to look at some mechanism. And this is the, basically,

software or hardware or whatever part of system design, implementation, et cetera,

that's going to try to make sure our policy is followed as long as the bad guy follows

the threat model. So the end result is that, as long as our threat model was correct,

hopefully we'll satisfy our policy. And it has to be the case that the mechanism

doesn't screw up. Make sense? Fairly high level story about how to think about this

kind of stuff.

So why is this so hard, right? It seems like a simple plan. You write down these

three things, and you're off and running. But in practice, as you, I'm sure, have seen

in the world, computer systems are almost always compromised in some way or

another. And break ins are pretty commonplace. And the big reason why security

tends to be a difficult problem is because what we have here is sort of, this will be

familiar to those of you took 6.033, this is a negative goal, meaning that we have to

make sure our security policy is followed regardless of what the attacker can do.

So just by contrast, if you want to build a file system, and you want to make sure

that my TAs can access the grades file, that's pretty easy. I just ask them, hey, can

you guys test and see? Can you access the grades file? And if they all can access

it, done. The system works. But if I want to say that no one other than the TAs can

access the grades file, this is a much harder problem to solve, because now I have

to figure out what could all these non TA people in the world to try to get my grades

file, right? They could try to just open it and read it. Maybe my file system will

disallow it. But they might try all kinds of other attacks, like guessing the password

5



for the TAs or stealing the TAs laptops or breaking into the room or who knows,

right?

This is all stuff that we have to really put into our threat model. Probably for this

class, I'm not that concerned about the grades file to worry about these guys'

laptops being stolen from their dorm room. Although maybe I should be. I don't

know. It's hard to tell, right? And as a result, this security game is often not so clear

cut as to what the right set of assumptions to make is. And it's only after the fact that

you often realize, well should have thought of that.

All right. And sort of, as a result, this is very much an iterative process. And the thing

you end up realizing at every iteration is, well, here's the weakest link into my

system. Maybe I got the threat model wrong. Maybe my mechanism had some bugs

in it because it's a software and it's going to be large systems. They'll have lots of

bugs. And you sort of fix them up. You change your threat model a bit. And you

iterate and try to design a new system, and hopefully, make things better.

So one possible interpretation of this class-- well, one danger-- is that you come

away thinking, man, everything is just broken. Nothing works. We should just give

up and stop using computers. And this is one possible interpretation. But it's

probably not quite the right one. The reason this is going to come up or you're going

to think this way is because, throughout this class, we're going to look at all these

different systems, and we're going to sort of push them to the edge.

We're going to see, OK, well, what if we do this? Is it going to break? What if we do

that? Is it going to break then? And inevitably, every system is going to have some

sort of a breaking point. And we'll figure out, oh hey. This system, we can break it in

if we push this way. And this system doesn't work under these set of assumptions.

And it's inevitable that every system will have a breaking point. But that doesn't

mean that every system is worthless. It just means you have to know when to use

every system design. And it's sort of useful to do this pushing exercise to find the

weaknesses so that you know when certain ideas work, when certain ideas are not

applicable.

6



And in reality, this is a little more fuzzy boundary, right? The more secure you make

your system, the less likely you'll have some embarrassing story on the front page

of New York Times saying, your start up company leaked a million people's social

security numbers. And then you pay less money to recover from that disaster.

And I guess one sort of actually positive note on security is that, in many ways,

security enables cool things that you couldn't do before, because security,

especially mechanisms, that allow us to protect against certain classes of attacks,

are pretty powerful. As one example, the browser used to be fairly boring in terms of

what you could do with it. You could just view web pages, maybe run some

JavaScript code in it. But now there's all these cool mechanisms we'll learn about in

a couple of weeks that allow you to run arbitrary x86 native code in the web browser

and make sure it doesn't do anything funny to your machine. And it can send-- and

there's a technique or system called Native Client from Google that actually allows

us to do this securely.

And before, in order to run some native game on your machine, you'd have

download and install it, click on lot's of dialogue boxes, say yes, I allow this. But

now, you can just run it in a browser, no clicking required. It just runs. And the

reason it's so easy and powerful is that our security mechanism can sandbox this

program and not have to assume anything about the user choosing the right game

and not some malicious game to play in their computer, or some other program to

run. So in many ways, good security mechanisms are going to enable constructing

cool new systems that weren't possible to construct before.

All right. Make sense? Any questions about this story? All right.

So I guess in the rest of the lecture, I want to go through a bunch of different

examples of how security goes wrong. So, so far, we've seen how you can think of

it. But inevitably, it's useful to see examples of what not to do so that you can have a

better mindset when you're approaching security problems. And in this sort of

breakdown of a security system, pretty much every one of these three things goes

wrong. In practice, people get the policy wrong, people get the threat model wrong,

7



and people get the mechanism wrong.

And let's, I guess, start with policies and examples of how you can screw up a

system's policy. Maybe the cleanest or sort of simplest example of this are account

recovery questions. So typically, when you sign into a website, you provide a

password. But what happens if you lose your password? Some sites will send you

email if you lose your password with a link to reset your password. So it's easy

enough, if you have another email address. But what if this is your email provider?

So at least, several years ago, Yahoo hosted email, webmail, for anyone on the

internet. And when you forgot your Yahoo password, they couldn't really send you

email because you couldn't get it. So instead, they had you register a couple of

questions with them that hopefully only you know. And if you forget your password,

you can click on a link and say, well, here's the answers to my questions. Let me

have my password again.

And what turns out to be the case is-- well, some people failed to realize is that this

changes your policy, because before, the policy of the system is people that can log

in are the people that know the password. And when you introduce these recovery

questions, the policy becomes, well, you can log in if you know either the password

or those security questions. So it strictly weakens the security of your system. And

many people have actually taken advantage of this.

One sort of well known example is, I think a couple years ago, Sarah Palin had an

email account at Yahoo. And her recovery questions were things like, well, where'd

you go to school? What was your friend's name? What's your birthday? Et cetera.

These were all things written on her Wikipedia page. And as a result, someone can

quite easily, and someone did, actually, get into her Yahoo email account just by

looking up on Wikipedia what her high school was and what her birthday was. So

you really have to think carefully about the implications of different security policies

you're making here.

Perhaps a more intricate and, maybe, interesting example, is what happens when

you have multiple systems that start interacting with one another. So there's this

8



nice story about a guy called Mat Honan. Maybe you read this story a year or two

ago. He's a editor at this wired.com magazine. And had a bit of a problem.

Someone basically got into his Gmail account and did lots of bad things.

