6.858 Lecture 14
SSL/TLS and HTTPS

This lecture is about two related topics:

* How to cryptographically protect network communications, at a larger scale
than Kerberos? [Technique: certificates. |

* How to integrate cryptographic protection of network traffic into the web
security model? [HTTPS, Secure cookies, etc. |

Recall: two kinds of encryption schemes.

* Eisencrypt, Dis decrypt

* Symmetric key cryptography means same key is used to encrypt & decrypt
o ciphertext = E_k(plaintext)
o plaintext = D_k(ciphertext)

* Asymmetric key (public-key) cryptography: encrypt & decrypt keys differ
o ciphertext = E_PK(plaintext)
o plaintext = D_SK(ciphertext)
o PKand SK are called public and secret (private) key, respectively

* Public-key cryptography is orders of magnitude slower than symmetric

Encryption provides data secrecy, often also want integrity.

* Message authentication code (MAC) with symmetric keys can provide integrity.
o Look up HMAC if you're interested in more details.

* (Can use public-key crypto to sign and verify, almost the opposite:
o Use secret key to generate signature (compute D_SK)
o Use public key to check signature (compute E_PK)

Recall from last lecture: Kerberos.

* Central KDC knows all principals and their keys.

¢ When A wants to talk to B, A asks the KDC to issue a ticket.

* Ticket contains a session key for A to talk to B, generated by KDC.

Why is Kerberos not enough? E.g., why isn't the web based on Kerberos?

* Might not have a single KDC trusted to generate session keys.

* Not everyone might have an account on this single KDC.

¢ KDC might not scale if users contact it every time they went to a web site.
* Unfortunate that KDC knows what service each user is connecting to.

* These limitations are largely inevitable with symmetric encryption.

Alternative plan, using public key encryption.

* Suppose A knows the public key of B.

* Don't want to use public-key encryption all the time (slow).

* Strawman protocol for establishing a secure connection between A and B:
o A generates a random symmetric session key S.
o Aencrypts S for PK_B, sends to B.

o Now we have secret key S shared between A and B, can encrypt and
authenticate messages using symmetric encryption, much like Kerberos.

Good properties of this strawman protocol:
* A's data seen only by B.
o Only B (with SK_B) can decrypt S.
o Only B can thus decrypt data encrypted under S.
* No need for a KDC-like central authority to hand out session keys.

What goes wrong with this strawman?
* Adversary can record and later replay A's traffic; B would not notice.
o Solution: have B send a nonce (random value).
o Incorporate the nonce into the final master secret S' = f(S, nonce).
o Often, Sis called the pre-master secret, and S' is the master secret.
o This process to establish S' is called the "handshake".
* Adversary can impersonate A, by sending another symmetric key to B.
o Many possible solutions, if B cares who A is.
o E.g., Balso chooses and sends a symmetric key to A, encrypted with PK_A.
o Then both A and B use a hash of the two keys combined.
o This is roughly how TLS client certificates work.
* Adversary can later obtain SK_B, decrypt symmetric key and all messages.
o Solution: use a key exchange protocol like Diffie-Hellman, which provides
forward secrecy, as discussed in last lecture.

Hard problem: what if neither computer knows each other's public key?

* Common approach: use a trusted third party to generate certificates.

* Certificate is tuple (name, pubkey), signed by certificate authority.

* Meaning: certificate authority claims that name's public key is pubkey.
* B sends A a pubkey along with a certificate.

¢ If A trusts certificate authority, continue as above.

Why might certificates be better than Kerberos?

* No need to talk to KDC each time client connects to a new server.

* Server can present certificate to client; client can verify signature.

¢ KDC not involved in generating session keys.

* (Can support "anonymous" clients that have no long-lived key / certificate.

Plan for securing web browsers: HTTPS.
* New protocol: https instead of http (e.g., https://www.paypal.com/).
* Need to protect several things:

A. Data sent over the network.

B. Code/data in user's browser.

C. Ulseen by the user.

A. How to ensure data is not sniffed or tampered with on the network?

Use TLS (a cryptographic protocol that uses certificates).

TLS encrypts and authenticates network traffic.

Negotiate ciphers (and other features: compression, extensions).
Negotiation is done in clear.

Include a MAC of all handshake messages to authenticate.

B. How to protect data and code in the user's browser?

Goal: connect browser security mechanisms to whatever TLS provides.
Recall that browser has two main security mechanisms:

o Same-origin policy.

o Cookie policy (slightly different).

Same-origin policy with HTTPS/TLS.
o TLS certificate name must match hostname in the URL
o In our example, certificate name must be www.paypal.com.
o One level of wildcard is also allowed (*.paypal.com)
o Browsers trust a number of certificate authorities.
Origin (from the same-origin policy) includes the protocol.

