
Massachusetts Institute of Technology Handout 24 
6.854J/18.415J: Advanced Algorithms Monday, November 28, 2005 
David Karger 

Problem Set 12 

Due: Wednesday, November 30, 2005 and Monday, December 5 2005. 

Problem 1. Due Wednesday, November 30. On a separate page, turn in a brief (i.e. 
half a page) description of your planned project. If you have formed a group, turn in a single 
submission for the group, listing all members. List references you have found. 

NONCOLLABORATIVE Problem 2. A problem last week found lines (and poly
gons) contained in a rectangle; here we consider finding lines crossing a rectangle. As 
a starting point, suppose you are given an interval tree data structure. This takes n 
possiblyoverlapping intervals on the real line, and builds a sizen data structure that can, 
in O(k + log n) time, output the set of all intervals intersecting with a given query interval 
(you may optionally design this data structure if you wish). Given such a data structure, 
show that you can build a size O(n log n) data structure for the following problem: given n 
vertical and horizontal segments in the plane, and given a query rectangle, output all the 
segments that intersect that query rectangle in O(k + log 2 n) time. 

Problem 3. Suppose you’re implementing a video game in which the player can walk 
around a planar environment made up of walls, and at any time the screen displays only 
the walls that are (partially) visible by the player. More precisely, the player is modeled as 
a single point; the walls are modeled as noncrossing line segments; two points are visible if 
the line segment connecting them does not intersect any walls except at its endpoints; and 
a wall is visible from a point if at least one point on the wall is visible from the point. Give 
an O(n lg n)time algorithm to compute the set of walls visible from the player. Hint: Use 
a linesweep algorithm, but instead of sweeping a horizontal line, sweep a halfline around a 
point. 

Problem 4. Consider the problem of finding the smallest (minimum diameter) circle con
taining some set H of n points in the plane. We will assume that the points are in “general 
position”—no 3 points are colinear, and no 4 points are on the boundary of a common circle. 
This assumption can be achieved by small perturbations in the input. For any set of points 
S in the plane, let O(S) denote the smallest circle containing S. 

1. Show that for any 3 noncolinear points, there is a unique circle having all 3 of those 
points on the circle boundary. This circle (center and radius) can be computed in 
constant time from the points. 



2 Handout 24: Problem Set 12 

2. Show that O(H) contains either 2 or 3 of the input points on its boundary. We will call 
these points the “basis” of the circle (hint, hint) and refer to them as B(H). Deduce a 
simple O(n4)time algorithm for solving the problem. 

3. Show that if a circle	 C excludes a point of H, then C cannot be the smallest circle 
containing B(H). 

4. Show that if p is not contained in O(S) for some S then p is on the boundary of 
O(S ∪ {p}). 

5. Generalize the above to finding the smallest circumcircle of H that is required to pass 
through a specific set of (one or two) points (assuming it exists).


˜
6. Give an O(n) expected time randomized incremental algorithm for finding O(H). 

OPTIONAL Problem 5. The standard representation of a Voronoi diagram is a graph 
together with, for each vertex of the Voronoi diagram, a cyclic linked list of the incident 
edges in clockwise order around the vertex and, for each input point, a cyclic linked list of 
the vertices and edges around the Voronoi cell of that point. 

(a)	 Show how to reduce the problem of sorting n numbers to the problem of comput

ing the Voronoi diagram of Θ(n) points. Your reduction should take linear time,

and can use standard arithmetic (+, −, ·, /, √ 

) but cannot use trigonometric

functions (sin, cos, etc.). (This is the real RAM model of computation.)


(b)	 Conclude that computing the Voronoi diagram of n points requires Ω(n lg n) time

in the worst case in the algebraic decision tree model of computation, in which

the computation can branch based only on a binary decision of comparing two

algebraic expressions (expressions involving inputs and +, −, ·, /, √ 

), and the

cost of a computation is the depth of that node in the tree.