But how did they do it, right? So it's kind of interesting. So all parties in this story

seem to be doing reasonable things. But we'll see how they add up to something

unfortunate.

So we have Gmail. And Gmail lets you reset your password if you forget, as do

pretty much every other system. And the way you do a reset at Gmail is you send

them a reset request. And what they say is, well, you weren't going to do this

recovery questions, at least not for this guy. What they do is they send you a

recovery link to a backup email address, or some other email address that you

have. And helpful, they actually print the email address for you. So for this guy's

account, someone went and asked Gmail to reset the password. And they said,

well, yeah. Sure. We just sent the recovery link to this email, foo@me.com, which

was some Apple email service.

OK, but the bad guy doesn't have access to me.com, either. But they want to get

this password reset link to get access to Gmail. Well, the way things worked was

that, in Apple's case, this me.com site, allowed you to actually reset your password

if you know your billing address and the last four digits of your credit card number.

So it's still not clear how you're going to get this guy's-- well, home address, maybe

you could look it up somewhere. This guy was a well known person at the time. But

where do you get the last four digits of his credit card number? Well, not clear, but

let's keep going further.

So you need to send these things to me.com to get access to his email account

there. Well, it turns out this guy had an account at Amazon, which is another party in

this story. Amazon really wants you to buy things. And as a result, they actually

have a fairly elaborate account management system. And in particular, because

they really want you to buy stuff, they don't require you to sign in in order to

purchase some item with a credit card.

9



So I can actually go on Amazon, or at least at the time, I was able to go on Amazon

and say, well, I'm this user. And I want to buy this pack of toothbrushes. And if I

wanted to use the saved credit card number in the guy's account, I shouldn't be

able to do this. But if I just was providing a new credit card, what Amazon would do

is, they can actually add a new credit card to some guy's account. So that seems

not too bad, right? I'm basically ordering toothbrushes through one of your Amazon

accounts. But it's not your credit card anyway. It's just my credit card number being

used. So it's not clear how things go wrong yet.

But Amazon had another interface. All these are complicated systems. And Amazon

had an interface for password reset. And in order to reset a password in Amazon,

what you had to provide is just one of the user's credit card numbers. So I can order

stuff and add a credit card number to your account. And then I can say, hey, I want

to reset my password. This is one of my credit card numbers. And this, in fact,

worked. So this is where the bad guy got a hold of this guy's, Mat's, Amazon

account.

But OK. How do you fish out the credit card number for resetting Apple's site? Well,

Amazon was actually very careful. Even if you break into someone's Amazon

account, it will not print you the saved credit card numbers from that person. But it

will show the last four digits. Just so you know which credit card you're talking about.

So you can list all the credit cards, other than the one you added. You can then go

and break into me.com. You can click on this link and get access to the guy's Gmail

account.

This is all very subtle stuff. And in isolation, each system seems to be doing

somewhat sensible things. But it's actually quite hard to reason about these

vulnerabilities and weaknesses unless you have this whole picture explained to you

and you've sort of put all the pieces together. So this is actually fairly tricky stuff.

And unfortunately, well, much like for every one of these three categories, the

answer for how to avoid this is often think hard and be careful.

I guess the one general plan is, be conservative in terms of what you set your policy

10



to be, to maybe not depend on things other sites might reveal. So well, I'm not sure

if any really great advice would have prevented this problem. But now you know.

And now you'll make other mistakes. There's many other examples of policies going

wrong and allowing a system to be compromised.

That's interesting enough. But let's look at how people might screw up threat

models. So let me turn off this blue square. OK. So what are examples of threat

models that go wrong?

Well, probably a big one in practice is human factors. So we often make

assumptions about what people will do in a system, like they will pick a good, strong

password, or they will not click on random websites that they get through email and

enter their password there. So these are-- well, as you probably suspect, and in

practice, happens to be the case, these are not good assumptions in all cases. And

people pick bad passwords. And people will click on random links. And people will

enter their password on sites that are actually not the right site at all. And they will

not be paying a lot of attention.

So you probably don't want to have threat models that make very strong

assumptions about what humans will do because inevitably, something will go

wrong. Make sense? Any questions? All right.

Another sort of good thing to watch out in threat models is that they sometimes

change over time. Or whether something is a good assumption or not changes over

time. One example of this is actually at MIT in the mid '90s-- mid '80s, actually--

Project Athena developed this system called Kerberos. And we'll read about this in a

couple of weeks in this class. And at the time, they were sort of figuring out, well,

Kerberos is going to be based on cryptography. So we need to pick some size keys

to make sure they're not going to be guessed by arbitrary people. And they said,

OK. Well you know, 56-bit keys, at the time, for this cypher called DES, seemed like

a plausible size. Maybe not great, but certainly not entirely unreasonable. And this

was in the mid '80s.

But then you know, this system got popular and got used a lot. MIT still uses it. And

11



they never really went back to seriously revisit this assumption. And then, a couple

years ago, a group of 6.858 students figured out that actually, yeah, you can just

break this, right? It's easy enough to enumerate all the 256 keys these days.

Computers are so fast, you can just do it. And as a result, they were able to, with

the help of some hardware from a particular web service-- we'll have some links the

lecture notes-- they were able to get, basically, anyone's Kerberos account key in

roughly a day.

And so this assumption was good in the mid 1980s. No longer a good assumption

today. So you really have to make sure your assumptions sort of keep up with the

times.

Maybe a more timely example is, if your adversary-- or if you're worried about

government attacks, you might realize that you shouldn't trust hardware even these

days, right? There was all these revelations about what the NSA is capable of doing.

And they have hardware back doors that they can insert into computers. And maybe

up until a couple years ago, well, who knows? I guess we didn't know about this

stuff. So maybe it was a reasonable assumption to assume your laptop is not going

to be compromised physically, the hardware itself.

But now you know. Actually, if you're worried about the government being after you,

you probably have a much harder problem to deal with because your laptop might

be compromised physically, regardless of what you install in it. So we really have to

be careful with your threat model and really sort of balance it against who you think

is out to get you. I think it's going to be a very expensive proposition if you're going

to try to protect yourself from the NSA, really. On the other hand, if you're just

protecting yourself from random other students that are, I don't know, snooping

around in your Athena home directory or whatnot, maybe you don't have to worry

about this stuff as much. So it's really a balancing game and picking the right threat

model.

