

6.858 Lecture 13
Kerberos

Administrivia	

Quiz review	
 today	
 (Actual quiz next Wednesday.)
Post your final project idea by tomorrow.

Kerberos setting:	

• Distributed architecture, evolved from a single time-­‐sharing system.
• Many servers providing	
 services: remote login, mail, printing, file server.
• Many workstations, some are public, some are private.
• Each user logs into their own workstation,	
 has root	
 access.
• Adversary may have his/her own workstation too.
• Alternatives at the time: rlogin, rsh.
• Goal:	
 allow users to access services,	
 by authenticating to servers.
• Other user information distributed via Hesiod,	
 LDAP, or some other directory.
• Widely used: Microsoft Active Directory uses the Kerberos (v5) protocol

What's the trust model?
• All users, clients, servers	
 trust the	
 Kerberos	
 server.
• No apriori trust between any other pairs of machines.
• Network is not trusted.
• User trusts the local machine.

Kerberos architecture:
• Central Kerberos	
 server, trusted	
 by	
 all parties	
 (or at least all at MIT).
• Users, servers have a private key shared between them and Kerberos.
• Kerberos server keeps track	
 of everyone's private key.
• Kerberos uses keys to achieve mutual *authentication* between client, server.

o Terminology: user, client, server.
o Client and	
 server know each	
 other's names.
o Client is convinced	
 it's	
 talking to	
 server and	
 vice-­‐versa.

• Kerberos does not provide authorization (can user access some resource).
o It's the application's job to decide	
 this.

Why do we need this trusted Kerberos server?
• Users don't need to	
 set up accounts,	
 passwords,	
 etc	
 on	
 each server.

1

Overall architecture diagram

+-----------------------+

c, tgs | |

[User: Kc] <--------> [Kerberos] |

^ \ | Database: |

| \ | c: Kc |

V \ s | s: Ks |

[Server: Ks] \--------> [TGS] |

| KDC |

+-----------------------+

Basic Kerberos constructs from the paper:
Ticket, T_{c,s} = { s, c, addr, timestamp, life, K_{c,s} }

[usually encrypted w/ K_s]

Authenticator, A_c = { c, addr, timestamp }

[usually encrypted w/ K_{c,s}]

Kerberos protocol mechanics.
• Two	
 interfaces	
 to	
 the	
 Kerberos	
 database:	
 "Kerberos"	
 and	
 "TGS" protocols.
• Quite similar; few differences:

o In Kerberos protocol,	
 can specify	
 any c, s; client	
 must know K_c.
o In TGS protocol, client's name is implicit (from ticket).
o Client just needs	
 to	
 know K_{c,tgs} to	
 decrypt response	
 (not K_c).

• Where does the client machine get K_c in the first place?
o For users, derived from a password using, effectively, a hash function.

• Why do we need these two protocols?	
 Why not	
 just	
 use "Kerberos"	
 protocol?
o Client	
 machine can forget user password after it gets TGS ticket.
o Can we	
 just store	
 K_c	
 and	
 forget the	
 user	
 password? Password-­‐

equivalent.

Naming.
• Critical to	
 Kerberos:	
 mapping between keys and principal names.
• Each principal name consists of (name, instance, realm)

o Typically written name.instance@realm
• What	
 entities have principals?

o Users: name is username, instance for special privileges (by convention).
o Servers: name is service name, instance is server's hostname.
o TGS: name is 'krbtgt', instance is realm name.

• Where are these names used / where do the names matter?
o Users remember their user name.
o Servers perform access control based on principal name.
o	 Clients	
 choose a principal they	
 expect to	
 be	
 talking	
 to.

§ Similar to browsers expecting specific certificate name for HTTPS	

• When can a name be reused?

o For user names: ensure no ACL	
 contains that name, difficult.

2

mailto:name.instance@realm	�

o For servers (assuming not on any ACL):	
 ensure users forget server name.
o Must	
 change the key,	
 to ensure old tickets not	
 valid for new	
 server.

