
6.854 Advanced Algorithms

Lecture 25: 11/12/2004 Lecturer: David Karger
Scribes: Charles Han

Randomized Incremental Construction II

25.1 Convex Hull

The following algorithm provides a randomized incremental construction for convex hull: start with
3 points, then process the remaining points in random order, updating the convex hull each time.
Define the set Si to the first i points processed, and define conv(Si) to be the convex hull of Si.
Throughout the algorithm, we want to maintain the vertices and edges of conv(Si) We take some
point p0 that lies inside conv(Si), and notice the following about the remaining points p: if the
halfline −→p0p cuts any segment of conv(Si), then that segment will leave conv(Si) if p is added to the
hull. It is also useful to observe that for each nonhull point p, there is exactly one edge that is cut
by −→p0p. We also know that So, when adding some point pi, we know that the convex hull changes
if −→p0p cuts a segment before reaching p. If we know that the hull changes, do the following: start
at the cut segment, then walk clockwise, removing all absorbed segments until we are done; do the
same going counterclockwise. The total time of this operation is O(1) per removed segment, plus
O(1) to add the two new segments connecting pi to the convex hull.

To be able to know in O(1) time whether a segment was cut or not, we need to maintain a conflict
list for each segment of the current hull; the conflict list maintains pointers to all the vertices (that
have not yet been added to the hull) that would cut the given segment if added. Given a vertex p,
we can easily tell if it cuts a given segment by looking for it in that segment’s conflict list (in O(1)
time with hashing, for instance). To build the conflict list for the two new segments after a hull
update, we need O(1) units of time for each vertex that had a cut segment absorbed by the new
segment.

In order for a segment to be deleted, it must have been added at some point, so we can simply charge
the deletion cost to the addition, for a real cost of at most 2 per point; it follows that the cost of
deletion is O(n). The cost of updating the conflict lists turns out to be harder to analyze, since the
cost depends on the expected number of points in the deleted conflict lists. For this analysis, we
turn to the method of backwards analysis.

25.2 Backwards Analysis

In backwards analysis, we simply imagine running our algorithm backwards and count the resulting
pointer updates. In this case, we want to know how much work needs to be done whenever we
remove a point pi from Si (not conv(Si)!) to arrive at Si−1. In particular, we are interested in

251

�

�

� �
� �

Lecture 25: 11/12/2004	 252

analyzing the total amount of work done on the conflict lists in our convex hull representation. For
the ith step of the convex hull [de]construction, consider the following:

•	 a given segment of conv(Si) will not change unless it is removed from the convex hull.

•	 if a segment of is removed from the conv(Si), we must remove all of the pointers in its conflict
list.

•	 a segment will only be removed if one of its endpoints is pi.

•	 since each of the i remaining vertices is equally to be removed, each segment in conv(Si) has
a 2/i probability of being removed.

Knowing these things, we can find the expected number of conflict pointers updated per step:

E[# of pointers updated] = ([size of e’s conflict list] · [Pr (e is removed)])
e∈conv(Si)⎛ ⎞

= ⎝ [size of e’s conflict list] ⎠ · ([Pr (e is removed)])
e∈conv(Si)

= O(n) · ([Pr (e is removed)])
= O(n/i)

Finally, we can find the total expected amount of work spent maintaining conflict lists over the
entire course of the algorithm:

n	 n

E[total expected work] = O(n/i) = O n (1/i) = O(n log n)
i=1	 i

25.3 Linear Programming

Now consider the following application of randomized incremental construction to linear program
ming. Let d represent the number of variables in our nconstraint linear program. Recall that an LP
can be represented geometrically as the problem of finding the optimal vertex (as measured by the
objective function) in the intersection of ddimensional halfspaces represented by the constraints.
Say that we build our polyhedron by adding our halfspaces in random order, and at each step
maintaining the current optimum vertex OPT . In order to accurately and efficiently maintain the
current OPT , we rely on the following obervation: adding a new constraint will not improve our
current OPT , but it may make it infeasible. To state it a bit differently:

Claim 1 Let OPTi be the optimum vertex of the polyhedron after inserting i constraints (half
spaces). Now add the next constraint ci+1; if OPT(i + 1) =� OPTi, then the new optimum vertex
OPTi+1 must be tight for the new constraint ci+1

�

Lecture 25: 11/12/2004 253

Proof: We prove the above claim by contraposition. Suppose that ci+1 is not tight for OPTi+1.
Then removing ci+1 would have no effect on the optimum, implying that OPTi = OPTi+1. This
contradicts the condition that OPTi = OPTi+1; therefore, the claim holds.

We already know the set C of constraints for which the previous OPT was tight, so we can reduce
our search for the new OPT to just those contstraints. We also know that the new OPT is tight for
our new constraint, so it sufficient to optimize within the hyperplane defined by that constraint. In
this new optimization problem, we intersect each constraint Cj ∈ C with the new tight constraint, and
we also project the objective function onto the new constraint. This gives us a new (d−1)dimension
optimization problem, which we can recursively solve in the same manner to find the new OPT .

In the worstcase scenario, we would need to recurse for every single new constraint added. This
behavior is modelled by the recurrence:

dT (n, d) = T (1, d− 1) + T (2, d− 1) + ... + T (n, d− 1) ≈ nT (n, d− 1) ≈ n

Since this is a randomized construction, we can hope to do better in the expected case. We only
need to recurse in cases where OPTi is infeasible for constraint ci+1 (otherwise, OPTi = OPTi+1).
At step i in the construction, consider that only d constraints ever specify OPTi. In a backwards
analysis, consider removing a random constraint from the polyhedron at step i; we will remove a
tight constraint only with probability d/i, knowing this, we get a much betterlooking recurrence for
our algorithm:

d
T (n, d) = T (n − 1, d) + O(n) + (T (n − 1, d− 1))

n

This gives an expected running time of O(d!n). This is a strongly polynomial LP algorithm, which
is in fact linear in the number of constraints and FPT with respect to d.