Another example of a bad threat model shows up in the way secure websites these

days check certificates of a website that you're connecting to. So in this SSL

12



protocol or TLS, when you connect to a website and it says HTTPS-- we'll talk much

more about this in later lectures-- but what happens is that the site you're

connecting to presents you a certificate signed by one of the certificate authorities

out there that attests that, yep, this key belongs to Amazon.com.

And architecturally, the sort of mistake or the bad threat model that these guys

assumed is that all these CAs are going to be trustworthy. They will never make a

mistake. And in fact, the way system works is that there's hundreds of these CAs

out there. The Indian postal authority, I think, has a CA. The Chinese government

has a CA. Lots of entities are certificate authorities in this design. And any of them

can make a certificate for any host name or a domain name.

And as a result, what happens if you're a bad guy, if you want to compromise Gmail

or if you want to impersonate Gmail's website, you just have to compromise one of

these certificate authorities. And it turns out the weakest link is probably some

poorly run authority somewhere in some, you know, not particularly up to date

country. Who knows, right? And as a result, it's probably a bad assumption to build

a system-- or it's a bad idea to build a system around the assumption that you'll

manage to keep all 300 certificate authorities spread out around the globe perfectly

secure. But yet, that's the assumption underpinning the security mechanism of

today's SSL protocol used by web browsers.

And there's sort of many other, I guess, examples that are things you might not

have thought of. Another sort of amusing example from the 1980s was DARPA. This

defense agency, at the time, really wanted to build secure operating systems. And

they actually went so far as to get a bunch of universities and researchers to build

secure OS prototypes. And then they actually got a red team, like a team of bad

guys pretending to be the attackers, and told them, well, go break into these secure

operating systems any way you can. We actually want to know, is it secure?

And it's kind of amusing, some of the surprising ways they compromised the

systems. One was that there was this OS research team that seemed to have a

perfectly secure OS, but it got compromised. And the way it happened is that the

13



server in which the source code of the operating system was stored was some

development machine in someone's office that wasn't secured at all. But that had all

the source code. So the bad guys broke into that server. It was not protected very

well. Changed the source code of the operating system to introduce a back door.

And then, when the researchers built their operating systems, well, it had this back

door. And the bad guys were able to break in.

So you really have to think about all the possible sort of assumptions you're making

about where your software is coming from, about how the bad guy can get in, in

order to make sure your system is really secure. And there's many other examples

in lecture notes, if you want. So I'm using anecdotes. You can page through those.

Probably the most pervasive problem that shows up, of course, is in mechanisms,

though. And in part, it's because mechanisms are the most complicated part of the

story. It's the entirety of all the software and hardware and all that sort of system

components that make up what is trying to enforce your security policy. And there's

no end of ways in which mechanisms can fail.

And, partly as a result, much of this class will focus pretty heavily on mechanisms

and how do you make mechanisms that are secure, that provide correct

enforcement of security policies. And we'll talk about threat models and policies as

well. But turns out it's much easier to make clean, sort of crisp statements about

mechanisms and ways they work and don't work, as opposed to policies and threat

models which, really, you have to figure out how to fit them into a particular context

where you're using a system.

So let's look at some examples of, I guess, mechanism bugs. One that you might

have heard in the last couple of days was a problem in the security mechanism in

Apple's cloud infrastructure called iCloud. Well actually, any one of you that has an

iPhone might be using this iCloud service. They basically provide storage for files

and let you find your iPhone if you lose it, and probably lots of other useful features.

And I think it's some relative of this me.com service that was implicated in this

scheme a couple years back.

14



And the problem that someone discovered in this iCloud service is that they didn't

enforce the same sort of mechanism at all interfaces. OK, so what does iCloud look

like? Well, it basically provides lots of services for the same sort of set of accounts.

So maybe you have your file storage on iCloud. Maybe you have your photo

sharing. Maybe you have other interfaces. And one of the interfaces into iCloud--

these are all sort of at different APIs that they provide-- was this feature to find my

iPhone, I think.

And all these interfaces want to make sure that you are the right user, you're

authenticated correctly. And unfortunately, the developers all this iCloud system,

you know it's a giant piece of software. I'm sure lots of developers worked on this.

But on this particular interface, the find my iPhone interface, when you tried to log in

with a username and password, they didn't keep track of how many times you tried

to log in. And the reason is important is that, as I mentioned earlier, humans are not

that great at picking good passwords.

So actually building a system that authenticates users with passwords is pretty

tricky. We'll actually read a whole paper about this later on. But one good strategy

is, there's probably a million passwords out there that will account for 50% percent

of accounts. So if you can guess, make a million attempts at someone's account,

then there's a good chance you'll get their password because people actually pick

predictable passwords. And one way to try to defeat this is to make sure that your

system doesn't allow an arbitrary number of attempts to log in to an account. Maybe

after three or 10 tries, you should say, well, you've had enough tries. Time out. You

can try again in 10 minutes or in an hour.

And this way you really slow down the attacker. So they can only make a handful of

guesses a day, instead of millions of guesses. And as a result, even if you have not

the greatest of passwords, it's going to be pretty hard for someone to guess it.

What would happen is that iCloud had this password guessing prevention or,

basically, back off, on some interfaces, like if you tried to log in through other

interfaces and you failed 10 times, it would say, well, sorry. You have to wait until

15



you try again. But on this find my iPhone interface, they forget this check. That's

probably, you know, some guy just forgot to call this function on this API. But the

result is that, for the same set of accounts, a bad guy would be able to now guess

your password through this interface at millions of attempts per day easily, because

this is just limited up to how fast they can send packets to this iCloud thing.

And they can probably guess your password with pretty good accuracy, or with

pretty good success rate, after making many guesses. And this led to some

unfortunate break ins. And people's confidential data got stolen from this iCloud

service. So this is sort of an example of you had the right policy. Only the user and

the right password would get you access to the files. You even had the right threat

model that, well, the bad guy might be able to guess the password. So we'll have to

break limit the number of guess attempts. But he just screwed up, like the

mechanism had a bug in it. He just forgot to enforce this right policy and mechanism

at some interface.

And this shows up again and again in systems, where just made a mistake and it

has pretty drastic effects on the security of the overall system. This make sense?

Any questions so far? All right. OK.

So another example-- this is sort of an example of you forget to check for password

guessing attempts. There's many other things you can forget. You could forget to

check for access control altogether. So one example is, Citibank had a website--

actually, still has a website that allows you to look at your credit card account

information. So if you have a credit card with Citibank, you go to this website, it tells

you, yeah, you have this credit card. Here's all the charges, all this great stuff.

