

6.858 Lecture 6
Capabilities and	
 other Protection Mechanisms	

What's the problem the authors of "confused deputy" encountered?
• Their system had a Fortran compiler, /sysx/fort (in Unix filename syntax)
• They wanted the Fortran compiler to record usage statistics,	
 but where?

o Created	
 a special statistics	
 file, /sysx/stat.
o Gave /sysx/fort "home files license" (kind-­‐of	
 like	
 setuid	
 w.r.t.	
 /sysx)

• What	
 goes wrong?
o	 User can invoke the compiler asking it to write output to /sysx/stat.

§ e.g. /sysx/fort /my/code.f -­‐o	
 /sysx/stat
o Compiler	
 opens supplied path name, and succeeds, because of its license.
o User alone	
 couldn't have written	
 to	
 that /sysx/stat file.

• Why isn't the /sysx/fort thing just a bug in the compiler?
o Could, in principle, solve	
 this	
 by	
 adding checks	
 all over the	
 place.
o Problem: need to add checks virtually everywhere files are opened.
o Perfectly correct code becomes buggy once it's part of a setuid binary.

• So what's the "confused deputy"?
o	 The compiler is running on behalf of two principals:

§ the user principal (to	
 open user's files)
§ the compiler principal (to open compiler's files)

o Not clear what principal's privileges should be used at any given time.

Can	
 we solve this confused deputy problem in Unix?
• Suppose gcc wants to keep statistics in /etc/gcc.stats
• Could	
 have a special setuid program that only writes to that file

o Not so convenient:	
 can't just open	
 the	
 file	
 like	
 any	
 other.
• What if we make gcc setuid to some non-­‐root user	
 (owner	
 of stats	
 file)?

o Hard	
 to	
 access	
 user's	
 original files.
• What	
 if gcc is setuid-­‐root? (Bad	
 idea, but let's	
 figure	
 out why..)

o Lots	
 of potential for buffer	
 overflows	
 leading to	
 root access.
o Need to instrument every place where gcc might open a file.

• What check should we perform when gcc is opening a file?
o If it's an "internal"	
 file	
 (e.g. /etc/gcc.stats), maybe no check.
o If it's a user-­‐supplied	
 file, need to make sure user can access it.
o Can	
 look at the permissions for the file in question.
o Need to also check permissions on directories leading up to this file.

• Potential problem: race conditions.
o What if the file changes between the time we check it and use it?
o Common	
 vulnerability: attacker replaces legit file with symlink
o Symlink could point to, say, /etc/gcc.stats, or /etc/passwd, or ...
o Known as "time-­‐of-­‐check	
 to time-­‐of-­‐use"	
 bugs (TOCTTOU).

Several possible ways of thinking of this problem:

1

1. Ambient authority: privileges that are automatically used by process are the
problem here. No privileges should ever be used automatically. Name of an
object should	
 be	
 also	
 the	
 privileges	
 for accessing	
 it.

2. Complex	
 permission checks: hard for privileged app to replicate. With simpler
checks, privileged apps might be able to correctly check if another	
 user should
have access to some object.

What are examples of ambient authority?
•	 Unix UIDs, GIDs.
•	 Firewalls	
 (IP	
 address	
 vs. privileges	
 for accessing it)
•	 HTTP cookies (e.g. going to a URL like http://gmail.com)

How	
 does naming an object through a capability help?
•	 Pass file descriptor instead of passing a file name.
•	 No way	
 to	
 pass	
 a valid	
 FD unless	
 caller	
 was	
 authorized	
 to	
 open that file.

Could	
 we use file descriptors to solve our problem with a setuid gcc?
•	 Sort-­‐of:	
 could make the compiler only accept files via FD passing.
•	 Or,	
 could create a setuid helper that	
 opens the /etc/gcc.stats file, passes an	
 open

file descriptor back to our compiler process.
•	 Then, can continue using this open file much like any other file.
•	 How to	
 ensure	
 only	
 gcc	
 can run this	
 helper?

o	 Make gcc setgid to some special group.
o	 Make the helper only executable to that	
 special	
 group.
o	 Make sure that	
 group	
 has no other privileges given	
 to it.