(@]

http://www.paypal.com/ is different from https://www.paypal.com/

o Here, we care about integrity of data (e.g., Javascript code).
o Result: non-HTTPS pages cannot tamper with HTTPS pages.
¢

Rationale: non-HTTPS pages could have been modified by adversary.

Cookies with HTTPS/TLS.
o Server certificates help clients differentiate between servers.
o Cookies (common form of user credentials) have a "Secure" flag.
o Secure cookies can only be sent with HTTPS requests.
o Non-Secure cookies can be sent with HTTP and HTTPS requests.

What happens if adversary tampers with DNS records?
o Good news: security doesn't depend on DNS.
o We already assumed adversary can tamper with network packets.

o Wrong server will not know correct private key matching certificate.

C. Finally, users can enter credentials directly. How to secure that?

Lock icon in the browser tells user they're interacting with HTTPS site.
Browser should indicate to the user the name in the site's certificate.
User should verify site name they intend to give credentials to.

How can this plan go wrong?
* Asyou might expect, every step above can go wrong.
* Not an exhaustive list, but gets at problems that ForceHTTPS wants to solve.

1 (A). Cryptography.

https://www.paypal.com/
https://www.paypal.com
http://www.paypal.com/
http://www.paypal.com/

There have been some attacks on the cryptographic parts of SSL/TLS.
¢ Attack by Rizzo and Duong can allow adversary to learn some plaintext by
issuing many carefully-chosen requests over a single connection.

o Ref:
http://www.educatedguesswork.org/2011/09/security_impact_of_the_ri
zzodu.html

* Recent attack by same people using compression, mentioned in iSEC lecture.

o Ref: http://en.wikipedia.org/wiki/CRIME

* Most recently, more padding oracle attacks.
o Ref: https://www.openssl.org/~bodo/ssl-poodle.pdf
* Some servers/CAs use weak crypto, e.g. certificates using MD5.
* Some clients choose weak crypto (e.g., SSL/TLS on Android).
o Ref: http://op-co.de/blog/posts/android_ssl_downgrade/
* But, cryptography is rarely the weakest part of a system.

2 (B). Authenticating the server.

Adversary may be able to obtain a certificate for someone else's name.
¢ Used to require a faxed request on company letterhead (but how to check?)
* Now often requires receiving secret token at root@domain.com or similar.
* Security depends on the policy of least secure certificate authority.
* There are 100's of trusted certificate authorities in most browsers.
* Several CA compromises in 2011 (certs for gmail, facebook, ..)
o Ref: http://dankaminsky.com/2011/08/31/notnotar/
* Servers may be compromised and the corresponding private key stolen.

How to deal with compromised certificate (e.g., invalid cert or stolen key)?
* Certificates have expiration dates.
¢ Checking certificate status with CA on every request is hard to scale.
* Certificate Revocation List (CRL) published by some CA's, but relatively few
certificates in them (spot-checking: most have zero revoked certs).
* CRL must be periodically downloaded by client.
o Could be slow, if many certs are revoked.
o Nota problem if few or zero certs are revoked, but not too useful.
* OCSP: online certificate status protocol.
o Query whether a certificate is valid or not.
o One issue: OCSP protocol didn't require signing "try later" messages.
= Ref: http://www.thoughtcrime.org/papers/ocsp-attack.pdf
* Various heuristics for guessing whether certificate is OK or not.
o CertPatrol, EFF's SSL Observatory, ..
o Notas easy as "did the cert change?". Websites sometimes test new CAs.
* Problem: online revocation checks are soft-fail.
o An active network attacker can just make the checks unavailable.
o Browsers don't like blocking on a side channel.
= Performance, single point of failure, captive portals, etc.

http://www.educatedguesswork.org/2011/09/security_impact_of_the_rizzodu.html
http://en.wikipedia.org/wiki/CRIME
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://op-co.de/blog/posts/android_ssl_downgrade/
http://www.educatedguesswork.org/2011/09/security_impact_of_the_rizzodu.html
http://dankaminsky.com/2011/08/31/notnotar/
http://www.thoughtcrime.org/papers/ocsp-attack.pdf

= Ref:
https://www.imperialviolet.org/2011/03/18/revocation.html
In practice browsers push updates with blacklist after major breaches.
o Ref: https://www.imperialviolet.org/2012/02/05/crlsets.html

Users ignore certificate mismatch errors.

Despite certificates being easy to obtain, many sites misconfigure them.

Some don't want to deal with (non-zero) cost of getting certificates.

Others forget to renew them (certificates have expiration dates).

End result: browsers allow users to override mismatched certificates.
o Problematic: human is now part of the process in deciding if cert is valid.
o Hard for developers to exactly know what certs will be accepted by

browsers.