Getting	
 the	
 initial ticket.
• "Kerberos"	
 protocol:

o Client	
 sends pair of principal names (c, s), where s is typically tgs.
o Server responds	
 with { K_{c,s},	
 { T_{c,s}	
 }_{K_s}	
 }_{K_c}

• How does the	
 Kerberos	
 server authenticate	
 the	
 client?
o Doesn't need	
 to	
 -­‐-­‐ willing	
 to respond to any request.

• How does the	
 client authenticate	
 the	
 Kerberos	
 server?
o Decrypt the	
 response	
 and	
 check if the	
 ticket looks	
 valid.
o Only the Kerberos server would	
 know K_c.

• In what ways is this better/worse	
 than sending	
 password to server?
o Password	
 doesn't get sent over network,	
 but easier to	
 brute-­‐force.

• Why is the key included twice in the response from Kerberos/TGS server?
o K_{c,s}	
 in	
 response gives the	
 client access	
 to	
 this	
 shared	
 key.
o K_{c,s} in the ticket should convince server the key is legitimate.

General weakness: Kerberos 4 assumed encryption provides message integrity.
• There were some attacks where adversary can tamper with ciphertext.
• No explicit	
 MAC means that no well-­‐defined	
 way to detect tampering.
• One-­‐off	
 solutions: kprop protocol included checksum, hard to match.
• The weakness made it relatively easy for adversary to "mint" tickets.
• Ref: http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2003-004-krb4.txt

General weakness: adversary can mount offline password-­‐guessing	
 attacks.
• Typical passwords	
 don't have	
 a lot of entropy.
• Anyone can ask KDC for a ticket encrypted with user's password.
• Then try	
 to	
 brute-­‐force	
 the	
 user's	
 password	
 offline:	
 easy	
 to parallelize.
• Better design: require client to interact with server for each login attempt.

General weakness:	
 DES hard-­‐coded	
 into the design, packet format.
• Difficult to switch to another cryptosystem when DES became too weak.
• DES key	
 space	
 is too	
 small:	
 keys are only 56 bits, 2^56 is not that big.
• Cheap	
 to break DES these days ($20--$200 via https://www.cloudcracker.com/).
• How could	
 an adversary	
 break Kerberos	
 give	
 this	
 weakness?

Authenticating to a server.
• "TGS" protocol:

o Client sends	
 (s, {T_{c,tgs}}_{K_tgs}, {A_c}_{K_{c,tgs}})
o Server replies	
 with { K_{c,s},	
 { T_{c,s}	
 }_{K_s}	
 }_{K_{c,tgs}}

• How does a server authenticate	
 a client based	
 on the	
 ticket?
o Decrypt ticket using server's key.
o Decrypt authenticator	
 using K_{c,s}.
o Only Kerberos server	
 could	
 have	
 generated	
 ticket (knew K_s).

3

https://www.cloudcracker.com/
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2003-004-krb4.txt

o Only client	
 could have generated authenticator (knew	
 K_{c,s}).
• Why does the ticket	
 include c?	
 s?	
 addr?	
 life?

o Server can extract client's principal name from ticket.
o Addr tries to prevent stolen ticket from being used on another machine.
o Lifetime similarly tries to limit damage from stolen ticket.

• How does a network protocol use	
 Kerberos?
o Encrypt/authenticate all messages with K_{c,s}
o Mail server commands, documents sent to printer, shell I/O, ..
o E.g., "DELETE	
 5"	
 in a mail server protocol.

• Who generates the authenticator?
o Client, for each	
 new connection.

• Why does a client	
 need to send an authenticator,	
 in	
 addition	
 to the ticket?
o Prove to the server that an adversary is not replaying an old message.
o Server must keep last few authenticators in memory, to detect replays.

• How	
 does Kerberos use time? What happens if the clock is wrong?
o Prevent stolen tickets from being used forever.
o Bound size of replay	
 cache.
o If clock is wrong,	
 adversary	
 can use	
 old tickets or replay	
 messages.