What problem are the Capsicum	
 authors trying to solve with capabilities?
•	 Reducing privileges	
 of untrustworthy	
 code in various	
 applications.
•	 Overall	
 plan:

o	 Break up an application into smaller components.
o	 Reduce privileges of components that are most vulnerable to attack.
o	 Carefully	
 design interfaces so one component can't compromise another.

•	 Why is this difficult?
o	 Hard	
 to reduce privileges of code ("sandbox") in traditional Unix system.
o	 Hard	
 to give sandboxed code some limited access (to files, network, etc).

What sorts of applications might use sandboxing?
•	 OKWS.
•	 Programs that deal with network input:

o	 Put input handling	
 code into	
 sandbox.
•	 Programs that manipulate data in complex ways:

o	 (gzip,	
 Chromium,	
 media codecs, browser plugins, ...)
o	 Put complex (& likely buggy) part into sandbox.

•	 How	
 about arbitrary programs downloaded from the Internet?
o	 Slightly different problem: need to isolate unmodified application code.

2

http://gmail.com

o One option: programmer writes	
 their	
 application	
 to	
 run inside sandbox.
§ Works in some cases: Javascript, Java, Native Client,	
 ...
§ Need to standardize on an environment for sandboxed code.

o Another option: impose new security policy on existing code.
§ Probably need to preserve all APIs that programmer was using.
§ Need to impose checks on existing APIs, in that case.
§ Unclear	
 what the	
 policy	
 should	
 be	
 for accessing files,	
 network,	
 etc.

• Applications that want to avoid being tricked into misusing privileges?
o Suppose two Unix users, Alice and Bob, are working on some project.
o Both are in some group G, and project dir allows access by that group.
o Let's say Alice emails someone a file from the project directory.
o Risk: Bob could replace the file with a symlink to Alice's private file.
o Alice's process will implicitly use Alice's ambient privileges to open.
o Can think of this	
 as	
 sandboxing an individual file	
 operation.

What sandboxing plans (mechanisms) are out there (advantages, limitations)?
• OS typically provides some kind of security mechanism ("primitive").

o E.g., user/group	
 IDs in Unix, as we saw	
 in the previous lecture.
o For today, we	
 will look at OS-­‐level	
 security primitives/mechanisms.
o Often a good match when you care about protecting resources the OS

manages.
o E.g., files,	
 processes,	
 coarse-­‐grained	
 memory, network interfaces, etc.

• Many OS-­‐level	
 sandboxing mechanisms work at the level of processes.
o Works well	
 for an entire process that	
 can	
 be isolated as a unit.
o Can require	
 re-­‐architecting	
 application	
 to create processes for isolation.

• Other techniques	
 can provide finer-­‐grained	
 isolation (e.g., threads	
 in proc).
o Language-­‐level	
 isolation	
 (e.g.,	
 Javascript).
o Binary instrumentation (e.g., Native Client).
o Why would we need these other sandboxing	
 techniques?

§ Easier to control	
 access to non-­‐OS	
 / finer-­‐grained	
 objects.
§ Or perhaps can sandbox	
 in	
 an OS-­‐independent way.

o OS-­‐level	
 isolation	
 often	
 used in	
 conjunction	
 with finer-­‐grained	
 isolation.
§ Finer-­‐grained	
 isolation is often hard	
 to get right	
 (Javascript,	
 NaCl).
§ E.g., Native	
 Client	
 uses both a fine-­‐grained	
 sandbox + OS-­‐level	

sandbox.
o Will look at these in more detail in later lectures.