And the workflow a couple of years ago was that you go to some site, you provide a

log in username and password, and you get redirected to another URL, which is

something like, I don't know, I'm guessing, but basically like citi.com/account?id=

you know, whatever, one two three four. And it turns out that some guy figured out,

well, if you change this number, you just get someone else's account. And it's not

clear quite how to think of this.

16



One possibility is that these guys were just thinking right, but they, again, forgot to

check a function in this account page that, not only do I have a valid ID number, but

it's also the ID number of the guy that's currently logged in. It's an important check

to me. But it's easy to forget.

Another thing is, maybe these guys were thinking, no, no one could hit URLs.

Maybe they had a bad threat model, right? Maybe they're thinking, the URL-- if I

don't print this URL, no one can click on it. It's like a bad threat model. So maybe

that's-- well, it's hard to tell exactly what went wrong. But anyway, these mistakes do

happen. And they show up a lot. So easy to have small, seemingly, bugs in your

mechanism lead to pretty unfortunate consequences.

Another example that's not so much in missing checks is a problem that showed up

on Android phones a couple of months ago. Maybe I'll use this board over here. So

the problem was related to Bitcoin, which is this-- well, I'm sure you've heard-- this

electronic currency system that's pretty popular these days. And the way that Bitcoin

works, at a very high level, is that your balance of Bitcoins is associated with a

private key. And if you have someone's private key you can, of course, spend their

Bitcoins.

So the security of Bitcoin relies quite heavily on no one else knowing your private

key. It's kind of like a password, except it's even more important, because people

can probably make lots of guesses at your private key. And there's no real server

that's checking your key. It's just cryptography. So any machine can try to make lots

of guesses at your private key. And if they guess it, then they can transfer your

Bitcoins to someone else. And as a result, it's critically important that you generate

good, random keys that no one else can guess.

And there are people using Bitcoin on Android. And the Android applications for

Bitcoin were getting random values for these keys using this Java API called

SecureRandom(), which sounds great, but as people figured out, well, OK. So what

it is, right, it doesn't really get real random numbers. Inside of it, there's this

construction called Pseudorandom Number Generator, or PRNG that, given a

17



particular seed value, like you get maybe a couple of hundred bits of randomness

and you shove it into this PRNG, you can keep asking it for more randomness and

sort of stretch these random bits into as many random bits as you want. So you see

them initially, and then you can generate as many random bits as you want.

And for various cryptographic reasons I won't go into here, it actually works. If you

give it a couple of hundred really good random bits initially, it's going to be very hard

for anyone to predict what the pseudorandom values it's generating are. But the

problem is that this Java library had a small bug in it. In some set of circumstances,

it forgot to initialize the PRNG with a seed, so it was just all zeros, which means that

everyone could just figure out what your random numbers were. If they start with

zeros, they'll produce the same random numbers as you, which means they'll

produce the same private key as you. So they can just generate the same private

key and transfer your Bitcoins.

So this is, again, a small or not small bug, depending on, I guess, who is asking. But

nonetheless, right? Another example of small programming mistakes leading to

pretty catastrophic results. Lot's of people got their Bitcoin balances stolen because

of this weakness. Of course, the fix is pretty simple at some level. You change the

Java implementation of SecureRandom() to always seed this PRNG with random

input bits. And then, hopefully, you're in good shape. But still, that's yet another

example of mechanism failure. Yeah?

AUDIENCE: Just to be clear, is this a different attack from the DSA signature randomness?

PROFESSOR: Well yeah. So the actual problem is a little bit more complicated, as you're hinting at.

The problem is, even if you didn't generate your key on the Android device in the

first place, the particular signature scheme used by Bitcoin assumes that every time

you generate a new signature with that key, you use a fresh, what's called a nonce,

for generating that signature. And if you ever generate two signatures with the same

nonce, then someone can figure out what your key is.

The story is pretty similar. But the details are a little different. So yeah, even if you

actually generated your key somewhere else and your key was great, it's just that

18



every time you generate a signature, you would-- and you generated two signatures

with exactly the same nonce, or random value, someone could apply some clever

math to your signatures and sort of extract your public key out of it. Or private key,

more importantly.

All right. Other questions about these problems, examples, et cetera? All right.

So I guess, one thing I wanted to point out is that actually, well, as you're starting to

appreciate, is that in computer security, almost every detail has a chance of really

mattering. If you screw up almost something seemingly inconsequential, like

forgetting to check something, or this, or forgetting to initialize the random seed, it

can have pretty dramatic consequences for the overall system. And you really have

to be very clear about, what is the specification of your system? What is it doing?

Exactly what are all the corner cases?

And a good way to sort of think of breaking a system or, conversely, figure out if

your system is secure, is to really push all the edge cases, like what happens if my

input is just large enough? Or what is the biggest or the smallest input? What is the

sort of strangest set of inputs I could provide to my program and push it in all these

corner cases?

One example of this ambiguity, sort of a good example to keep in mind, is how SSL

certificates, again, encode names into the certificate itself. So this is a different

problem than the problem about the certificate authorities being trusted. So these

SSL certificates are just sequences of bytes that a web server sends to you. And

inside of this SSL certificate is the name of the server you're connecting to, so

something like Amazon.com. You know, you can't just put down those bytes. You

have to encode it somehow and specify, well, it's Amazon.com. And that's the end

of the string.

So in SSL certificates, they use a particular encoding scheme that writes down

Amazon.com by first writing down the number of bytes in the string. So you first

write down, OK. Well, I'm going to have a 10 byte string called Amazon.com. That's

actually 10 bytes. Great. OK.

19



So this is like-- in the SSL certificate, somewhere in there, there is this byte 10

followed by 10 bytes saying what the host name is. And there's other stuff

afterwards, right, and before. And when a browser takes it, well, the browser is

written in C. And the way C represents strings is by null terminating them. So in C, a

string doesn't have a length count. Instead, it has all the bytes. And the end of the

string is just the byte zero. And in C, you write it with a backslash zero character.

So this is in memory in your browser. Somewhere in memory there's this string of

11 bytes, now, with an extra zero at the end. And when a browser interprets this

string, it just keeps going until it sees an end of string marker, which is a zero byte.

OK. So, what could go wrong? Any guesses? Yeah?

AUDIENCE: You have a zero in the middle [INAUDIBLE]?

PROFESSOR: Yes. This is great. All right. So, this is actually a bit of a discontinuity in terms of how

this guy represents strings and this guy. So suppose that I own the domain foo.com.

