
1 Linear Programming 

1.1 Introduction 

Problem description: 

• motivate by min-cost flow 

• bit of history 

• everything is LP 

• NP and coNP. P breakthrough. 

• general form: 

– variables 


– constraints:  linear equalities and inequalities


– x feasible if satisfies all constraints 

– LP feasible if some feasible x 

– x optimal if optimizes objective over feasible x 

– LP is unbounded if have feasible x of arbitrary good objective value 

– lemma: every lp is infeasible, has opt, or is unbounded 

– (by compactness of Rn and fact that polytopes are closed sets). 

Problem formulation: 

• canonical form: min cT x, Ax ≥ b 

• matrix representation, componentwise ≤ 

• rows ai of A are constraints 

• c is objective 

• any LP has transformation to canonical: 

– max/min objectives same 

– move vars to left, consts to right 

– negate to flip ≤ for ≥ 

– replace = by two ≤ and ≥ constraints 

• standard form: min cT x, Ax = b, x ≥ 0 

– slack variables 
−– splitting positive and negative parts x → x+ − x

• Ax ≥ b often nicer for theory; Ax = b good for implementations. 
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point A. 20 minutes.

Some steps towards efficient solution:


• What does answer look like? Can it be represented effectively? 

• Easy to verify it is correct? 

• Is there a small proof of no answer? 

• Can answer, nonanswer be found efficiently? 

1.2 Linear Equalities 

How solve? First review systems of linear equalities. 

• Ax = b. when have solution? 

• baby case: A is squre matrix with unique solution. 

• solve using, eg, Gaussian elimination. 

• discuss polynomiality, integer arithmetic later 

• equivalent statements: 

– A invertible 

– AT invertible 

– det(A) �= 0  

– A has linearly independent rows 

– A has linearly independent columns 

– Ax = b has unique solution for every b 

– Ax = b has unique solution for some b. 

What if A isn’t square? 

• Ax = b has a witness for true: give x. 

• How about a proof that there is no solution? 

• note that “Ax = b” means columns of A span b. 

• if not, some linear comb of A spans b 

n• in general, set of points {Ax | x ∈ � } is a subspace 

• claim: no solution iff for some y, yA = 0 but yb �= 0.  

• proof: if Ax = b, then  yA = 0  means  yb = yAx = 0.  

• if no Ax = b, means columns of A don’t span b 
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•	 set of points {Ax} is subspace not containing b 

•	 find part of b perpendicular to subspace, call it y 

•	 then yb �= 0, but yA = 0,  

•	 standard form LP asks for linear combo to, but requires that all coefficients 
of combo be nonnegative! 

Algorithmic? 

•	 Use Gram-Schmidt to find set of independent columns 

• Solve “square” Ax = b problem 

To talk formally about polynomial size/time, need to talk about size of problems. 

•	 number n has size log n 

•	 rational p/q has size size(p)+size(q) 

•	 size(product) is sum(sizes). 

•	 dimension n vector has size n plus size of number 

•	 m × n matrix similar: mn plus sizeof numbers 

•	 size (matrix product) at most sum of matrix sizes 

• our goal: polynomial time in size of input, measured this way 

Claim: if A is n × n matrix, then det(A) is  poly  in  size  of  A 

•	 more precisely, twice the size 

•	 proof by writing determinant as sum of permutation products. 

•	 each product has size n times size of numbers 

•	 n! products 

• so size at most size of (n! times product) ≤ n log n + n·size(largest entry). 

Corollary: 

•	 inverse of matrix is poly size (write in terms of cofactors) 

•	 solution to Ax = b is poly size (by inversion) 
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1.3 Geometry 

Polyhedra 

•	 canonical form: Ax ≥ b is an intersection of (finitely many) halfspaces, a 
polyhedron 

•	 standard form: Ax = b is an intersection of hyperplanes (thus a subspace), 
then x ≥ 0 intersects in some halfspace. Also a polyhedron, but not full 
dimensional. 

•	 polyhedron is bounded if fits inside some box. 

•	 either formulation defines a convex set: 

–	 if x, y ∈ P , so  is  λx + (1  − λ)y for λ ∈ 0, 1. 

–	 that is, line from x to y stays in P . 

•	 halfspaces define convex sets. Converse also true! 

•	 let C be any convex set, z /∈ C. 

•	 then there is some a, b such that ax ≥ b for x ∈ C, but az < b. 

•	 proof by picture. also true in higher dimensions (don’t bother proving) 

•	 deduce: every convex set is the intersection of the halfspaces containing 
it. 