• How	
 does client authenticate server? Why would it matter?
o Connecting	
 to file server: want to know you're getting legitimate files.
o Solution: send back { timestamp + 1 }_{K_{c,s}}.

General weakness: same key, K_{c,s}, used for many things
• Adversary can substitute any msg encrypted with K_{c,s} for any other.
• Example: messages across multiple sessions.

o Authenticator does not attest to K_{c,s} being fresh!
o Adversary can splice fresh authenticator with old message
o Kerberos v5 uses fresh session	
 key each time, sent in authenticator

• Example: messages in different directions
o Kerberos v4 included a direction	
 flag	
 in	
 packets (c-­‐>s	
 or s-­‐>c)
o Kerberos v5 used separate keys: K_{c-­‐>s},	
 K_{s-­‐>c}

What	
 if users connect to wrong	
 server (analogue of MITM	
 / phishing	
 attack)?
• If server is intercepting	
 packets,	
 learns what service	
 user connects to.
• What if user accidentally types ssh malicious.server?

o Server learns user's principal name.
o Server does not get user's	
 TGS ticket or K_c.
o Cannot	
 impersonate user to others.

What	
 happens if the KDC is down?
• Cannot log in.
• Cannot obtain new tickets.
• Can keep using existing tickets.

Authenticating to a Unix system.

4

•	 No Kerberos	
 protocol involved	
 when	
 accessing	
 local files,	
 processes.
•	 If logging in using Kerberos, user must have presented legitimate ticket.
•	 What if user logs in using username/password (locally or via SSH using pw)?

o	 User knows whether the password he/she supplied is legitimate.
o	 Server has no idea.

•	 Potential attack on a server:
o	 User connects	
 via SSH, types	
 in username,	
 password.
o	 Create	
 legitimate-­‐looking	
 Kerberos response,	
 encrypted with password.
o	 Server has no way to tell if this response is really legitimate.

•	 Solution (if server keeps state): server needs its own principal,	
 key.
o	 First obtain user's	
 TGS, using the	
 user's username and password.
o	 Then use TGS to	
 obtain	
 a ticket for server's principal.
o If user faked the Kerberos server, the second ticket will not match.

Using Kerberos	
 in an application.
•	 Paper suggests using special functions to seal messages, 3 security	
 levels.
•	 Requires moderate changes to an application.

o	 Good for flexibility, performance.
o	 Bad for ease of adoption.
o	 Hard	
 for developers	
 to	
 understand	
 subtle	
 security	
 guarantees.

• Perhaps a better	
 abstraction:	
 secure channel (SSL/TLS).

Password-­‐changing	
 service (administrative interface).
•	 How does the	
 Kerberos	
 protocol ensure	
 that client knows	
 password? Why?

o Special flag in ticket indicates which interface	
 was used to obtain it.
o Password-­‐changing	
 service only	
 accepts	
 tickets	
 obtained	
 by	
 using K_c.
o Ensure that	
 client	
 knows old password,	
 doesn't	
 just	
 have the ticket.

•	 How does the	
 client change	
 the	
 user's	
 password?
o Connect to	
 password-­‐changing	
 service, send new password	
 to	
 server.

Replication.
•	 One master server (supports password changes), zero or more slaves.
•	 All servers can issue tickets, only master can change keys.
•	 Why this split?

o Only one master ensures consistency: cannot have conflicting changes.
•	 Master periodically updates the slaves (when	
 paper was written,	
 ~once/hour).

o	 More recent impls have incremental propagation:	
 lower	
 latency	
 (but not
0).

•	 How scalable	
 is this?
o	 Symmetric crypto (DES, AES) is fast -­‐-­‐ O(100MB/sec) on	
 current	

hardware.
o	 Tickets are small, O(100 bytes), so can support 1M tickets/second.
o	 Easy	
 to scale	
 by adding	
 slaves.

•	 Potential problem: password changes take a while to propagate.
•	 Adversary can still use a stolen password for a while after user changes it.

5

• To learn more about how to do replication right, take 6.824.