So I can get certificates for anything dot foo dot com. So what I could do is ask for a

certificate for the name amazon.com0x.foo.com. That's a perfectly valid string. It

has a bunch of bytes. I guess it's 10, 11 12 13, 14, 15, 16, there's another four, 20,

right? So this is 20 byte name with these 20 bytes.

So it used to be that if you go to a certificate authority, in many cases, you could

say, hey, I own foo.com. Give me a certificate for this thing. And they'd be perfectly

willing to do it because it's a subdomain of foo.com. It's all yours. But then, when a

browser takes this string and loads it in memory, well, what it does is the same thing

it did here. It copies the string. amazon.com0x.foo.com. It'll dutifully add the

terminating zero at the end. But then, when the rest of the browser software goes

and tries to interpret the string at this memory location, it'll keep going up until it gets

to zero and say, OK well, that's the end of the string. So this is Amazon.com. That's

it.

So this sort of disconnect between how C software and how SSL certificates

represent names led to some unfortunate security problems. This was actually

20



discovered a number of years ago now by this guy, Moxie Marlinspike. But it's a

fairly clever observation. And these kinds of encoding bugs are actually also pretty

common in lots of software because, unless you're very diligent about exactly how

you encode things, there might be different ways of encoding. And whenever there's

disagreement, there's a chance the bad guy can take advantage of this. One

system thinks that's a fine name. Another thinks that's not, something else. So these

are good places to sort of push a system to see how it might break. That make

sense?

All right. So maybe the last example of mechanism failure I'm going to talk about

today is a reasonably popular one. It's this problem or buffer overflows. So some of

you have seen this in, or at least at some level, in 6.033, if you did the undergrad

course. But for those of you that have forgotten or haven't taken oh three three,

we'll sort of go over buffer overflows in more detail. And this will be, actually, quite

critical for you guys, because lab one is all about buffer overflows. And you're going

to be exploiting these vulnerabilities in a somewhat real web server.

So let's figure out, what is the setting? What are we talking about here? So the

setting we're going to be considering is a system which has, let's say, a web server.

So what we have is, we have some computer out there that has a web server on it.

And the web server is a program that is going to accept connections from the

outside world, take requests-- which are basically just packets-- and somehow

process them, and do some checking, probably. If it's an illegal URL or if they're

trying to access a file they are not authorized to access, the web server is going to

return an error. But otherwise, it's going to access some files, maybe on disk, and

send them back out in some sort of a reply.

So this is a hugely common picture, almost any system you look at. What's the

policy? Or what's the threat model? So this is a bit of a problem in many real world

systems, namely that it's actually pretty hard to pin down what is the exact policy or

threat model that we're talking about. And this sort of imprecision or ambiguity about

policies, threat models, et cetera, is what sometimes leads to security problems. Not

in this particular case, but we'll see.

21



But maybe just to give you a sense of how to think of a typical web server in the

context of this policy, threat model kind of stuff, is that well, probably the policy is,

the web server should do what the programmer intended it to do. It's a little vague.

But that's probably what's going on because anything more specific, as well, the

web server should do exactly what the code does, is going to be a bit of an

[INAUDIBLE] And if your code has a bug, well, your policy says, well, that's exactly

what I should do. I should follow the bug.

So it's a little hard to state a policy precisely, but in this case, let's go with some

intuitive version of, well, the web server should do what the programmer wanted it to

do. And the threat model is probably, the attacker doesn't have access to this

machine, can't log in to it remotely, doesn't have physical access to it, but can send

any packet they want. So they're not restricted to certain kinds of packets. Anything

you can shape and sort of deliver to this web server, that's fair game. Seems like a

reasonable threat model, in practice, to have in mind.

And I guess the goal is that this web server shouldn't allow arbitrary stuff to go

wrong here. I guess that sort of goes along with what the programmer intended.

The programmer probably didn't intend any request to be able to access anything

on the server. And yet, it turns out if you make certain kinds of mistakes in writing

the web server software, which is basically the mechanism here, right? The web

server software is the thing that takes a request and looks at it and makes sure that

it's not going to do something bad, sends a response back if everything's OK. The

web server in this mechanism. It's enforcing your policy.

And as a result, if the web server software is buggy, then you're in trouble. And one

sort of common problem, if you're writing software in C which, you know, many

things are still written in C and probably will continue to be written in C for a while,

you can mismanage your memory allocations. And as we saw in this SSL certificate

naming example, even sort of a single byte can really make a huge difference, in

terms of what goes on. And I guess for this example, we'll look at a small piece of

code that's not quite a real web server. In the lab, you'll have this whole picture to

play with. But for lecture, I just want to give you a simplified example so we can talk
22



about what's sort of at the core of what's going wrong.

And, in particular, if this system wakes up, I will show you sort of a very small C

function. And we can sort of see what goes wrong if you provide different inputs to

that piece of code. All right.

So the C function that I have in mind is this guy. Somewhere here. Oh, yeah. It's

coming on. All right. So here's the sort of program I'm talking about, or I want to use

as an example here. So this program is just going to read a request. And you can

sort of imagine it's going to read a request from the network. But for the purposes of

this example, it's just going to read a request from whatever I'm typing in on the

keyboard. And it's going to store it in a buffer here. And then it's going to parse it is

an integer and return the integer. And the program will then print whatever integer I

get back.

It's like far from a web server. But we'll at least see some basics of how buffer

overflows work and what goes wrong. So let's see actually what happens if we run

this program. So I can compile it here. And actually, you can sort of see the-- it's

already telling me what I'm screwing up, right? The get function is dangerous and

should not be used. And we'll see in a second why the compiler is so intent on

telling me this. And it actually is true. But for now, suppose we're a happy go lucky

developer that is willing to ignore this warning.

So OK. I run this redirect function, I provide some input, and it works. Let's see if I

provide large inputs. If I type in some large number, well, at least it gives me some

large number. It basically maxes out to two to the 31 and prints that and doesn't go

any higher. So that's maybe not disastrous, right? Whatever. You provided this

ridiculously large number. You got something didn't quite work.

It's not quite a problem yet. But if we provide some really large input, we might get

some other problem, right? So suppose I provide in a lot of by 12 I just provided

things that are not numbers. It prints zero. That's not so bad. But suppose I'm going

to paste in a huge number of As. OK, so now the program crashes. Maybe not too

surprising. So if it was the case that if I send a bad request to the web server, it just
23



doesn't get back to me or doesn't send a reply, that would be fine. But we'll sort of

look inside and see what happens, and try to figure out how we can actually take

advantage of this crash to maybe do something much more interesting, or, well,

much more along with what a hacker might be interested in doing.