Empirically, about 60% of bypass buttons shown by Chrome are clicked through.

o (Though this data might be stale at this point..)

What's the risk of a user accepting an invalid certificate?

Might be benign (expired cert, server operator forgot to renew).
Might be a man-in-the-middle attack, connecting to adversary's server.
Why is this bad?

o User's browser will send user's cookies to the adversary.

o User might enter sensitive data into adversary's website.

o User might assume data on the page is coming from the right site.

3 (B). Mixing HTTP and HTTPS content.
Web page origin is determined by the URL of the page itself. Page can have many
embedded elements:

Javascript via <SCRIPT> tags

CSS style sheets via <STYLE> tags
Flash code via <EMBED> tags
Images via tags

If adversary can tamper with these elements, could control the page. In particular,
Javascript and Flash code give control over page.

CSS: less control, but still abusable, esp w/ complex attribute selectors.

Probably the developer wouldn't include Javascript from attacker's site. But, if the
URL is non-HTTPS, adversary can tamper with HTTP response.

Alternative approach: explicitly authenticate embedded elements.

E.g., could include a hash of the Javascript code being loaded.
o Prevents an adversary from tampering with response.
o Does not require full HTTPS.

Might be deployed in browsers in the near future.
o Ref: http://www.w3.org/TR/SRI/

4 (B). Protecting cookies.

https://www.imperialviolet.org/2011/03/18/revocation.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.w3.org/TR/SRI/

* Web application developer could make a mistake, forgets the Secure flag.
e User visits http://bank.com/ instead of https://bank.com/, leaks cookie.

Suppose the user only visits https://bank.com/. Why is this still a problem?
* Adversary can cause another HTTP site to redirect to http://bank.com/.
* Even if user never visits any HTTP site, application code might be buggy.
o Some sites serve login forms over HTTPS and serve other content over
HTTP.
o Be careful when serving over both HTTP and HTTPS.
= E.g, Google's login service creates new cookies on request.
* Login service has its own (Secure) cookie.
= (Canrequestlogin to a Google site by loading login's HTTPS URL.
= Used to be able to also login via cookie that wasn't Secure.
* ForceHTTPS solves problem by redirecting HTTP URLs to HTTPS.
= Ref: http://blog.icir.org/2008/02 /sidejacking-forced-sidejacking-
and.html

Cookie integrity problems.
* Non-Secure cookies set on http://bank.com still sent to https://bank.com.
* No way to determine who set the cookie.

5 (C). Users directly entering credentials.

* Phishing attacks.

e Users don't check for lock icon.

¢ Users don't carefully check domain name, don't know what to look for.
o E.g, typo domains (paypal.com), unicode

* Web developers put login forms on HTTP pages (target login script is HTTPS).
o Adversary can modify login form to point to another URL.
o Login form not protected from tampering, user has no way to tell.

How does ForceHTTPS (this paper) address some of these problems?
* Server can set a flag for its own hostname in the user's browser.
o Makes SSL/TLS certificate misconfigurations into a fatal error.
o Redirects HTTP requests to HTTPS.
o Prohibits non-HTTPS embedding (+ performs ForceHTTPS for them).

What problems does ForceHTTPS solve?
* DMostly 2, 3, and to some extent 4.
o Users accepting invalid certificates.
o Developer mistakes: embedding insecure content.
o Developer mistakes: forgetting to flag cookie as Secure.
o Adversary injecting cookies via HTTP.

[s this really necessary? Can we just only use HTTPS, set Secure cookies, etc?
* Users can still click-through errors, so it still helps for #2.

http://blog.icir.org/2008/02/sidejacking-forced-sidejacking-and.html
http://blog.icir.org/2008/02/sidejacking-forced-sidejacking-and.html

* Notnecessary for #3 assuming the web developer never makes a mistake.
e Still helpful for #4.
o Marking cookies as Secure gives confidentiality, but not integrity.
o Active attacker can serve fake set at http://bank.com, and set cookies for
https://bank.com. (https://bank.com cannot distinguish)

Why not just turn on ForceHTTPS for everyone?

e HTTPS site might not exist.

¢ Ifitdoes, might not be the same site (https://web.mit.edu is authenticated, but
http://web.mit.edu isn't).

* HTTPS page may expect users to click through (self-signed certs).

Implementing ForceHTTPS.
* The ForceHTTPS bit is stored in a cookie.
* [nteresting issues:
o State exhaustion (the ForceHTTPS cookie getting evicted).
o Denial of service (force entire domain; force via JS; force via HTTP).
= Why does ForceHTTPS only allow specific hosts, instead of entire

domain?

= Why does ForceHTTPS require cookie to be set via headers and
not via JS?

