6.858 Lecture 13
Kerberos

Administrivia

Quiz review today (Actual quiz next Wednesday.)
Post your final project idea by tomorrow.

Kerberos setting:

Distributed architecture, evolved from a single time-sharing system.

Many servers providing services: remote login, mail, printing, file server.
Many workstations, some are public, some are private.

Each user logs into their own workstation, has root access.

Adversary may have his/her own workstation too.

Alternatives at the time: rlogin, rsh.

Goal: allow users to access services, by authenticating to servers.

Other user information distributed via Hesiod, LDAP, or some other directory.
Widely used: Microsoft Active Directory uses the Kerberos (v5) protocol

What's the trust model?

All users, clients, servers trust the Kerberos server.
No apriori trust between any other pairs of machines.
Network is not trusted.

User trusts the local machine.

Kerberos architecture:

Central Kerberos server, trusted by all parties (or at least all at MIT).
Users, servers have a private key shared between them and Kerberos.
Kerberos server keeps track of everyone's private key.
Kerberos uses keys to achieve mutual *authentication* between client, server.
o Terminology: user, client, server.
o Client and server know each other's names.
o Clientis convinced it's talking to server and vice-versa.
Kerberos does not provide authorization (can user access some resource).
o It's the application's job to decide this.

Why do we need this trusted Kerberos server?

Users don't need to set up accounts, passwords, etc on each server.

Overall architecture diagram

fmm +
c, tgs | |

[User: Kc] <——————— > [Kerberos] |
~ \ | Database: |

| \ | c: Kc |

v \ S | s: Ks |

[Server: Ks] \-—————-- > [TGS] |
| KDC |

e +

Basic Kerberos constructs from the paper:

Ticket, T {c¢,s} = { s, ¢, addr, timestamp, life, K {c,s} }
[usually encrypted w/ K s]

Authenticator, A ¢ = { ¢, addr, timestamp }
[usually encrypted w/ K {c,s}]

Kerberos protocol mechanics.
* Two interfaces to the Kerberos database: "Kerberos" and "TGS" protocols.
* Quite similar; few differences:
o InKerberos protocol, can specify any ¢, s; client must know K_c.
o In TGS protocol, client's name is implicit (from ticket).
o Client just needs to know K_{c,tgs} to decrypt response (not K_c).
* Where does the client machine get K_c in the first place?
o For users, derived from a password using, effectively, a hash function.
* Why do we need these two protocols? Why not just use "Kerberos" protocol?
o Client machine can forget user password after it gets TGS ticket.
o Can we just store K_c and forget the user password? Password-
equivalent.

Naming.
* (ritical to Kerberos: mapping between keys and principal names.
* Each principal name consists of (name, instance, realm)
o Typically written name.instance@realm
* What entities have principals?
o Users: name is username, instance for special privileges (by convention).
o Servers: name is service name, instance is server's hostname.
o TGS: name is 'krbtgt’, instance is realm name.
* Where are these names used / where do the names matter?
o Users remember their user name.
o Servers perform access control based on principal name.
o Clients choose a principal they expect to be talking to.
= Similar to browsers expecting specific certificate name for HTTPS
* When can a name be reused?
o For user names: ensure no ACL contains that name, difficult.

mailto:name.instance@realm	�

o For servers (assuming not on any ACL): ensure users forget server name.
o Must change the key, to ensure old tickets not valid for new server.

Getting the initial ticket.
¢ "Kerberos" protocol:
o Client sends pair of principal names (c, s), where s is typically tgs.
o Server responds with { K {c,s}, { T_{c,s} }_{K_s} } {K_c}
* How does the Kerberos server authenticate the client?
o Doesn't need to -- willing to respond to any request.
* How does the client authenticate the Kerberos server?
o Decrypt the response and check if the ticket looks valid.
o Only the Kerberos server would know K_c.
* In what ways is this better/worse than sending password to server?
o Password doesn't get sent over network, but easier to brute-force.
* Why is the key included twice in the response from Kerberos/TGS server?
o K {cs} in response gives the client access to this shared key.
o K {c,s} in the ticket should convince server the key is legitimate.

General weakness: Kerberos 4 assumed encryption provides message integrity.

* There were some attacks where adversary can tamper with ciphertext.

* No explicit MAC means that no well-defined way to detect tampering.

* One-off solutions: kprop protocol included checksum, hard to match.

