
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2014

Quiz I Solutions

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

Grade distribution

Histogram of grade distribution

Mean 64.4, Stddev 15.5

1

I Baggy Bounds and Buffer Overflows

1. [6 points]: At initialization time, a baggy bounds system on a 32-bit machine is supposed to set
all of the bounds table entries to 31. Suppose that, in a buggy implementation with a slot_size of 32
bytes, bounds table initialization is improperly performed, such that random entries are incorrectly set
to 1.

Suppose that a networked server uses an uninstrumented library to process network messages. Assume
that this library has no buffer overflow vulnerabilities (e.g., it never uses unsafe functions like gets()).
However, the server does suffer from the bounds table initialization problem described above, and the
attacker can send messages to the server which cause the library to dynamically allocate and write an
attacker-controlled amount of memory using uninstrumented code that looks like this:

// N is the buffer size that the
// attacker gets to pick.
char *p = malloc(N);
for (int i = 0; i < N/4; i++, p += 4) {
*p = ’\a’;
*(p+1) = ’\b’;
*(p+2) = ’\c’;
*(p+3) = ’\d’;

}

Assume that the server uses a buddy memory allocator with a maximum allocation size of 216 (i.e.,
larger allocations fail). What is the smallest N that the attacker can pick that will definitely crash the
server? Why will that N cause a crash?

Answer: The uninstrumented library code does not check bounds table entries when it does pointer
arithmetic. Thus, the code snippet above is unaffected by the incorrect initialization of the bounds table.
However, the code snippet does not check the return value of malloc() for NULL; so, the attacker
can select an N of 216 + 1, cause malloc() to return NULL, and get the server to crash.

2

	

	

	

2. [6 points]: Modern CPUs often support NX (“no execute”) bits for memory pages. If a page has
its NX bit set to 1, then the CPU will not run code that resides in that page.

NX bits are currently enforced by the OS and the paging hardware. However, imagine that programs
execute on a machine whose OS and paging hardware do not natively support NX. Further imagine
that a compiler wishes to implement NX at the software level. The compiler associates a software-
manipulated NX bit with each memory page, placing it at the bottom (i.e., the lowest address) of each
4KB page.

The compiler requires that all application-level data structures be at most 4095 bytes large. The
compiler allocates each stack frame in a separate page, and requires that a stack frame is never bigger
than a page. A stack frame might look like the following:

...
|-----------------------|
| |
+-----------------------+

entry %esp-->| return address |
+-----------------------+

new %ebp---->| saved %ebp |
+-----------------------+
| buf[4] |
| buf[3] |
| buf[1] |
| buf[0] |
+-----------------------+
| ...other stack vars...|
+-----------------------+

new %esp---->| NX bit |
+-----------------------+

such that, as shown in the sample code above, an overflow attack in the frame will not overwrite the

frame’s NX bit.

The compiler also associates NX bits with each normal code page. The NX bit for a stack frame is set

to “non-executable”, and the NX bit for a normal code page is set to “executable”.

The compiler instruments updates to the program counter such that, whenever the PC migrates to a new

page, the program checks the NX bit for the page. If the bit indicates that the page is non-executable,

the program throws an exception.

Describe how a buffer overflow attack can still overwrite NX bits.

Answer:
•	 A buffer overflow in the currently active frame can spill into the frame that is above it in RAM.

Thus, a callee can overwrite its caller’s NX bit.
•	 If a buffer overflow can corrupt a pointer value, the attacker can make the pointer point to

the address of an NX bit. If that pointer is dereferenced and assigned to, the NX bit will be
overwritten.

•	 The attacker could mount a return-to-libc attack to use preexisting code to reset an NX bit.

3

II Stack Canaries and Return-Oriented Programming

3. [4 points]: Stack canaries live in an area of memory that programs can read as well as write.
In the typical buffer overflow attack (e.g., via the gets() function), what prevents an attacker from
simply reading the canary value and then placing that canary value in the overflow payload?

Answer: In the typical buffer overflow attack, the attacker cannot execute arbitrary code; instead, the
attacker can only supply inputs that the program will not bounds-check during a copy operation. Thus,
the attacker can only *write* the stack. In other words, vulnerable functions like gets() do not allow
the attacker to directly read a value and then insert that value into the attack payload.

You get partial credit if you say that the canary might contain terminating characters, such as ‘\0’, that
stop gets() from reading beyond the point.

