6.858 Lecture 16
Side-channel Attacks on RSA

Side channel attacks: historically worried about EM signals leaking.

* Ref: http://cryptome.org/nsa-tempest.pdf

* Broadly, systems may need to worry about many unexpected ways in which
information can be revealed.

Example setting: a server (e.g., Apache) has an RSA private key.
* Server uses RSA private key (e.g., decrypt message from client).
* Something about the server's computation is leaked to the client.

Many information leaks have been looked at:

* How long it takes to decrypt.

* How decryption affects shared resources (cache, TLB, branch predictor).
* Emissions from the CPU itself (RF, audio, power consumption, etc).

Side-channel attacks don't have to be crypto-related.
* E.g, operation time relates to which character of password was incorrect.
* Or time related to how many common friends you + some user have on
Facebook.
* Or how long it takes to load a page in browser (depends if it was cached).
* Orrecovering printed text based on sound from dot-matrix printer.
o Ref: https://www.usenix.org/conference/usenixsecurity10/acoustic-
side-channel-attacks-printers
* But attacks on passwords or keys are usually the most damaging.

Adversary can analyze information leaks, use it to reconstruct private key.
* Currently, side-channel attacks on systems described in the paper are rare.
o E.g., Apache web server running on some Internet-connected machine.
o Often some other vulnerability exists and is easier to exploit.
o Slowly becoming a bigger concern: new side-channels (VMs), better
attacks.
* Side-channel attacks are more commonly used to attack trusted/embedded hw.
o E.g, chip running cryptographic operations on a smartcard.
o Often these have a small attack surface, not many other ways to get in.
o As paper mentions, some crypto coprocessors designed to avoid this
attack.

What's this paper's contribution?

* Timing attacks known for a while.

* This paper: possible to attack standard Apache web server over the network.
* Uses lots of observations/techniques from prior work on timing attacks.

¢ To understand how this works, first let's look at some internals of RSA...

http://cryptome.org/nsa-tempest.pdf
https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers
https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers

RSA: high level plan
* Picktwo random primes, p and q. Let n = p*q.
* Areasonable key length, i.e., |n| or |d|, is 2048 bits today.
* Euler's function phi(n): number of elements of Z_n”* relatively prime to n.
o Theorem [no proof here]: a*(phi(n)) = 1 mod n, for all a and n.
* So, how to encrypt and decrypt?
o Pick two exponents d and e, such that m”(e*d) = m (mod n), which means
e*d = 1 mod phi(n).
o Encryption will be c = m”e (mod n); decryption will be m = c*d (mod n).
* How to get such e and d?
o Forn=pq, phi(n) = (p-1)(q-1).
o Easy to compute d=1/e, if we know phi(n).
o Extended Euclidean algorithm.
= Ref: http://en.wikipedia.org/wiki/Modular_multiplicative inverse
o In practice, pick small e (e.g., 65537), to make encryption fast.
* Publickeyis (n, e).
* Private key is, in principle, (n, d).
o Note: p and q must be kept secret!
o Otherwise, adversary can compute d from e, as we did above.
o Knowing p and q also turns out to be helpful for fast decryption.
o So, in practice, private key includes (p, q) as well.

RSA is tricky to use "securely" -- be careful if using RSA directly!
* Ciphertexts are multiplicative
o E(a)*E(b) =a”e *b”"e = (ab)”e.
o Can allow adversary to manipulate encryptions, generate new ones.
* RSA is deterministic
o Encrypting the same plaintext will generate the same ciphertext each
time.
o Adversary can tell when the same thing is being re-encrypted.
* Typically solved by "padding"” messages before encryption.
o http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
Take plaintext message bits, add padding bits before and after plaintext.
Encrypt the combined bits (must be less than |n| bits total).
Padding includes randomness, as well as fixed bit patterns.
Helps detect tampering (e.g. ciphertext multiplication).

o O O O

How to implement RSA?
* Key problem: fast modular exponentiation.
o In general, quadratic complexity.
e Multiplying two 1024-bit numbers is slow.
* Computing the modulus for 1024-bit numbers is slow (1024-bit divison).

Optimization 1: Chinese Remainder Theorem (CRT).
* Recall what the CRT says:

http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

o ifx==al (mod p) and x==a2 (mod q), where p and q are relatively

prime, then there's a unique solution x==a (mod pq). (and, there's an
efficient algorithm for computing a)

* Suppose we want to compute m = c*d (mod pq).