1.4 Basic Feasible Solutions 

Again, let’s start by thinking about structure of optimal solution. 

•	 Can optimum be in “middle” of polyhedron? 

• Not really: if can move in all directions, can move to improve opt. 

Where can optimum be? At “corners” 

•	 “vertex” is point that is not a convex combination of two others 

• “extreme point” is point that is unique optimum in some direction 

Basic solutions: 

•	 A constraint ax ≤ b or ax = b is tight or active if ax = b 

•	 for n-dim LP, point is basic if (i) all equality constraints are tight and (ii) 
n linearly independent constraints are tight. 

•	 in other words, x is at intersection of boundaries of n linearly independent 
constraints 

4 



�	 � 

•	 note x is therefore the unique intersection of these boundaries. 

•	 a basic feasible solution is a solution that is basic and satisfies all con-
straints. 

In fact, vertex, extreme point, bfs are equivalent. 

• Proof left to reader. 

Consider standard lp min cx, Ax = b, x ≥ 0. 

•	 Suppose opt x is not at BFS 

•	 Then less than n tight constraints 

•	 So at least one degree of freedom 

•	 i.e, there is a (linear) subspace on which all those constraints are tight. 

•	 In particular, some line through x for which all these constraints are tight. 

•	 Write as x + εd for some vector direction d 

•	 Since x is feasible and other constraints not tight, x + εd is feasible for 
small enough ε. 

•	 Consider moving along line. Objective value is cx + εcd. 

•	 So for either positive or negative ε, objective is nonincreasing, i.e. doesn’t 
get worse. 

•	 Since started at opt, must be no change at all—i.e., cd = 0.  

•	 So can move in either direction. 

•	 In at least one direction, some xi is decreasing. 

•	 Keep going till new constraint becomes tight (some xi = 0).  

•	 Argument can be repeated until n tight constraints, i.e. bfs 

•	 Conclude: every standard form LP with an optimum has one at a bfs. 

– Proof: start at opt, move to bfs 

Yields first algorithm for LP: try all bfs. 

•	 How many are there? 

•	 just choose n tight constraints out of m, check feasibility and objective 

m • Upper bound n 

Also shows output is polynomial size: 
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•	 Let A′ and correspoinding b′ be n tight constraints (rows) at opt 

•	 Then opt is (unique) solution to A′x = b′ 

•	 We saw last time that such an inverse is represented in polynomial size in 
input 

(So, at least weakly polynomial algorithms seem possible) 
Corollary: 

•	 Actually showed, if x feasible, exists vertex with no worse objective. 

•	 Note that in canconical form, might not have opt at vertex (optimize x1 

over (x1, x2) such that 0 ≤ x1 ≤ 1). 

•	 But this only happens if LP is unbounded 

•	 In particular, if opt is unique, it  is a  bfs.  

OK, this is an exponential method for finding the optimum. Maybe we can do 
better if we just try to verify the optimum. Let’s look for a way to prove that 
a given solution x is optimal. 

2 Duality 

Quest for nonexponential algorithm: start at an easier place: how decide if a 
solution is optimal? 

•	 decision version of LP: is there a solution with opt> k? 

•	 this is in NP, since can exhibit a solution (we showed poly size output) 

•	 is it in coNP? Ie, can we prove there is no solution with opt> k? (this 
would give an optimality test) 

2.1 Duality 

What about optimality? 

•	 Intro duality, strongest result of LP 

•	 give proof of optimality 

•	 gives max-flow mincut, prices for mincost flow, game theory, lots other 
stuff. 

Motivation: find a lower bound on z = min{cx | Ax = b, x ≥ 0}. 
•	 try multiplying aix = bi by some yi. Get  yAx = yb 

•	 if require yA ≤ c, then  yb = yAx ≤ cx is lower bound since xj ≥ 0 
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•	 so to get best lower bound, want to solve w = max{yb | 
•	 this is a new linear program, dual of original. 

• just saw that dual is less than primal (weak duality) 

Note: dual of dual is primal: 

max{yb : yA ≤ c}	 = max{by | AT y ≤ c} 

= − min{−by | AT y + Is  = c, s ≥ 0} 

yA ≤ c}. 