Security	
 of the Kerberos	
 database.
• Master and slave servers are highly	
 sensitive	
 in this	
 design.
• Compromised	
 master/slave server means all passwords/keys have to change.
• Must	
 be physically secure,	
 no bugs in	
 Kerberos server software,

o no bugs in any other network service on server machines, etc.
• Can we	
 do better? SSL	
 CA	
 infrastructure slightly better, but not much.

o Will look at it in more detail when we talk about browser security /
HTTPS.

• Most centralized authentication systems suffer from such problems.
o globally-­‐unique	
 freeform names require some trusted mapping authority.

Why didn't	
 Kerberos use public key crypto?
• Too slow at the time: VAX	
 systems, 10MHz	
 clocks.
• Government export restrictions.
• Patents.

Network attacks.
• Offline password guessing	
 attacks on	
 Kerberos server.

o Kerberos v5 prevents clients from requesting ticket	
 for any principal.
o Must include { timestamp }_{K_c} along with request, proves know K_c.
o Still vulnerable to password guessing by network sniffer at that time.
o Better alternatives are available: SRP, PAKE.

• What	
 can	
 adversary do with a stolen	
 ticket?
• What	
 can	
 adversary do with a stolen	
 K_c?
• What	
 can	
 adversary do with a stolen	
 K_s?

o Remember: two parties share each key (and rely on it) in Kerberos!
• What happens after a password change if K_c is compromised?

o Can decrypt all subsequent exchanges, starting	
 with initial	
 ticket
o Can even decrypt password	
 change	
 requests, getting the	
 new password!

• What if adversary figures out your old password sometime later?
o If the adversary	
 saved old packets,	
 can decrypt	
 everything.
o Can	
 similarly obtain current password.

Forward	
 secrecy (avoiding the	
 password-­‐change	
 problem).
• Abstract problem: establish a shared secret between two parties.
• Kerberos approach: someone picks the secret, encrypts it, and sends it.
• Weakness: if the encryption	
 key is stolen,	
 can	
 get	
 the secret later.
• Diffie-­‐Hellman	
 key exchange protocol:

o Two	
 parties	
 pick their	
 own	
 parts	
 of a secret.
o Send messages to each other.
o Messages do not have to be secret, just authenticated (no tampering).
o Two parties use each other's messages to reconstruct shared key.
o Adversary cannot reconstruct key by watching network messages.

6

• Diffie-­‐Hellman	
 details:
o Prime p, generator g mod p.
o Alice and Bob each pick a random, secret exponent (a and b).
o Alice and Bob send (g^a mod p) and (g^b mod p) to each other.
o Each party	
 computes (g^(ab) mod p) = (g^a^b mod p) = (g^b^a mod p).
o Use (g^(ab) mod p) as secret key.
o Assume discrete log (recovering a from (g^a mod p)) is hard.

Cross-­‐realm	
 in Kerberos.
• Shared keys between realms.
• Kerberos v4 only supported pairwise cross-­‐realm	
 (no	
 transiting).

What	
 doesn't	
 Kerberos address?
• Client,	
 server, or KDC machine can be compromised.
• Access control or groups (up to service to implement that).
• Microsoft	
 "extended"	
 Kerberos to support	
 groups.

o Effectively	
 the user's list	
 of groups was included	
 in ticket.
• Proxy problem: still no great solution in Kerberos, but ssh-­‐agent	
 is nice.
• Workstation	
 security (can	
 trojan	
 login,	
 and did happen	
 in	
 practice).

o Smartcard-­‐based approach hasn't	
 taken	
 off.
o Two-­‐step	
 authentication (time-­‐based OTP) used by Google Authenticator.
o Shared desktop systems not so prevalent: everyone has own phone,

laptop,	
 ..

Follow-­‐ons.
• Kerberos v5 fixes many problems in v4 (some mentioned), used widely (MS AD).
• OpenID is a similar-­‐looking	
 protocol	
 for authentication	
 in	
 web	
 applications.

o Similar messages are passed around via HTTP	
 requests.

7

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