* Why does ForceHTTPS require cookie to be set via HTTPS, not
HTTP?

o Bootstrapping (how to get ForceHTTPS bit; how to avoid privacy leaks).

= Possible solution 1: DNSSEC.

= Possible solution 2: embed ForceHTTPS bit in URL name (if
possible).

= Ifthere's a way to get some authenticated bits from server owner
(DNSSEC, URL name, etc), should we just get the public key
directly?

= Difficulties: users have unreliable networks. Browsers are
unwilling to block the handshake on a side-channel request.

Current status of ForceHTTPS.
* Some ideas from ForceHTTPS have been adopted into standards.
* HTTP Strict-Transport-Security header is similar to a ForceHTTPS cookie.
o Ref: http://tools.ietf.org/html/rfc6797
o Ref: http://en.wikipedia.org/wiki/HTTP_Strict Transport Security
* Uses header instead of magic cookie:
o Strict-Transport-Security: max-age=7884000; includeSubDomains
* Turns HTTP links into HTTPS links.
* Prohibits user from overriding SSL/TLS errors (e.g., bad certificate).
* Optionally applies to all subdomains.
o Why is this useful?
o non-Secure and forged cookies can be leaked or set on subdomains.

http://tools.ietf.org/html/rfc6797
http://en.wikipedia.org/wiki/Http_Strict_Transport_Security
http://web.mit.edu

* Optionally provides an interface for users to manually enable it.
* Implemented in Chrome, Firefox, and Opera.
* Bootstrapping largely unsolved.
o Chrome has a hard-coded list of preloads.
* [E9, Firefox 23, and Chrome now block mixed scripting by default.
o Ref: http://blog.chromium.org/2012/08/ending-mixed-scripting-
vulnerabilities.html
o Ref: https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-
blocking-enabled-in-firefox-23/
o Ref: http://blogs.msdn.com/b/ie/archive/2011/06/23/internet-
explorer-9-security-part-4-protecting-consumers-from-malicious-mixed-

content.aspx

Another recent experiment in this space: HTTPS-Everywhere.
* Focuses on the "power user" aspect of ForceHTTPS.

* Allows users to force the use of HTTPS for some domains.
* Collaboration between Tor and EFF.

* Add-on for Firefox and Chrome.

* Comes with rules to rewrite URLs for popular web sites.

Other ways to address problems in SSL/TLS
* Better tools / better developers to avoid programming mistakes.
o Mark all sensitive cookies as Secure (#4).
o Avoid any insecure embedding (#3).
o Unfortunately, seems error-prone..
o Does not help end-users (requires developer involvement).
* EV certificates.
o Trying to address problem 5: users don't know what to look for in cert.
In addition to URL, embed the company name (e.g., "PayPal, Inc.")
Typically shows up as a green box next to the URL bar.
Why would this be more secure?
When would it actually improve security?
o Might indirectly help solve #2, if users come to expect EV certificates.
* Blacklist weak crypto.
* Browsers are starting to reject MD5 signatures on certificates
o (i0S 5, Chrome 18, Firefox 16)
* and RSA keys with < 1024 bits.
o (Chrome 18, 0S X 10.7.4, Windows XP+ after a recent update)
* and even SHA-1 by Chrome.
o Ref: http://googleonlinesecurity.blogspot.com/2014 /09 /gradually-
sunsetting-sha-1.html
* OCSP stapling.
o OCSP responses are signed by CA.
o Server sends OCSP response in handshake instead of querying online
(#2).

o O O O

http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
http://blogs.msdn.com/b/ie/archive/2011/06/23/internet-explorer-9-security-part-4-protecting-consumers-from-malicious-mixed-content.aspx
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://blogs.msdn.com/b/ie/archive/2011/06/23/internet-explorer-9-security-part-4-protecting-consumers-from-malicious-mixed-content.aspx
https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html

o Effectively a short-lived certificate.
o Problems:
= Not widely deployed.
= Only possible to staple one OCSP response.
* Key pinning.
Only accept certificates signed by per-site whitelist of CAs.
Remove reliance on least secure CA (#2).
Currently a hard-coded list of sites in Chrome.
Diginotar compromise caught in 2011 because of key pinning.
Plans to add mechanism for sites to advertise pins.
= Ref: http://tools.ietf.org/html/draft-ietf-websec-key-pinning-21
= Ref: http://tack.io/

o Same bootstrapping difficulty as in ForceHTTPS.

o O O O O

Other references:
* http://www.imperialviolet.org/2012/07/19 /hope9talk.html

http://tools.ietf.org/html/draft-ietf-websec-key-pinning-21
http://www.imperialviolet.org/2012/07/19/hope9talk.html
http://tack.io/

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