¢ Can compute m1 = c*d (mod p), and m2 = c*d (mod q).

* Then use CRT to compute m = c*d (mod n) from m1, m2; it's unique and fast.

* Computing m1 (or m2) is ~4x faster than computing m directly (~quadratic).

* Computing m from m1 and m2 using CRT is ~negligible in comparison.

* So, roughly a 2x speedup.

Optimization 2: Repeated squaring and Sliding windows.
* Naive approach to computing c*d: multiply c by itself, d times.
* Better approach, called repeated squaring:

o c™(2x) = (c"™"x)"2

o cM(2x+1l) = (¢c™x)"2 * C

o To compute c”d, first compute c”(floor(d/2)), then use above for c”d.
o Recursively apply until the computation hits c*0 = 1.

o Number of squarings: |d|

o Number of multiplications: number of 1 bits in d
* Better yet (sometimes), called sliding window:

o c”(2x) = (¢c™x)"2

o c”(32x+1) = (c¢™x)"32 * ¢

o c"(32x+3) = (¢™x)"32 * c™3

o ...

o c"(32xtz) = (c™x)"32 * c”z, generally [where z<=31]
o Can pre-compute a table of all necessary c*z powers, store in memory.
o The choice of power-of-2 constant (e.g., 32) depends on usage.

= (Costs: extra memory, extra time to pre-compute powers ahead of
time.
Note: only pre-compute odd powers of ¢ (use first rule for even).
OpenSSL uses 32 (table with 16 pre-computed entries).

o O

Optimization 3: Montgomery representation.
* Reducing mod p each time (after square or multiply) is expensive.
o Typical implementation: do long division, find remainder.
o Hard to avoid reduction: otherwise, value grows exponentially.
* Idea (by Peter Montgomery): do computations in another representation.
o Shift the base (e.g.,) into different representation upfront.
o Perform modular operations in this representation (will be cheaper).
o Shift numbers back into original representation when done.
o Ideally, savings from reductions outweigh cost of shifting.
* Montgomery representation: multiply everything by some factor R.
o a mod g <-> aR mod g
0o b mod g <-> bR mod g
0 ¢ = a*b mod g <-> cR mod g = (aR * bR)/R mod g

o Each mul (or sqr) in Montgomery-space requires division by R.

* Why is modular multiplication cheaper in montgomery rep?
o Choose R so division by R is easy: R = 2”|q| (2*512 for 1024-bit keys).
o Because we divide by R, we will often not need to do mod g.

= | aR| = |ql
= |bR] = gl
= |aR * bR| = 2|ql

" |aR * bR / R ey
o How do we divide by R cheaply? Only works if lower bits are zero.
o Observation: since we care about value mod g, multiples of q don't
matter.
o Trick: add multiples of q to the number being divided by R, make low bits
0.
* For example, suppose R=2"4 (10000), q=7 (111), divide x=26
(11010) by R.
* x+2q =(binary) 101000
* x+2q+8q = (binary) 1100000
= Now, can easily divide by R: result is binary 110 (or 6).
» Generally, always possible:
* Lowbitofqis1(qisprime), so can "shoot down" any bits.
* To "shoot down" bitk, add 2"k * q
* To shoot down low-order bits], add q*(1*(-q”-1) mod R)
* Then, dividing by R means simply discarding low zero bits.
* Oneremaining problem: result will be < R, but might be > q.
o Ifthe result happens to be greater than g, need to subtract q.
o This is called the "extra reduction”.
o When computing x*d mod q, Pr[extra reduction] = (x mod q) / 2R.
= Here, x is assumed to be already in Montgomery form.
* [ntuition: as we multiply bigger numbers, will overflow more
often.

Optimization 4: Efficient multiplication.
* How to multiply 512-bit numbers?
* Representation: break up into 32-bit values (or whatever hardware supports).
* Naive approach: pair-wise multiplication of all 32-bit components.
o Same as if you were doing digit-wise multiplication of numbers on paper.
o Requires O(nm) time if two numbers have n and m components
respectively.
o 0O(n”2) if the two numbers are close.
¢ Karatsuba multiplication: assumes both numbers have same number of
components.
o 0O(n”log_3(2)) =0(n"1.585) time.
o Split both numbers (x and y) into two components (x1, x0 and y1, y0).
= x=x1*B+x0
= y=y1*B+y0