Plan 0: Virtualize everything	
 (e.g., VMs).
• Run untrustworthy code inside of a virtualized environment.
• Many examples: x86 qemu, FreeBSD jails, Linux LXC,	
 ..
• Almost a different category of mechanism: strict isolation.
• Advantage: sandboxed code inside VM	
 has almost no interactions with outside.
• Advantage: can sandbox unmodified code that's not expecting to be isolated.
• Advantage: some VMs	
 can be started by arbitrary users (e.g., qemu).
• Advantage: usually composable with other isolation techniques, extra layer.

3

• Disadvantage: hard to allow some sharing: no shared processes, pipes, files.
• Disadvantage: virtualizing everything often makes VMs	
 relatively heavyweight.

o Non-­‐trivial	
 CPU/memory	
 overheads for each sandbox.

Plan 1: Discretionary	
 Access Control	
 (DAC).
• Each object has a set of permissions (an access control list).

o E.g., Unix files,	
 Windows objects.
o "Discretionary" means applications set permissions on objects (e.g.,

chmod).
• Each program runs with privileges of some principals.

o E.g., Unix user/group	
 IDs,	
 Windows SIDs.
• When program accesses an object, check the program's privileges to decide.

o "Ambient privilege": privileges used implicitly for each access.

Name Process privileges

| |

V V

Object -> Permissions -> Allow?

How	
 would you sandbox a program on a DAC system (e.g., Unix)?
• Must	
 allocate a new	
 principal	
 (user ID):

o Otherwise,	
 existing principal's privileges will be used implicitly!
• Prevent process from reading/writing other files:

o Change	
 permissions on every file system-­‐wide?
§ Cumbersome,	
 impractical, requires root.

o Even then, new program can create important world-­‐writable file.
o Alternative: chroot (again, have to be root).

• Allow process to read/write a certain file:
o Set permissions on that file appropriately, if possible.
o Link/move file into the chroot directory for the sandbox?

• Prevent process from accessing the network:
o No real	
 answer for this in	
 Unix.
o Maybe configure firewall?	
 But not	
 really process-­‐specific.

• Allow process to access particular network connection:
o See above, no great	
 plan for this in Unix.

• Control what processes	
 a sandbox can kill / debug / etc:
o Can run under the same UID, but that may be too many privileges.
o That UID might also have other privileges...

Problem: only root can create new principals, on most DAC systems.
• E.g., Unix, Windows.
Problem: some objects might not have a clear configurable access control list.
• Unix:	
 processes, network…
Problem: permissions on files might not map to policy you want for sandbox.
• Can sort-­‐of	
 work around	
 using chroot for files,	
 but awkward.

4

Related problem: performing some operations with a subset of privileges.
• Recall example with Alice emailing a file out of shared group directory.
• "Confused	
 deputy problem": program is a "deputy" for multiple principals.
• One solution: check if group permissions allow access (manual, error-­‐prone).

o Alternative solution: explicitly specify	
 privileges	
 for each operation.
§ Capabilities	
 can help: capability (e.g., fd) combines object +

privileges.
§ Some Unix features incompat. w/ pure capability design (symlinks

by name).

Plan 2: Mandatory	
 Access Control	
 (MAC).
• In DAC,	
 security policy is set by applications themselves (chmod, etc).
• MAC tries to help users / administrators specify policies for applications.

o "Mandatory"	
 in the sense that applications can't change this policy.
o Traditional MAC systems try to enforce military classified levels.
o E.g.,	
 ensure	
 top-­‐secret	
 programs can't reveal classified information.

Name Operation + caller process

| |

V V

 Object --------> Allow?

^
|

Policy ------------+

• Note: many systems have aspects of both DAC + MAC in them.
o E.g., Unix user IDs are "DAC",	
 but one can argue firewalls are "MAC".
o Doesn't really matter -­‐-­‐ good to know the extreme points in design space

Windows Mandatory Integrity Control	
 (MIC)	
 / LOMAC in FreeBSD.
• Keeps track	
 of an "integrity level"	
 for each process.
• Files have a minimum integrity level associated with them.
• Process cannot write	
 to	
 files	
 above	
 its	
 integrity	
 level.
• IE in Windows Vista	
 runs as low integrity,	
 cannot overwrite	
 system files.
• FreeBSD LOMAC also tracks data read by processes.

o (Similar to many information-­‐flow-­‐based	
 systems.)
o When	
 process reads low-­‐integrity	
 data, it becomes low integrity too.
o Transitive, prevents adversary from indirectly tampering with files.