* The weakness made it relatively easy for adversary to "mint" tickets.

* Ref: http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2003-004-krb4.txt

General weakness: adversary can mount offline password-guessing attacks.

* Typical passwords don't have a lot of entropy.

* Anyone can ask KDC for a ticket encrypted with user's password.

* Then try to brute-force the user's password offline: easy to parallelize.

* Better design: require client to interact with server for each login attempt.

General weakness: DES hard-coded into the design, packet format.

* Difficult to switch to another cryptosystem when DES became too weak.

* DES key space is too small: keys are only 56 bits, 2”56 is not that big.

* Cheap to break DES these days ($20--$200 via https://www.cloudcracker.com/).
* How could an adversary break Kerberos give this weakness?

Authenticating to a server.
e "TGS" protocol:
o Clientsends (s, {T_{c,tgs}}_{K_tgs}, {A_c}_{K {ctgs}})
o Server replies with { K_{c,s}, { T_{c,s} } _{K_s} } {K {c,tgs}}
* How does a server authenticate a client based on the ticket?
o Decrypt ticket using server's key.
o Decrypt authenticator using K _{c,s}.
o Only Kerberos server could have generated ticket (knew K_s).

https://www.cloudcracker.com/
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2003-004-krb4.txt

o Only client could have generated authenticator (knew K _{c,s}).
* Why does the ticket include c? s? addr? life?
o Server can extract client's principal name from ticket.
o Addr tries to prevent stolen ticket from being used on another machine.
o Lifetime similarly tries to limit damage from stolen ticket.
* How does a network protocol use Kerberos?
o Encrypt/authenticate all messages with K _{c,s}
o Mail server commands, documents sent to printer, shell 1/0, ..
o E.g,"DELETE 5" in a mail server protocol.
* Who generates the authenticator?
o Client, for each new connection.
* Why does a client need to send an authenticator, in addition to the ticket?
o Prove to the server that an adversary is not replaying an old message.
o Server must keep last few authenticators in memory, to detect replays.
* How does Kerberos use time? What happens if the clock is wrong?
o Prevent stolen tickets from being used forever.
o Bound size of replay cache.
o Ifclockis wrong, adversary can use old tickets or replay messages.
* How does client authenticate server? Why would it matter?
o Connecting to file server: want to know you're getting legitimate files.
o Solution: send back { timestamp + 1 }_{K {c,s}}.

General weakness: same key, K {c,s}, used for many things
* Adversary can substitute any msg encrypted with K_{c,s} for any other.
¢ Example: messages across multiple sessions.
o Authenticator does not attest to K _{c,s} being fresh!
o Adversary can splice fresh authenticator with old message
o Kerberos v5 uses fresh session key each time, sent in authenticator
* Example: messages in different directions
o Kerberos v4 included a direction flag in packets (c->s or s->c)
o Kerberos v5 used separate keys: K_{c->s}, K {s->c}

What if users connect to wrong server (analogue of MITM / phishing attack)?
* If server is intercepting packets, learns what service user connects to.
* What if user accidentally types ssh malicious.server?

o Server learns user's principal name.

o Server does not get user's TGS ticket or K_c.

o Cannot impersonate user to others.

What happens if the KDC is down?
* (Cannotlogin.

* Cannot obtain new tickets.

* Can keep using existing tickets.

Authenticating to a Unix system.

* No Kerberos protocol involved when accessing local files, processes.
* Iflogging in using Kerberos, user must have presented legitimate ticket.
* What if user logs in using username/password (locally or via SSH using pw)?
o User knows whether the password he/she supplied is legitimate.
o Server has no idea.
* Potential attack on a server:
o User connects via SSH, types in username, password.
o Create legitimate-looking Kerberos response, encrypted with password.
o Server has no way to tell if this response is really legitimate.
* Solution (if server keeps state): server needs its own principal, key.
o First obtain user's TGS, using the user's username and password.
o Then use TGS to obtain a ticket for server's principal.
o Ifuser faked the Kerberos server, the second ticket will not match.

Using Kerberos in an application.
* Paper suggests using special functions to seal messages, 3 security levels.
* Requires moderate changes to an application.
o Good for flexibility, performance.
o Bad for ease of adoption.
o Hard for developers to understand subtle security guarantees.
* Perhaps a better abstraction: secure channel (SSL/TLS).