= E.g., B=27"32 when splitting 64-bit numbers into 32-bit
components.
o Naive: x*y =x1y1 * BA2 + x0y1 * B + x1y0 * B + x0y0
* Four multiplies: O(n”"2).
o Faster: x*y =x1y1 * (B*2+B) - (x1-x0)(y1-y0) * B + x0y0 * (B+1)
= =x1yl*B"2 + (-(x1-x0)(y1l-y0) + x1y1 + x0y0) * B + x0y0
= Just three multiplies, and a few more additions.
o Recursively apply this algorithm to keep splitting into more halves.
= Sometimes called "recursive multiplication".
o Meaningfully faster (no hidden big constants)
= For 1024-bit keys, "n" here is 16 (512/32).
= n*2 =256
= n”1.585=81
e Multiplication algorithm needs to decide when to use Karatsuba vs. Naive.
* Two cases matter: two large numbers, and one large + one small number.
* OpenSSL: if equal number of components, use Karatsuba, otherwise Naive.
* Insome intermediate cases, Karatsuba may win too, but OpenSSL ignores it,
according to this paper.

How does SSL use RSA?
* Server's SSL certificate contains public key.
* Server must use private key to prove its identity.
* (lient sends random bits to server, encrypted with server's public key.
¢ Server decrypts client's message, uses these bits to generate session key.
o Inreality, server also verifies message padding.
o However, can still measure time until server responds in some way.

Figure of decryption pipeline on the server:

CRT To Montgomery Modular exp
-=> c 0=cmodg --> c¢' 0=c 0 modg --> m' 0= (c' 0)*d mod g

/ Use sliding window for bits
/ of the exponent d

c Karatsuba if c¢' 0 and g have
same number of 32-bit parts

\ Extra reductions proportional
\ to ((c' 0)"z mod q) / 2R;
-—> ... z comes from sliding window

Then, compute m_0 =m'_0/R mod q.

Then, combine m_0 and m_1 using CRT to get m.
Then verify padding in m.

Finally, use payload in some way (SSL, etc).

Setup for the attack described in Brumley's paper.

Victim Apache HTTPS web server using OpenSSL, has private key in memory.
Connected to Stanford's campus network.
Adversary controls some client machine on campus network.
Adversary sends specially-constructed ciphertext in msg to server.
o Server decrypts ciphertext, finds garbage padding, returns an error.
o Client measures response time to get error message.
o Uses the response time to guess bits of q.
Overall response time is on the order of 5 msec.
o Time difference between requests can be around 10 usec.
What causes time variations? Karatsuba vs normal; extra reductions.
Once guessed enough bits of g, can factor n=p*q, compute d from e.
About 1M queries seem enough to obtain 512-bit p and q for 1024-bit key.
o Only need to guess the top 256 bits of p and g, then use another
algorithm.

Attack from Brumley's paper.

Letq=q_0q_1..g_N, where N = |q| (say, 512 bits for 1024-bit keys).
Assume we know some number j of high-order bits of q (q_0 through q_j).
Construct two approximations of q, guessing q_{j+1} is either 0 or 1:

o g =q9q.0q9q1.qj000.0

o ghi=q0q1.qj100.0
Get the server to perform modular exponentiation (g"d) for both guesses.

o We know g is necessarily less than g.

o Ifgand g_hi are both less than g, time taken shouldn't change much.

o If g_hiis greater than g, time taken might change noticeably.

= g himod q is small.
= Less time: fewer extra reductions in Montgomery.
= More time: switch from Karatsuba to normal multiplication.

o Knowing the time taken can tell us if 0 or 1 was the right guess.
How to get the server to perform modular exponentiation on our guess?

o Send our guess as if it were the encryption of randomness to server.

o One snag: server will convert our message to Montgomery form.

o Since Montgomery's R is known, send (g/R mod n) as message to server.
How do we know if the time difference should be positive or negative?

o Paper seems to suggest it doesn't matter: just look for large diff.
Figure 3a shows the measured time differences for each bit's guess.
Karatsuba vs normal multiplication happens at 32-bit boundaries.
First 32 bits: extra reductions dominate.

Next bits: Karatsuba vs normal multiplication dominates.

o Atsome point, extra reductions start dominating again.