• Not immediately useful for sandboxing: only a fixed number of levels.

SElinux.
• Idea: system administrator specifies a system-­‐wide security policy.
• Policy	
 file	
 specifies whether	
 each operation	
 should	
 be	
 allowed	
 or denied.
• To help	
 decide whether	
 to	
 allow/deny,	
 files labeled with "types".

5

o (Yet another	
 integer	
 value,	
 stored	
 in inode along	
 w/	
 uid, gid, ..)

Mac OS X sandbox ("Seatbelt") and Linux seccomp_filter.
• Application specifies policy for whether to allow/deny each syscall.

o (Written	
 in LISP for MacOSX's mechanism, or in BPF for Linux's.)
• Can	
 be difficult to determine security impact of syscall based on args.

o What does a pathname refer to? Symlinks, hard	
 links,	
 race
conditions… (Although MacOSX's sandbox provides a bit more
information.)

• Advantage:	
 any	
 user	
 can	
 sandbox an	
 arbitrary	
 piece	
 of code, finally!
• Limitation: programmer must separately write the policy + application code.
• Limitation: some operations can only be filtered at coarse granularity.

o E.g., POSIX shm in MacOSX's filter language, according to Capsicum
paper.

• Limitation: policy language might be awkware to use, stateless, etc.
o E.g., what if app should have exactly one connection to some server?

• Note: seccomp_filter is quite different from regular/old seccomp, and the
Capsicum	
 paper talks about the regular/old seccomp.]

Is it a good idea to separate policy from application code?
• Depends	
 on overall goal.
• Potentially good if user/admin wants to look at or change policy.
• Problematic if app developer needs to maintain both code and policy.
• For app developers, might help clarify policy.
• Less-centralized	
 "MAC"	
 systems (Seatbelt, seccomp) provide a compromise.

Plan 3: Capabilities (Capsicum).
Different plan for access	
 control:	
 capabilities.
• If process has a handle for some object ("capability"),	
 can access it.

Capability --> Object

• No separate	
 question	
 of privileges,	
 access	
 control lists,	
 policies,	
 etc.
• E.g.: file	
 descriptors on Unix are	
 a capability for a file.

o Program can't make up a file descriptor it didn't legitimately get. (Why
not?)

o Once file is open, can access it; checks happened at open time.
o Can pass	
 open files	
 to	
 other	
 processes.
o FDs also help solve "time-­‐of-­‐check to	
 time-­‐of-­‐use"	
 (TOCTTOU)	
 bugs.

• Capabilities	
 are usually ephemeral: not part of on-­‐disk inode.
o Whatever starts	
 the program needs to re-­‐create	
 capabilities each time.

Global namespaces.
• Why are these guys so fascinated with eliminating global namespaces?
• Global namespaces require some access control story (e.g., ambient privs).

6

• Hard	
 to	
 control sandbox's	
 access to objects in global namespaces.
Kernel	
 changes.
• Just to	
 double-­‐check:	
 why	
 do we	
 need kernel changes?

o Can	
 we implement everything in a library (and LD_PRELOAD it)?
• Represent more things as file descriptors: processes (pdfork).

o Good idea in general.
• Capability	
 mode: once process enters cap mode, cannot leave (+all children).
• In capability mode, can only use file descriptors -­‐-­‐ no global namespaces.

o Cannot	
 open files by full path name: no need for chroot as in OKWS.
o Can	
 still open files by relative path name,	
 given fd for dir (openat).

• Cannot	
 use ".." in path names or in symlinks: why not?
o In principle, ".." might be fine, as long as ".." doesn't go too far.
o Hard	
 to	
 enforce	
 correctly.
o Hypothetical design:

§ Prohibit looking	
 up ".." at the	
 root capability.
§ No more ".." than non-­‐".." components in path name, ignoring ".".