So to do this, we're going to run this program under a debugger. You'll get super

familiar with this in lab one. But for now, what we're going to do is set a breakpoint

in that redirect function. And we're going to sort of run along and see what happens.

So when I run the program, it's going to start executing in the main function. And

pretty quickly, it calls redirect. And the debugger is now stopped at the beginning of

redirect. And we can actually see what's going on here by, for example, we can ask

it to print the current CPU registers.

We're going to look at really low level stuff here, as opposed to at the level of C

source code. We're going to look at the actual instructions that my machine is

executing because that's what really is going on. The C is actually maybe hiding

some things from us. So you can actually print all the registers. So on x86, as you

might remember. Well, on [INAUDIBLE] architecture, there's a stack pointer. So let

me start maybe drawing this diagram on the board so we can try to reconstruct

what's happening.

So what's going on is that my program, not surprisingly, has a stack. On x86, the

stack grows down. So it sort of is this stack like this. And we can keep pushing stuff

onto it.

So right now, the stack pointer points at this particular memory location FFD010. So

some value. So you can try to figure out, how did it get there? One way to do it is to

disassemble the code of this redirect function. Is this going to work better? Really?

Convenience variable must have integer value. Man. What is going on with my

debugger?

All right. Well, we can disassemble the function by name. So this is what the function

is doing. So first off, it starts by manipulating something with this EBP register.

That's not super interesting. But the first thing it does after that is subtract a certain
24



That's not super interesting. But the first thing it does after that is subtract a certain

value from the stack pointer. This is, basically, it's making space for all those

variables, like the buffer and the integer, i, we saw in the C source code.

So we're actually, now, four instructions into the function, here. So that stack pointer

value that we saw before is actually already in the middle, so to say, of the stack.

And currently, there's stuff above it that is going to be the buffer, that integer value,

and actually, also the return address into the main function goes on the stack, as

well. So somewhere here, we'll have the return address. And we actually try to

figure out, where are things on the stack?

So we can print the address of that buffer variable. So the buffer variable is at

address D02C. We can also print the value of that integer, i. That guy is at D0AC.

So the i is way up on the stack. But the buffer is a bit lower.

So what's going on is that we have our buffer here on the stack, and then followed

above by i and maybe some other stuff, and then finally, the return address into the

main function that called redirect. And the buffer is-- this is going, the stack is

growing down. So these are higher addresses. So what this means is that the

buffer-- we actually have to decide, where is the zeroth element of the buffer, and

where is the 128th element of this buffer? So where does the zeroth element of the

buffer go? Yeah?

Should be at the bottom, right, because yeah, higher elements just keep going up.

So buff of zero is down here. It just keeps going on. And buff of 127 is going to be

up there. And then we'll have i and other stuff. OK.

Well, let's see what happens now if we provide that input that seemed to be

crashing it before. So I guess one thing we can actually do before this is to see

whether we can actually find this return address. Where it actually happens to live is

at the EBP pointer. This is just a convenient thing in the x86 calling convention, that

the EBP pointer, or register, actually happens to point to something on the stack

which is going to be called the saved EBP. It's a separate location, sort of after all

the variables but before the return address. And this is the thing that's being saved

25



by those first couple of instructions at the top.

And you actually sort of examine it. In GDB you can say, examine x, some value, so

the EBP pointer value. So that's the location of the stack, D0B8. Indeed, it's actually

above even the i variable. So it's great. And it has some other value that happens to

be the EBP before this function was called. But then, sort of one more memory

location up is going to be the return address. So if we print EBP plus four, there's

something else there, this 0x08048E5F. And let's actually see where that's pointing.

So this is something you're going to do a lot in the lab. So you can take this

address. And you can try to disassemble it. So what is this guy? Where did we end

up? So GDB actually helpfully figures out which function contains that address. So

5F. This is the guy that our return address is pointing to. And as you can see, this is

the instruction right after the call to redirect. So when we return from redirect, this is

exactly where we're going to jump and continue execution. This is, hopefully, fairly

straightforward stuff from double oh four, some standard OS class.

OK. So where are we now? Just to recap, we can try to disassemble our instruction

pointer. So we're at the beginning of redirect right now. And we can run for a bit,

and maybe run that getS() function. So OK, we run next. What this does is it runs

getS() and it's waiting for getS() to return. We can provide our bad input to getS()

and try to get it to crash again and see what's going on, really, there, right? So we

can paste a bunch of As again.

OK. So we got out of getS() and things are actually still OK, right? The program is

still running. But we can try to figure out, what is in memory right now and why are

things going to go wrong? Actually, what do you guys think? What happened, right?

So I printed out a bunch of As. What did getS() do to the memory? Yeah, yeah. So it

just keeps writing As here, right? All we actually passed to getS() was a single

pointer, the start of this address, right? So this is the argument to getS(), is a pointer

to this memory location on the stack. So it just kept writing As. And it doesn't actually

know what the length is, so it just keeps going, right? It's going to override As all the

way up the stack, past the return address, probably, and into whatever was up the

26



stack above us.

So we can check whether that's the case. So we can actually print the buffer. And in

fact, it tells us, yeah, we have 180 As there, even though the buffer should be 128

elements large. So this is not so great. And we can actually, again, examine what's

going on in that EBP pointer. Dollar sign, EBP. So in fact, yeah. It's all 0x41, which is

the ASCII encoding of the letter A. And in fact, the return address is probably going

to be the same way, right? If we print the return address, it's also all As. That's not

so great.

In fact, what's going to happen if we return now is the program will jump to that

address, 41414141. And there's nothing there. And it'll crash. That's the

segmentation fault you're getting. So let's just step up to it and see what happens.

So let's run next. So we keep stepping through the program. And we can see where

we are. OK. We're getting close to the end of the function. So we can step over two

more instructions. nexti. And now we can disassemble again. OK.

We're now just at the return instruction from this function. And we can actually figure

out. So as you can see, at the end of the function, it runs this leave x86 instruction,

which basically restores the stack back to where it was. So it sort of pushes the

stack pointer all the way back to the return address using the same EBP. That's

what it's basically for. And now, the stack is pointing at the return address that we're

going to use. And in fact, it's all A's. And if we run one more instruction, the CPU is

going to jump to that exact memory address and start executing code there and

crash, because it's not a valid address that's in the page table.