What happens if the time difference from the two effects cancels out?

o Figure 3, key 3.

o Larger neighborhood changes the balance a bit, reveals a non-zero gap.
How does the paper get accurate measurements?

o Client machine uses processor's timestamp counter (rdtsc on x86).

o O O O

o Measure several times, take the median value.
= Not clear why median; min seems like it would be the true
compute time.
o One snag: relatively few multiplications by g, due to sliding windows.
o Solution: get more multiplications by values close to g (+ same for g_hi).
o Specifically, probe a "neighborhood" of g (g, g+1, .., g+400).
* Why probe a 400-value neighborhood of g instead of measuring g 400 times?
o Consider the kinds of noise we are trying to deal with.
o Noise unrelated to computation (e.g. interrupts, network latency).
= This might go away when we measure the same thing many times.
= See Figure 2a in the paper.
o "Noise" related to computation.
= E.g, multiplying by g"3 and g_hi”3 in sliding window takes diff
time.
= Repeated measurements will return the same value.
= Will not help determine whether mul by g or g_hi has more
reductions.
= See Figure 2b in the paper.
o Neighborhood values average out 2nd kind of noise.
o Since neighborhood values are nearby, still has ~same # reductions.

How to avoid these attacks?
* Timing attack on decryption time: RSA blinding.

o Choose randomr.
Multiply ciphertext by r*e mod n: ¢' = c*r*e mod n.
Due to multiplicative property of RSA, c' is an encryption of m*r.
Decrypt ciphertext c' to get message m'.
Divide plaintext by r: m =m'/r.
About a 10% CPU overhead for OpenSSL, according to Brumley's paper.
* Make all code paths predictable in terms of execution time.

o Hard, compilers will strive to remove unnecessary operations.

o Precludes efficient special-case algorithms.

o Difficult to predict execution time: instructions aren't fixed-time.
* (Can we take away access to precise clocks?
Yes for single-threaded attackers on a machine we control.
Can add noise to legitimate computation, but attacker might average.
Can quantize legitimate computations, at some performance cost.
But with "sleeping" quantization, throughput can still leak info.

0O O O O O

o O O O

How worried should we be about these attacks?
* Relatively tricky to develop an exploit (but that's a one-time problem).
* Possible to notice attack on server (many connection requests).
o Though maybe not so easy on a busy web server cluster?
* Adversary has to be close by, in terms of network.
o Not that big of a problem for adversary.

o Can average over more queries, co-locate nearby (Amazon EC2), run on a
nearby bot or browser, etc.
* Adversary may need to know the version, optimization flags, etc of OpenSSL.
o Isitagood idea to rely on such a defense?
o How big of an impediment is this?
¢ Ifadversary mounts attack, effects are quite bad (key leaked).

Other types of timing attacks.
* Page-fault timing for password guessing [Tenex system]
o Suppose the kernel provides a system call to check user's password.
= Checks the password one byte at a time, returns error when finds
mismatch.
o Adversary aligns password, so that first byte is at the end of a page, rest
of password is on next page.
o Somehow arrange for the second page to be swapped out to disk.
* Orjust unmap the next page entirely (using equivalent of mmap).
o Measure time to return an error when guessing password.
= [fittook along time, kernel had to read in the second page from
disk.
= [Or, if unmapped, if crashed, then kernel tried to read second
page. |
= Means first character was right!
o Can guess an N-character password in 256*N tries, rather than 256" N.
* Cache analysis attacks: processor's cache shared by all processes.
o E.g.raccessing one of the sliding-window multiples brings it in cache.
o Necessarily evicts something else in the cache.
o Malicious process could fill cache with large array, watch what's evicted.
o Guess parts of exponent (d) based on offsets being evicted.
* Cache attacks are potentially problematic with "mobile code".
o NaCl modules, Javascript, Flash, etc running on your desktop or phone.
* Network traffic timing / analysis attacks.
o Even when data is encrypted, its ciphertext size remains ~same as
plaintext.
o Recent papers show can infer a lot about SSL/VPN traffic by sizes, timing.
o E.g, Fidelity lets customers manage stocks through an SSL web site.
= Web site displays some kind of pie chart image for each stock.
= User's browser requests images for all of the user's stocks.
= Adversary can enumerate all stock pie chart images, knows sizes.
= (Can tell what stocks a user has, based on sizes of data transfers.
o Similar to CRIME attack mentioned in guest lecture earlier this term.

References:

* http://css.csail.mit.edu/6.858/2014 /readings/ht-cache.pdf

* http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf
e http://www.tau.ac.il/~tromer/papers/handsoff-20140731.pdf

http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://link.springer.com/article/10.1007%2Fs00145-009-9049-y#page-1
http://link.springer.com/chapter/10.1007%2F978-3-662-44709-3_14#page-1

* http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf
* http://ed25519.cr.yp.to/

http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf
http://ed25519.cr.yp.to/

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