• Assume a process has capability C1	
 for /foo.
• Race condition, in a single process	
 with 2 threads:

T1: mkdir(C1, "a/b/c")

T1: C2 = openat(C1, "a")

T1: C3 = openat(C2, "b/c/../..") ## should return a cap

for /foo/a

Let openat() run until it's about to look up the first ".."

T2: renameat(C1, "a/b/c", C1, "d")

T1: Look up the first "..", which goes to "/foo"

Look up the second "..", which goes to "/"

• Do Unix permissions still apply?
o Yes --can't access all files	
 in dir just because	
 you have a cap for dir.
o But intent is that sandbox shouldn't rely on Unix permissions.

• For file	
 descriptors, add	
 a wrapper	
 object that stores	
 allowed	
 operations.
• Where does the kernel	
 check	
 capabilities?

o One	
 function in kernel looks up fd numbers -­‐-­‐ modified it to check caps.
o Also modified namei function, which looks up path names.
o Good practice: look for narrow interfaces, otherwise easy to miss checks.

libcapsicum.
• Why do application	
 developers need this library?
• Biggest	
 functionality: starting	
 a new	
 process in	
 a sandbox.
fd lists.
• Mostly a convenient	
 way to pass lots of file descriptors to child process.
• Name file descriptors by string instead of hard-­‐coding	
 an fd number.
cap_enter()	
 vs lch_start().
• What	
 are the advantages of sandboxing	
 using	
 exec	
 instead of cap_enter?
• Leftover data in memory: e.g., private keys in OpenSSL/OpenSSH.

7

•	 Leftover	
 file	
 descriptors	
 that application forgot to	
 close.
•	 Figure 7 in paper: tcpdump had privileges on stdin, stdout, stderr.
•	 Figure	
 10 in paper:	
 dhclient had	
 a raw socket, syslogd	
 pipe, lease	
 file.

Advantages: any process can create a new sandbox.
• (Even a sandbox can	
 create	
 a sandbox.)

Advantages: fine-­‐grained control of access to resources (if they map to FDs).

• Files, network	
 sockets,	
 processes.

Disadvantage:	
 weak story	
 for keeping track of access	
 to	
 persistent files.
Disadvantage: prohibits global namespaces, requires writing code differently.

Alternative capability designs: pure capability-­‐based OS (KeyKOS,	
 etc).
•	 Kernel	
 only	
 provides a message-­‐passing	
 service.
•	 Message-­‐passing	
 channels (very much like file descriptors) are capabilities.
•	 Every	
 application has to be written	
 in a capability style.
•	 Capsicum	
 claims to be more pragmatic: some applications need not be changed.

Linux	
 capabilities: solving a different problem.
•	 Trying to	
 partition	
 root's	
 privileges	
 into	
 finer-­‐grained	
 privileges.
•	 Represented by various capabilities: CAP_KILL,	
 CAP_SETUID,

CAP_SYS_CHROOT…
•	 Process can run with	
 a specific capability	
 instead	
 of all of root's	
 privs.
•	 Ref: capabilities(7), http://linux.die.net/man/7/capabilities

Using Capsicum	
 in applications.
•	 Plan: ensure sandboxed process doesn't use path names or other global NSes.

o For every directory it might need access to, open FD ahead of time.
o To open files, use openat() starting from one of these directory FDs.
o .. programs that open lots of files all over the place may be cumbersome.

•	 tcpdump.
o	 2-­‐line version: just	
 cap_enter() after opening	
 all FDs.
o	 Used procstat to	
 look at resulting	
 capabilities.
o	 8-­‐line version: also restrict	
 stdin/stdout/stderr.
o	 Why?	
 E.g., avoid reading	
 stderr log,	
 changing terminal settings…

•	 dhclient.
o	 Already privilege-­‐separated, using Capsicum	
 to reinforce sandbox (2

lines).
•	 gzip.

o Fork/exec	
 sandboxed	
 child	
 process, feed it data using RPC	
 over pipes.
o Non-­‐trivial	
 changes, mostly to marshal/unmarshal data for RPC:	
 409 LoC.
o Interesting bug: forgot to propagate compression level at first.