4

4. [10 points]: In the first part of a BROP attack, the attacker must find gadgets that pop entries from
the stack and store them into attacker-selected registers. Suppose that the attacker has already found
the address of a stop gadget and a trap value (i.e., a memory value which, if accessed, causes a fault).
In the stack diagram below, depict what a buffer overflow should write on the stack to identify pop
gadgets which pop exactly two things from the stack e.g., pop rdi; pop rsi; ret;. If it doesn’t
matter what goes in a particular memory location, put "Doesn’t mattter". To represent the values for
the stop gadget and the trap, simply write "stop" or "trap". To represent the address of a candidate pop
gadget, write "probe".

...
|-----------------------|
| | Value: ________
|-----------------------|
| | Value: ________
|-----------------------|
| | Value: ________
|-----------------------|
| | Value: ________
|-----------------------|
| | Value: ________
|-----------------------|
| | Value: ________
+-----------------------+

entry %esp-->| return address | Value: ________
+-----------------------+

new %ebp---->| saved %ebp | Value: ________
+-----------------------+
| buf[3] | Value: ________
| buf[2] | Value: ________
| buf[1] | Value: ________
| buf[0] | Value: ________
+-----------------------+

new %esp---->| ...other stack vars...|
+-----------------------+

5

...
|-----------------------|

+-----------------------+

entry %esp-->| return address |
+-----------------------+

new %ebp---->| saved %ebp |
+-----------------------+
| buf[3] |
| buf[2] |
| buf[1] |
| buf[0] |
+-----------------------+

new %esp---->| ...other stack vars...|
Answer: +-----------------------+

Value: trap

Value: trap

Value: trap

Value: stop

Value: trap

Value: trap

Value: probe

Value: Doesn’t matter

Value: Doesn’t matter
Value: Doesn’t matter
Value: Doesn’t matter
Value: Doesn’t matter

6

III OKWS and OS Security

Suppose Unix did not provide a way of passing file descriptors between processes, but still allowed inheriting
file descriptors from a parent on fork and exec.

5. [4 points]:

What aspects of the OKWS design would break without file descriptor passing?
(Circle True or False for each choice.)

A. True / False	 	 It would be impossible for services to send messages to oklogd.

Answer: False.

B. True / False	 	 It would be impossible for services to get a TCP connection to a database proxy.

Answer: False.

C. True / False	 	 It would be impossible for services to get a TCP connection to the client web browser.

Answer: True.

D.	 	True / False It would be impossible for okd to run as a non-root user.

Answer: False.

7

Consider the following Python code for a program that might run every night as root on a Unix machine to
clean up old files in /tmp. The Python function os.walk returns a list of subdirectories and filenames in
those subdirectories. It ignores "." and ".." names. As a reminder, a Unix filename cannot contain / or
NULL bytes, and os.unlink on a symbolic link removes the symbolic link, not the target of the symbolic
link.

def cleanup():
Construct a list of files under /tmp that are over 2 days old.
files = []
for (dirname, _, filenames) in os.walk(’/tmp’):
for filename in filenames:
fn = dirname + ’/’ + filename
if os.path.getmtime(fn) < time.time() - 2 * 86400:
files.append(fn)

for fn in files:
os.unlink(fn)

6. [10 points]:

Explain how an adversary could take advantage of this program to delete /etc/passwd.

Answer: The adversary can exploit a race condition. First, create a directory /tmp/foo and a file
/tmp/foo/passwd in there, and set the modification time of /tmp/foo/passwd to be over 2 days old.
Then wait for the script to run os.walk and now delete /tmp/foo/passwd and /tmp/foo, and create
a symlink /tmp/foo to /etc. Now the cleanup code will run os.unlink("/tmp/foo/passwd"),
which will remove /etc/passwd.

We also gave partial credit to the answer of creating a symlink /tmp/foo pointing at /etc, under the
assumption that os.walk follows symlinks, even though in reality it does not.

8

IV Native Client

Answer the following questions about how Native Client works on 32-bit x86 systems, according to the paper
“Native Client: A Sandbox for Portable, Untrusted x86 Native Code.”

7. [6 points]:	 	Which of the following statements are true?
(Circle True or False for each choice.)

A. True / False The Native Client compiler is trusted to generate code that follows Native Client’s
constraints.

Answer: False.

B. True / False	 	 The Native Client validator ensures that no instruction spans across a 32-byte boundary.

Answer: True.

C. True / False The Native Client service runtime is checked using the validator to ensure its code
follows the constraints.

Answer: False.

D.	 	True / False Native Client requires additional instructions before every direct jump.

Answer: False.

E. True / False	 	 Native Client requires additional instructions before every indirect jump.

Answer: True.

F.	 	True / False Native Client requires additional instructions before every memory access.

Answer: False.

8. [6 points]:

For the following x86 code, indicate whether Native Client’s validator would allow it (by writing
ALLOW), assuming the parts after ... are valid, or circle the first offending instruction that causes
the validator to reject the code.