So let's actually see, just to double check, what's going on. Let's print our buffer

again. Our buffer-- well, that's actually kind of interesting, right? So now, buffer, for

some reason it only says A repeats 128 times. Whereas if you remember before, it

said A repeated 180 times in our buffer. So what happened? Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah, yeah. Exactly. So there's actually something going on after the buffer

27



overflow happens that changes what's going on. So actually, if you remember, we

do this A to i conversion of the string to an integer. And if you provide all As, it

actually writes zero to this memory location. So a zero, if you remember, terminates

strings in C. So GDB now thinks, yep, we have a perfectly well-terminated 128 byte

string of all As.

But you know, it doesn't really matter, because we still have those As up top that

already corrupted our stack. OK. That was actually kind of an important lesson that-

- it's actually a little bit tricky, sometimes, to explore these buffer overflows because,

even though you've already changed lots of stuff on the stack, you still have to get

to the point where you use the value that you have somehow placed on the stack.

So there's other code that's going to run after you've managed to overflow some

buffer and corrupt memory.

You have to make sure that code doesn't do something silly like, if it's A to i, just

exited right away, as soon as it saw a non-integer value, we might not get to jump to

all this 41414141 address. So you have to massage your input in some cases.

Maybe not so much in this case. But in other situations, you'll have to be careful in

constructing this input.

OK, so just to see what happens, we can jump one more time. Well, let's look at our

register. So right now, our EIP, the sort of instruction pointer, is pointing at the last

thing in redirect. And if we step one more time, hopefully we'll jump to, finally, that

unfortunate 4141 address. Over here. And in fact, yep. The program now seems to

be executing there. If we ask GDB to print the current set of registers, yep, the

current instruction pointer is this strange value. And if we exclude one more

instruction, it's going to crash because that's finally trying to execute an instruction

pointer that doesn't correspond to a valid page in the operating system's page table

for this process. Make sense? Any questions?

All right. Well, I've got a question for you guys, actually. So what happens-- you

know, it seems to be exploitable. Or well, OK. Maybe let's first figure out why this is

particularly bad, right? So why is it a problem? So not only does our program crash,

28



but presumably we're going to take it over. So I guess, first simple question is, OK,

so what's the problem? What can you do? Yeah?

AUDIENCE: You can do whatever you want.

PROFESSOR: Yeah. So I was actually pretty silly and just put in lots of As. But if you were careful

about knowing where to put what values, you might be able to put in a different

value and get it to jump somewhere else. So let's see if we can actually do this,

right? We can retrace this whole thing. OK. Re-run the program again. And I guess I

have to reset the breakpoint. So I can break and redirect again. And run. And this

time, I'll, again, next, supply lots of As and overflow things. But I'm not going to try to

carefully construct-- you know, figure out which point in these As corresponds to the

location in the stack. That's something you guys are going to have to do for lab one.

But suppose that I overflow the stack here. And then I'm going to manually try to

change things on the stack to get it to jump to some point I want to jump to. And in

this program, OK, so let's again-- nexti. Where are we? We're at, again, at the very

end of redirect. And let's actually look at the stack, right?

So if we examine esp here, we see our corrupted pointer. OK. Where could we jump

to? What interesting things could we do? Unfortunately, this program is pretty

limited. There's almost nothing in the program's code where you could jump and do

anything interesting. But maybe we can do a little bit of something interesting.

Maybe we'll find the printf in main and jump directly there, and get it to print the x

value, or x equals something. So we can do this. We can actually disassemble the

main function. And main does a bunch of stuff, you know, initializes, calls redirect,

does some more stuff, and then calls printf.

So how about we jump to this point, which is, it sets up the argument to printf, which

is x equals percent d, and then actually calls printf. So we can actually take this

value and try to stick it in the stack. And should be able to do this with the debugger

pretty easily, at least. So you can do this set {int} esp equals this value. So we can

examine esp again and, indeed, it actually has this value. So if we continue now,

well, it printed out x equals some garbage, which I guess happens to be just

29



whatever is on the stack that was passed to printf. We didn't correctly set up all the

arguments because we jumped in the middle of this calling sequence. But yeah, we

printed this value. And then it crashed.

Why did crash? Why do you think? What actually happens, right? So we jump to

printf. And then, something went wrong. Yeah? Well, we changed the return

address so that when we return from redirect, we now jump to this new address,

which is that point up there, right after printf. So where's this crash coming from?

Yeah?

AUDIENCE: Is it restricted because your i is supposed to be some sort of integer, but--

PROFESSOR: No, actually, well the i is like, well it's a 32-bit register. So whatever's in the register,

it'll print. In fact, that's the thing that's in the register. So that's OK. Yeah?

AUDIENCE: [INAUDIBLE] main returns.

PROFESSOR: Yes. Actually, yeah. What's going on is, you have to sort of-- OK, so this is the point

where we jumped. It's set up some arguments. It actually calls printf. printf seems to

work. printf is going to return. Now actually, that's fine, because this call instruction

put a return address on the stack for printf to use. That's fine. Then main is going to

continue running. It's going to run the sleeve instruction, which doesn't do anything

interesting. And then it does another return. But the thing in this-- up to the stack, it

doesn't actually have a valid return address. So presumably, we return to some

other who knows what memory location that's up on the stack and jump somewhere

else.

So unfortunately, here, our pseudoattack didn't really work. It ran some code. But

then it crashed. That's probably not something you want to do. So if you really

wanted to be careful, you would carefully plant not just this return address up on the

stack, but maybe you'd figure out, where is this second red going to get its return

address from, and try to carefully place something else on the stack there that will

ensure that your program cleanly exits after it gets exploited so that no one notices.

So this is all stuff you'll sort of try to do in lab one in a little bit more detail.

30



But I guess one thing we can try to think about now is, we sort of understand why

it's bad to jump to the-- or to have these buffer overflows. One problem, or one sort

of way to think of this is that, the problem is just because the return address is up

there, right? So the buffer keeps growing and eventually runs over the return

address. What if we flip the stack around? You know, some machines actually have

stacks that grow up.

So an alternative design we could sort of imagine is one where the stack starts at

the bottom and keeps going up instead of going down. So then, if you overflow this

buffer, you'll just keep going up on the stack, and maybe there's nothing bad that

will happen. Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: So you're right. It might be that, if you have-- well, so let me draw this new stack

diagram. And we'll sort of try to figure out what it applies to and not. But OK. So we'll

basically just invert the picture. So when you call redirect on this alternative

architecture, what's going to happen is the return address is going to go here on the

stack. Then we'll have our i variable, or maybe the saved EBP. Then we'll have our i

variable. And then we'll have buff. So we'll have buff of zero, buff 127, and so on,

right? So then when we do the overflow, it overflows up there and maybe doesn't hit

anything bad.