•	 Chromium.
o	 Already privilege-­‐separated	
 on other platforms (but not on FreeBSD).
o	 ~100 LoC to wrap	
 file descriptors for sandboxed processes.

•	 OKWS.

8

http://linux.die.net/man/7/capabilities

o What are the various answers to the homework question?

Does Capsicum	
 achieve its goals?
•	 How hard/easy	
 is it to	
 use?

o	 Using Capsicum	
 in an application almost always requires app changes.
§ (Many applications tend to open files by pathname, etc.)
§ One exception: Unix	
 pipeline apps (filters) that	
 just	
 operate on	

FDs.
o	 Easier for streaming applications that process data via FDs.
o	 Other sandboxing	
 requires	
 similar changes (e.g., dhclient, Chromium).
o	 For existing applications, lazy initialization seems to be a problem.

§ No general-­‐purpose	
 solution	
 -­‐-­‐ either	
 change	
 code or initialize	

early.

o	 Suggested plan: sandbox and see what breaks.

§ Might	
 be subtle: gzip	
 compression level bug.

•	 What	
 are the security guarantees it	
 provides?
o	 Guarantees	
 provided to	
 app	
 developers:	
 sandbox can	
 operate	
 only	
 on

open FDs.
o	 Implications depend on how app developer partitions application, FDs.
o	 User/admin doesn't get any direct guarantees from Capsicum.
o	 Guarantees assume no bugs in FreeBSD kernel (lots of code), and that the

Capsicum	
 developers caught all ways to access a resource not via FDs.
•	 What are the performance overheads? (CPU,	
 memory)

o	 Minor overheads for accessing	
 a file descriptor.
o	 Setting up a sandbox using fork/exec takes O(1msec), non-­‐trivial.
o	 Privilege separation can require RPC / message-­‐passing,	
 perhaps

noticeable.
•	 Adoption?

o	 In FreeBSD's kernel	
 now, enabled by default	
 (as of FreeBSD 10).
o	 A handful of applications have	
 been modified to use Capsicum:	
 dhclient,

tcpdump, and a few more since the paper was written (Ref:
http://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html)

o	 Casper	
 daemon to help applications perform non-­‐capability	
 operations.
§ E.g., DNS lookups, look up entries in /etc/passwd, etc.
§ http://people.freebsd.org/~pjd/pubs/Capsicum_and_Casper.pdf	

o There's a port of Capsicum	
 to Linux (but not in upstream kernel repo).

What applications wouldn't be a good fit for Capsicum?	

•	 Apps that need to control access to non-­‐kernel-­‐managed	
 objects.

o	 E.g.: X server state,	
 DBus,	
 HTTP	
 origins in a web browser,	
 etc.
o	 E.g.: a database server that needs to ensure DB file is in correct format.
o	 Capsicum	
 treats pipe to a user-­‐level	
 server (e.g.,	
 X server) as one cap.

•	 Apps that need to connect to specific TCP/UDP	
 addresses/ports from sandbox.
o Capsicum	
 works by only allowing operations on existing open FDs.
o Need some other mechanism to control what FDs can be opened.

9

http://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html
http://people.freebsd.org/~pjd/pubs/Capsicum_and_Casper.pdf

o Possible solution: helper program can run outside of capability mode,
open TCP/UDP	
 sockets for sandboxed programs based on policy.

References:
• http://reverse.put.as/wp-­‐content/uploads/2011/09/Apple-­‐Sandbox-­‐Guide-­‐

v1.0.pdf
• http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-­‐

2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
• http://en.wikipedia.org/wiki/Mandatory_Integrity_Control

10

http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
http://en.wikipedia.org/wiki/Mandatory_Integrity_Control

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

