
6.854 Advanced Algorithms 

Lecture 25: 11/12/2004 Lecturer: David Karger 
Scribes: Charles Han 

Randomized Incremental Construction II 

25.1 Convex Hull 

The following algorithm provides a randomized incremental construction for convex hull: start with 
3 points, then process the remaining points in random order, updating the convex hull each time. 
Define the set Si to the first i points processed, and define conv(Si) to be the convex hull of Si. 
Throughout the algorithm, we want to maintain the vertices and edges of conv(Si) We take some 
point p0 that lies inside conv(Si), and notice the following about the remaining points p: if the 
halfline −→p0p cuts any segment of conv(Si), then that segment will leave conv(Si) if p is added to the 
hull. It is also useful to observe that for each nonhull point p, there is exactly one edge that is cut 
by −→p0p. We also know that So, when adding some point pi, we know that the convex hull changes 
if −→p0p cuts a segment before reaching p. If we know that the hull changes, do the following: start 
at the cut segment, then walk clockwise, removing all absorbed segments until we are done; do the 
same going counterclockwise. The total time of this operation is O(1) per removed segment, plus 
O(1) to add the two new segments connecting pi to the convex hull. 

To be able to know in O(1) time whether a segment was cut or not, we need to maintain a conflict 
list for each segment of the current hull; the conflict list maintains pointers to all the vertices (that 
have not yet been added to the hull) that would cut the given segment if added. Given a vertex p, 
we can easily tell if it cuts a given segment by looking for it in that segment’s conflict list (in O(1) 
time with hashing, for instance). To build the conflict list for the two new segments after a hull 
update, we need O(1) units of time for each vertex that had a cut segment absorbed by the new 
segment. 

In order for a segment to be deleted, it must have been added at some point, so we can simply charge 
the deletion cost to the addition, for a real cost of at most 2 per point; it follows that the cost of 
deletion is O(n). The cost of updating the conflict lists turns out to be harder to analyze, since the 
cost depends on the expected number of points in the deleted conflict lists. For this analysis, we 
turn to the method of backwards analysis. 

25.2 Backwards Analysis 

In backwards analysis, we simply imagine running our algorithm backwards and count the resulting 
pointer updates. In this case, we want to know how much work needs to be done whenever we 
remove a point pi from Si (not conv(Si)!) to arrive at Si−1. In particular, we are interested in 

251 



� 

� 

� � 
� � 

Lecture 25: 11/12/2004	 252 

analyzing the total amount of work done on the conflict lists in our convex hull representation. For 
the ith step of the convex hull [de]construction, consider the following: 

•	 a given segment of conv(Si) will not change unless it is removed from the convex hull. 

•	 if a segment of is removed from the conv(Si), we must remove all of the pointers in its conflict 
list. 

•	 a segment will only be removed if one of its endpoints is pi. 

•	 since each of the i remaining vertices is equally to be removed, each segment in conv(Si) has 
a 2/i probability of being removed. 

Knowing these things, we can find the expected number of conflict pointers updated per step: 

E[# of pointers updated] = ( [size of e’s conflict list] · [Pr (e is removed)] ) 
e∈conv(Si)⎛ ⎞ 

= ⎝ [size of e’s conflict list] ⎠ · ([Pr (e is removed)]) 
e∈conv(Si) 

= O(n) · ([Pr (e is removed)]) 
= O(n/i) 

Finally, we can find the total expected amount of work spent maintaining conflict lists over the 
entire course of the algorithm: 

n	 n

E[total expected work] = O(n/i) = O n (1/i) = O(n log n) 
i=1	 i 

25.3 Linear Programming 

Now consider the following application of randomized incremental construction to linear program
ming. Let d represent the number of variables in our nconstraint linear program. Recall that an LP 
can be represented geometrically as the problem of finding the optimal vertex (as measured by the 
objective function) in the intersection of ddimensional halfspaces represented by the constraints. 
Say that we build our polyhedron by adding our halfspaces in random order, and at each step 
maintaining the current optimum vertex OPT . In order to accurately and efficiently maintain the 
current OPT , we rely on the following obervation: adding a new constraint will not improve our 
current OPT , but it may make it infeasible. To state it a bit differently: 

Claim 1 Let OPTi be the optimum vertex of the polyhedron after inserting i constraints (half
spaces). Now add the next constraint ci+1; if OPT(i + 1) =� OPTi, then the new optimum vertex 
OPTi+1 must be tight for the new constraint ci+1 
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Proof: We prove the above claim by contraposition. Suppose that ci+1 is not tight for OPTi+1. 
Then removing ci+1 would have no effect on the optimum, implying that OPTi = OPTi+1. This 
contradicts the condition that OPTi = OPTi+1; therefore, the claim holds. 

We already know the set C of constraints for which the previous OPT was tight, so we can reduce 
our search for the new OPT to just those contstraints. We also know that the new OPT is tight for 
our new constraint, so it sufficient to optimize within the hyperplane defined by that constraint. In 
this new optimization problem, we intersect each constraint Cj ∈ C with the new tight constraint, and 
we also project the objective function onto the new constraint. This gives us a new (d−1)dimension 
optimization problem, which we can recursively solve in the same manner to find the new OPT . 

In the worstcase scenario, we would need to recurse for every single new constraint added. This 
behavior is modelled by the recurrence: 

dT (n, d) = T (1, d− 1) + T (2, d− 1) + ... + T (n, d− 1) ≈ nT (n, d− 1) ≈ n 

Since this is a randomized construction, we can hope to do better in the expected case. We only 
need to recurse in cases where OPTi is infeasible for constraint ci+1 (otherwise, OPTi = OPTi+1). 
At step i in the construction, consider that only d constraints ever specify OPTi. In a backwards 
analysis, consider removing a random constraint from the polyhedron at step i; we will remove a 
tight constraint only with probability d/i, knowing this, we get a much betterlooking recurrence for 
our algorithm: 

d 
T (n, d) = T (n − 1, d) + O(n) + (T (n − 1, d− 1)) 

n 

This gives an expected running time of O(d!n). This is a strongly polynomial LP algorithm, which 
is in fact linear in the number of constraints and FPT with respect to d. 