10000: 83 e0 2e and $0x2e,%eax
10003: 40 inc %eax
10004: 01 ca add %ecx,%edx
10006: 4a dec %edx
10007: eb fa jmp 0x10003
10009: b9 ef be ad de mov $0xdeadbeef,%ecx
1000e: 8b 39 mov (%ecx),%edi
10010: 8b 35 ef be ad de mov 0xdeadbeef,%esi

9

10016: 8b 66 64 mov 0x64(%esi),%esp
10019: 5b pop %ebx
1001a: 8b 58 05 mov 0x5(%eax),%ebx
1001d: 83 e0 e0 and $0xffffffe0,%eax
10020: ff e0 jmp *%eax
10022: f4 hlt

...

Answer: The validator will complain about the jmp at 0x10020 with error “Bad indirect control
transfer”; see Figure 3 in the NaCl paper.

10

V Symbolic execution

Consider the following Python program running under the concolic execution system from lab 3, where x is a
concolic integer that gets the value 0 on the first iteration through the loop:

def foo(x):
y = x + 7
if y > 10:
return 0

if y * y == 256:
return 1

if y == 7:
return 2

return 3

9. [6 points]:

After running foo with an initial value of x=0, what constraint would the concolic execution system

send to Z3 for the second if statement?

Answer: (x+7)*(x+7)=256 AND NOT (x+7)>10

More precisely, in Z3’s s-expression:

(and (= (> (+ x 7) 10) false) (not (= (= (* (+ x 7) (+ x 7)) 256) false))).

11

	

	
	

VI Web security

10. [8 points]: Suppose that a user visits a mashup web page that simultaneously displays a user’s
favorite email site, ecommerce site, and banking site. Assume that:

•	 The email, ecommerce, and banking sites allow themselves to be placed in iframes (e.g., they
don’t prevent this using X-Frame-Options headers).

•	 Each of those three sites is loaded in a separate iframe that is created by the parent mashup frame.
•	 Each site (email, ecommerce, banking, and mashup parent) come from a different origin with

respect to the same origin policy. Thus, frames cannot directly tamper with each other’s state.

Describe an attack that the mashup frame can launch to steal sensitive user inputs from the email,

ecommerce, or banking site.

Answer: The parent mashup frame can place a invisible iframe atop (say) the banking site. Using this

invisible frame, the mashup can steal the user’s keypresses as she tries to enter her login name and

password.

Additional attacks are possible. For example, if the user allows the mashup frame to do screensharing,
the mashup frame can take a snapshot of child frame content and send that snapshot to an attacker-
controlled server; this allows the attacker to (for example) see emails that the user is currently
composing. The mashup frame can also exploit a child frame that does improper postMessage()
validation and responds to requests from arbitrary initiators.

12

11. [8 points]: Each external object in a web page has a type. That type is mentioned in the object’s
HTML tag (e.g., an image should have an tag like).
An object’s type is also described as a MIME type in its HTTP response (e.g., Content-type:
"image/gif").

These two kinds of type specifications can mismatch due to programmer error, misconfiguration, or
malice. For example, for the tag , the server might return the
MIME type "text/css".

Suppose that, in the case of a type mismatch, the browser uses the MIME type in the HTTP response
to determine how to interpret an object. For example, if X’s frame tries to load the MIME-type-less tag
, and Y’s server returns a MIME type of "text/css", the browser will
interpret the fetched object as CSS in X’s frame, even though the object is embedded in X’s frame as
an tag.

Why is this a bad security policy?

Answer: The security policy is bad because origin X can include what it believes to be passive content
(e.g., an image), but origin Y can convince the browser to interpret that content as Javascript code!
That JavaScript code will be supplied by Y, but it will run with the authority of X.

13

12. [6 points]: In a SQL injection attack, attacker-controlled input is evaluated in the context of
a SQL query, resulting in malicious SQL statements executing over sensitive data. Ur/Web allows
web applications to directly embed SQL queries in a page; furthermore, those queries may contain
information that originates from the user or an untrusted source. Why is this safe in Ur/Web?

Answer: Ur/Web is a strongly-typed system which does not allow external strings to be directly (and
maybe accidentally!) interpreted as executable code, SQL queries, etc. This contrasts with the standard
web world, in which it is not obvious whether it is safe to (say) assign an externally-supplied string to
the innerHTML property of a DOM node.

14

VII Network security and Kerberos

Ben Bitdiddle is concerned about the sequence number guessing attack that Steve Bellovin described in
section 2 of his paper, where an adversary can spoof a TCP connection to a server from an arbitrary source IP
address, and send data on that connection.