Password-changing service (administrative interface).

* How does the Kerberos protocol ensure that client knows password? Why?
o Special flag in ticket indicates which interface was used to obtain it.
o Password-changing service only accepts tickets obtained by using K_c.
o Ensure that client knows old password, doesn't just have the ticket.

* How does the client change the user's password?
o Connect to password-changing service, send new password to server.

Replication.
* One master server (supports password changes), zero or more slaves.
¢ All servers can issue tickets, only master can change keys.
* Why this split?
o Only one master ensures consistency: cannot have conflicting changes.
* Master periodically updates the slaves (when paper was written, ~once/hour).
o More recent impls have incremental propagation: lower latency (but not
0).
* How scalable is this?
o Symmetric crypto (DES, AES) is fast -- O(100MB/sec) on current
hardware.
o Tickets are small, O(100 bytes), so can support 1M tickets/second.
o Easy to scale by adding slaves.
* Potential problem: password changes take a while to propagate.
* Adversary can still use a stolen password for a while after user changes it.

To learn more about how to do replication right, take 6.824.

Security of the Kerberos database.

Master and slave servers are highly sensitive in this design.
Compromised master/slave server means all passwords/keys have to change.
Must be physically secure, no bugs in Kerberos server software,
o no bugs in any other network service on server machines, etc.
Can we do better? SSL CA infrastructure slightly better, but not much.
o Willlook at it in more detail when we talk about browser security /
HTTPS.
Most centralized authentication systems suffer from such problems.
o globally-unique freeform names require some trusted mapping authority.

Why didn't Kerberos use public key crypto?

Too slow at the time: VAX systems, 10MHz clocks.
Government export restrictions.
Patents.

Network attacks.

Offline password guessing attacks on Kerberos server.
o Kerberos v5 prevents clients from requesting ticket for any principal.
o Must include { timestamp }_{K_c} along with request, proves know K_c.
o Still vulnerable to password guessing by network sniffer at that time.
o Better alternatives are available: SRP, PAKE.
What can adversary do with a stolen ticket?
What can adversary do with a stolen K_c?
What can adversary do with a stolen K_s?
o Remember: two parties share each key (and rely on it) in Kerberos!
What happens after a password change if K_c is compromised?
o Can decrypt all subsequent exchanges, starting with initial ticket
o Can even decrypt password change requests, getting the new password!
What if adversary figures out your old password sometime later?
o Ifthe adversary saved old packets, can decrypt everything.
o Can similarly obtain current password.

Forward secrecy (avoiding the password-change problem).

Abstract problem: establish a shared secret between two parties.
Kerberos approach: someone picks the secret, encrypts it, and sends it.
Weakness: if the encryption key is stolen, can get the secret later.
Diffie-Hellman key exchange protocol:

o Two parties pick their own parts of a secret.
Send messages to each other.
Messages do not have to be secret, just authenticated (no tampering).
Two parties use each other's messages to reconstruct shared key.
Adversary cannot reconstruct key by watching network messages.

o O O O

* Diffie-Hellman details:
o Prime p, generator g mod p.
Alice and Bob each pick a random, secret exponent (a and b).
Alice and Bob send (g"a mod p) and (g"b mod p) to each other.
Each party computes (g (ab) mod p) = (g"a”b mod p) = (g"b”a mod p).
Use (g (ab) mod p) as secret key.
Assume discrete log (recovering a from (g”a mod p)) is hard.

o O O O O

Cross-realm in Kerberos.
¢ Shared keys between realms.
* Kerberos v4 only supported pairwise cross-realm (no transiting).

What doesn't Kerberos address?
¢ (lient, server, or KDC machine can be compromised.
* Access control or groups (up to service to implement that).
* Microsoft "extended" Kerberos to support groups.
o Effectively the user's list of groups was included in ticket.
* Proxy problem: still no great solution in Kerberos, but ssh-agent is nice.
* Workstation security (can trojan login, and did happen in practice).
o Smartcard-based approach hasn't taken off.
o Two-step authentication (time-based OTP) used by Google Authenticator.
o Shared desktop systems not so prevalent: everyone has own phone,
laptop, ..

Follow-ons.
* Kerberos v5 fixes many problems in v4 (some mentioned), used widely (MS AD).
* OpenlD is a similar-looking protocol for authentication in web applications.

o Similar messages are passed around via HTTP requests.

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