I guess what you're saying is that, well, maybe we had a buffer down there. And if

we had a buffer down there, then yeah, that seems kind of unfortunate. It could

overrun this return address. So you're right. So you could still run into problems on

this stack growing up.

But what about this exact program? Is this particular program safe on machines

where the stack grows up? So just to recap what the program read is this guy.

Yeah?

AUDIENCE: Still going to overwrite [INAUDIBLE] as a return value.

PROFESSOR: Yeah. So that's actually clever, right? So this is the stack frame for redirect. I guess
31



PROFESSOR:

it actually spans all the way up here. But what actually happens when you call getS()

is that redirect makes a function call. It actually saves its return address up here on

the stack. And then getS() starts running. And getS() puts its own saved EBP up

here. And getS() is going to post its own variables higher up. And then getS() is

going to fill in the buffer.

So this is still problematic. Basically, the buffer is surrounded by return initials on all

sides. Either way, you're going to be able to overflow something. So at what point--

suppose we had a stack growing up machine. At what point would you be able to

take control of the program's execution then? Yes, and that is actually even easier

in some ways. You don't have to wait until redirect returns. And maybe there was

like, stuff that was going to mess you up like this A to i. No. It's actually easier,

because getS() is going to overflow the buffer. It's going to change the return

address and then immediately return and immediately jump to wherever you sort of

tried to construct, makes sense.

So what happens if we have a program like this that's pretty boring? There's like no

real interesting code to jump to. All you can do is get it to print different x values

here. What if you want to do something interesting that you didn't-- yeah?

AUDIENCE: I mean, if you have an extra cable stack, you could put arbitrary code that, for

example, executes a shell?

PROFESSOR: Yeah yeah yeah. So that's kind of clever, right, because you actually can supply

other inputs, right? So at least, well-- there's some defenses against this. And we'll

go over these in subsequent lectures. But in principle, you could have the return

address here that you override on either the stack up or stack down machine. And

instead of pointing it to some existing code, like the printf inside of main, we can

actually have the return address point into the buffer. So it's previously just some

location on the stack.

But you could jump there and treat it as executable. So as part of your request,

you'll actually send some bytes of data to the server, and then have the return

address or the thing you overwrite here point to the base of the buffer, and you'll
32



address or the thing you overwrite here point to the base of the buffer, and you'll

just keep going from there. So then you'll be able to sort of provide the code you

want to run, jump to it, and get the server to run it.

And in fact, traditionally, in Unix systems, what adversaries would often do is just

ask the operating system to execute the binsh command, which lets you sort of type

in arbitrary shell commands after that. So as a result, this thing, this piece of code

you inject into this buffer, was often called, sort of for historical reasons, shell code.

And you'll try to construct some in this lab one as well. All right. Make sense, what

you can do here? Any questions? Yeah?

AUDIENCE: Is there a separation between code and data?

PROFESSOR: Right. So is there a separation between code and data here? At least, well,

historically, many machines didn't enforce any separation of code and data. You'd

just have a flat memory address space. The stack pointer points somewhere. The

code pointer points somewhere else. And you just execute wherever the code

pointer, instruction pointer is pointing. Modern machines try to provide some

defenses for these kinds of attacks. And what modern machines often do is, they

actually associate permissions with various memory regions. And one of the

permissions is execute.

So the part of your 32-bit or 64-bit address space that contains code has the

execute permission. So if your instruction pointer points there, the CPU will actually

run those things. And the stack and other data portions of your address space

typically don't have the execute permission. So if you happen to somehow set your

instruction pointer to some non-code memory location, you can set it, but the CPU

will refuse to execute it. So this is a reasonably nice way to defend against these

kinds of attacks. But it doesn't prevent quite everything.

So just a question. OK. So how would you bypass this if you had this non-

executable stack? You actually saw this example earlier, right, when I actually

jumped to the middle of main. So that was a way of sort of exploiting this buffer

overflow without having to inject new code of my own. So even if the stack was non-

33



executable, I would still be able to jump in the middle of main. In this particular case,

it's kind of boring. It just prints x and crashes.

But in other situations, you might have other pieces of code in your program that

are doing interesting stuff that you really do want to execute. And that's sort of

called return to libc attacks for, again, somewhat historical reasons. But it is a way to

bypass the security measures. So in the context of buffer overflows, there's not

really a clear cut solution that provides perfect protection against these mistakes

because, at the end of the day, the programmer did make some mistake in writing

this source code. And the best way to fix it is probably just to change the source

code and make sure you don't call getS() very much, like the compiler warned you.

And there's more subtle things that the compiler doesn't warn you about. And you

still have to avoid making those calls.

But because it's hard, in practice, to change all the software out there, many people

try to devise techniques that make it more difficult to exploit these bugs. For

example, making the stack non-executable, so you can't inject the shell code onto

the stack, and you have to do something slightly more elaborate. And next couple of

lectures, next two lectures, actually, we'll look at these defense techniques. They're

not all perfect. But they do, in practice, make it much more difficult for that hacker to

exploit things. Question?

AUDIENCE: I just have a general administrative question.

PROFESSOR: Yeah?

AUDIENCE: I was wondering if there was a final? And also if there are quizzes, and what dates--

PROFESSOR: Oh yeah. Yeah, I think if you go to the schedule page, there's two quizzes. And

there's no final during the final week, but there's a quiz right before it. So you're free

for the final week, but there's still something at the end of the class. Yeah. All right.

OK.

So I think that's probably it for buffer overflows. I guess the one question is, so what

do you do about mechanism problems? And the general answer is to probably have

34



fewer mechanisms. So as we saw here, if you're relying on every piece of software

to enforce your security policy, you'll inevitably have mistakes that allow an

adversary to bypass your mechanism to exploit some bug in the web server. And a

much better design, and one but you will explore in lab two, is one where you

structure your whole system so the security of the system doesn't depend on all the

pieces of software enforcing your security policy.

The security policy is going to be enforced by a small number of components. And

the rest of the stuff actually doesn't matter, for security purposes, if it's right or

wrong. It's not going to violate your security policy at all. So this, kind of minimizing

your trusted computing base is a pretty powerful technique to get around these

mechanism bugs and problems that we've looked at today, at least in a little bit of

detail.

All right. So read the paper for Monday. And come to Monday's lecture. And submit

the questions on the website. See you guys then.

35