Ben implements the following strategy that his server will use for choosing the initial sequence number ISNs

of an incoming TCP connection:

ISNs = ISNoriginal ⊕ IPsrc ⊕ IPdst ⊕ (Portsrc||Portdst) (1)

where ⊕ refers to the XOR operation and || refers to concatenation; the IP fields being XORed refer to the
32-bit IP addresses of the source and destination of the TCP connection; and the Port fields refer to the 16-bit
source and destination ports. Assume ISNoriginal increments by 64 for each new incoming connection, and
initially starts at some random value.

13. [8 points]:

Explain how an adversary could still launch a sequence-number-guessing attack against Ben’s server

with a small number of tries.

Answer: Send two connection requests (SYN packets) to Ben’s server, back-to-back: one from the

adversary’s own IP address, and one from the spoofed source IP address. Let’s send the connection

request from the adversary’s own request first. Then, when the SYN-ACK arrives to the adversary,

recover the corresponding ISNoriginal by XORing with the source and destination IP and port numbers.

Then reconstruct the ISNoriginal that the spoofed connection would get (+64), and XOR with the spoofed

source and destination IP and port. Use that result when sending the ACK for the spoofed connection.

15

Suppose the KDC server at MIT developed a subtle hardware problem, where the random number generator
became highly predictable (e.g., it would often produce the same result when asked for a “random” number).

14. [6 points]:

How could an adversary leverage this weakness to access some user’s data on a file server that uses
Kerberos for authentication? Describe the minimal amount of additional access the adversary might
need to mount such an attack. Assume the file server ignores IP addresses in Kerberos tickets, and that
the keys of all principals were generated before the server developed this hardware problem.

Answer: Observe at least one message from victim to file server, and extract the user’s ticket from that
packet. Use the knowledge of the RNG predictability to guess the corresponding Kc,s. Now use the
ticket and the guessed Kc,s to issue arbitrary requests to the file server.

16

VIII 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

15. [2 points]: We introduced a new lab on symbolic execution this semester (lab 3). How would
you suggest improving this lab in future semesters?

Answer: 18x iffy instructions, missing/vague specs, more comments in the code; 15x make it more

exploratory + open-ended, less pre-defined, have students implement more code; 8x it was possible to

do the lab without understanding things; 7x better test cases (e.g., exercise 3); 6x improve instructions

for exercise 3 (copy Jon’s piazza post); 3x recitation about the lab; 2x find more interesting bugs; 2x

more background / docs on Z3; 2x faster test cycle; give fewer hints; implement parts of the SMT

solver; examples of how concolic execution would work on some piece of code; better explanation of

concolic vs symbolic; more exercises like signed avg; shorter explanations needed for lab; use real

web app instead of zoobar; better debugging support; maybe ask students to implement parts of the

AST structure?; actually create constraints for Z3; expand exercises 6 and 7 (more invariant checks);

better visualizations (borrow Austin’s grapher from Commuter); unclear what’s in concolic variables;

diagrams in lab writeup; add concolic_int.__rsub__.

16. [2 points]: Are there other things you’d like to see improved in the second half of the semester?

Answer: 11x more attacks; 5x give hints about hard-to-understand points / background from papers /

where to focus, before reading; 4x office hours on weekends / friday; 3x less tedious papers; 3x more

feedback on labs; 3x slower-paced lectures/class; 3x less discussion of papers, more discussion of

new material; 2x allow submitting paper questions after 10pm; 2x more quiz review sessions; 2x more

diagrams / examples; recitations for stuff not covered in lecture; CTFs; more extensive lab test cases;

more web security; newer versions of papers/ideas/systems; post lecture notes before lecture; address

more questions from paper questions; more OS-level security; do lecture before paper; more late days;

stay longer on each given topic; break in the middle of lecture; more analyzing other students’ lab

code, peer review; more interactive discussions; hands-on exercises for ideas from class; program

verification; don’t sweep details under the rug; more conceptual readings; in-class demos; more help

from TAs on Piazza; fewer labs to give more project time; talk more about papers in lecture; upload

lecture videos quicker; dislike ASCII diagrams; coffee in lecture.

17. [2 points]: Is there one paper out of the ones we have covered so far in 6.858 that you think we

should definitely remove next year? If not, feel free to say that.

Answer: 16x tangled web (long, many didn’t read the whole thing!); 8x ur/web; 7.5x capsicum; 5x

django (more context); 4.5x nacl; 3x BROP; 3x forcehttps; 2x kerberos (update it!); 2x klee; confused

deputy; TCP.

End of Quiz

17

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

