
Massachusetts Institute of Technology Handout 5 
6.854J/18.415J: Advanced Algorithms Thursday, September 22, 2005 
David Karger 

Problem Set 3 

Due: Wednesday, September 28, 2005. 

Notice that one problem is marked noncollaborative. As you might expect, this prob
lem should be done without any collaboration. 

Problem 1. Augment the van Emde Boas priority queue to support the following oper
ations on integers in the range {0, 1, 2, . . . , u − 1} in O(log log u) worstcase time each and 
O(u) space total: 

Find (x, Q): Report whether the element x is stored in the structure. 

Predecessor (x, Q): Return x’s predecessor, the element of largest value less than x, or 
null if x is the minimum element. 

Successor (x, Q): Return x’s successor, the element of smallest value greater than x, or 
null if x is the maximum element. 

NONCOLLABORATIVE Problem 2. In class we saw how to use a van Emde Boas 
priority queue to get O(log log u) time per queue operation (insert, deletemin, decreasekey) 
when the range of values is {1, 2, . . . , u}. Show that for the singlesource shortest paths 
problem on a graph with n nodes and range of edge lengths {1, 2, . . . , C}, we can obtain 
O(log log C) time per queue operation, even though the range of values in the queue is 
{1, 2, . . . , nC}, 

Problem 3. In class we considered building a depthk, baseΔ (implicit) trie over integers 
in the range from 1 to C (where Δ = C1/k) that supported insert in time O(k) and deletemin 
in time O(Δ). By choosing k and Δ appropriately we found shortest paths in O(m+n log C) 
time. We now improve this bound. Consider modifying the deletemin operation, where we 
scan forward through a trie node and reach a new a bucket of items. If that bucket has more 
than t items in it, we expand it to multiple buckets in a node at the next trie level down as 
before. But if there are fewer than t items, we simply store them in a heap. During inserts 
or decreasekeys, new items may be added to the heap, and if the heap size grows beyond t, 
we expand it to a trie node of buckets as before. 

(a) Let I(t), D(t), X(t) denote the times to insert, decrease key, and extract min in

a heap of size at most t. Prove that the amortized times for operations in the

new data structure can be bounded by




2 Handout 5: Problem Set 3 

• O(kΔ/t + I(t)) for insert 

• O(D(t) + I(t)) for decreasekey 

• O(X(t) for extractmin 

Hint: When an item is inserted, give it kΔ/t units of potential energy. Each 
time the item gets pushed down into a new trie node, have it donate Δ/t of its 
potential energy to that node. Argue that this is a valid analysis, and that the 
potential energy at nodes is sufficient to pay for scanning trie nodes during an 
extractmin. 

(b) Argue that using Fibonacci heaps and setting k = 
√

log C and t = 2k gives a

running time of O(m + n

√
log C) for shortest paths.


Problem 4. Perfect hashing is nice, but does have the drawback that the perfect hash 
function has a lengthy description (since you have to describe the secondlevel hash function 
for each bucket). Consider the following alternative approach to producing a perfect hash 
function with a small description. Define bibucket hashing, or bashing, as follows. Given n 
items, allocate two arrays of size n1.5 . When inserting an item, map it to one bucket in each 
array, and place it in the emptier of the two buckets. 

(a) Suppose a random function is used to map each item to buckets. Give a good

upper bound on the expected number of collisions. Hint: What is the probability

that the kth inserted item collides with some previously inserted item?


(b)	 Argue that bashing can be implemented efficiently, with the same expected out

come, using the ideas from 2universal hashing.


(c) Conclude an algorithm with linear expected time (ignoring array initialization)

for identifying a perfect bash function for a set of n items. How large is the

description of the resulting function?


OPTIONAL (d)	 Generalize the above approach to use less space by exploiting tri

bucket hashing (trashing), quadbucket hashing (quashing), and so on.


OPTIONAL Problem 5. Our bucketing data structures (and in particular ven Emde 
Boas queues) use arrays, and we never worried about the time taken to initialize them. 
Devise a way to avoid initializing large arrays. More specifically, develop a data structure 
that holds n items according to an index i ∈ {1, . . . n} and supports the following operations 
in O(1) time (worst case) per operation: 

init Initializes the data structure to empty.


set(i, x) places item x at index i in the data structure.


get(i) returns the item stored in index i, or “empty” if nothing is there.




3 Handout 5: Problem Set 3 

Your data structure should use O(n) space and should work regardless of what garbage 
values are stored in that space at the beginning of the execution. Hint: use extra space to 
remember which entries of the array have been initialized. 

OPTIONAL Problem 6. Can a van Emde Boas type data structure be combined with 
some ideas from Fibonacci heaps to support insert/decreasekey in O(1) time and deletemin 
in O(log log u) time? 