+ −= − min{−by+ + by− | AT y + (−AT )y − + Is  = c, y , y  , s  ≥ 0}


= − max{cz | zAT ≤ −b, z(−AT ) ≤ −b, Iz ≤ 0}


= min{cx | Ax = b, x ≥ 0} (x = −z)


Weak duality: if P	 (min, opt z) and  D (max, opt w) feasible, z ≥ w 

•	 w = yb and z = cx for some primal/dual feasible y, x 

•	 x primal feasible (Ax = b, x ≥ 0) 

•	 y dual feasible (yA ≤ c) 

• then yb = yAx ≤ cx 

Note corollary: 

•	 (restatement:) if P, D both feasible, then both bounded. 

•	 if P feasible and unbounded, D not feasible 

•	 if P feasible, D either infeasible or bounded 

•	 in fact, only 4 possibilities. both feasible, both infeasible, or one infeasible 
and one unbounded. 

•	 notation: P unbounded means D infeasible; write solution −∞. D un-
bounded means P infeasilbe, write solution ∞. 

3 Strong Duality 

Strong duality: if P	 or D is feasible then z = w 

• includes D infeasible via w = −∞) 

Proof by picture: 

•	 min{yb | yA ≥ c} (note: flipped sign) 

•	 suppose b points straight up. 

•	 imagine ball that falls down (minimize height) 
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•	 stops at opt y (no local minima) 

•	 stops because in physical equilibrium 

•	 equilibrium exterted by forces normal to “floors” 

•	 that is, aligned with the Ai (columns) 

•	 but those floors need to cancel “gravity” −b 

•	 thus b = Aixi for some nonnegative force coeffs xi . 

•	 in other words, x feasible for min{cx | Ax = b, x ≥ 0} 

•	 also, only floors touching ball can exert any force on it 

•	 thus, xi = 0  if  yAi > ci 

•	 that is, (ci − yAi)xi = 0  

•	 thus, cx = (yAi)xi = yb 

• so x is dual optimal. 

Let’s formalize. 

•	 Consider optimum y 

•	 WLOG, ignore all loose constraints (won’t need them) 

•	 And if any are redundant, drop them 

•	 So at most n tight constraints remain 

•	 and all linearly independent. 

• and since those constraints are tight, yA = c 

Claim: Exists x, Ax = b 

•	 Suppose not? Then “duality” for linear equalities proves exists z, zA = 0  
but zb <> 0. 

•	 WLOG zb < 0 (else negate it) 

•	 So consider y + z. 

•	 A(y + z) =  Ay + Az = Ay, so  feasible  

• b(y + z) =  by + bz < by, so better than opt! Contra. 

Claim: yb = cx 

•	 Just said Ax = b in dual 
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• In primal, all (remaining) constraints are tight, so yA = c 

• So yb = yAx = cx 

Claim: x ≥ 0 

• Suppose not. 

• Then some xi < 0 

• Let c = c + ei 

• Consider solution to yA = c

• Exists solution (since A is full rank) 

• And c′ ≥ c, so  yA = c′ is feasible for original constraints yA ≥ c 

• Value of objective is yb = yAx = c x 

– We assumed xi < 0, and increased ci 

– So c x < cx  

– So got better value than opt. Contradiction! 

Neat corollary: Feasibility or optimality: which harder? 

• given optimizer, can check feasiblity by optimizing arbitrary func. 

• Given feasibility algorithm, can optimize by combining primal and dual. 

Interesting note: knowing dual solution may be useless for finding optimum 
(more formally: if your alg runs in time T to find primal solution given dual, 
can adapt to alg that runs in time O(T ) to solve primal without dual). 

3.1 Rules for duals 

General dual formulation: 

• primal is 

z = min  c1x1 + c2x2 + c3x3 

A11x1 + A12x2 + A13x3 = b1 

A21x1 + A22x2 + A23x3 ≥ b2 

A31x1 + A32x2 + A33x3 ≤ b3 

x1 ≥ 0 

x2 ≤ 0 

x3 UIS  

(UIS emphasizes unrestricted in sign) 

9 



•	 means dual is 

w = max  y1b1 + y2b2 + y3b3 

y1A11 + y2A21 + y3A31 ≤ c1 

y1A12 + y2A22 + y3A32 ≥ c2 

y1A13 + y2A23 + y3A33 = c3 

y1 UIS  

y2 ≥ 0 

y3 ≤ 0 

•	 In general, variable corresponds to constraint (and vice versa): 

PRIMAL minimize maximize DUAL 

≥ bi ≥ 0 
constraints ≤ bi ≤ 0 variables 

= bi free 

variables 
≥ 0 
≥ 0 
free 

≤ cj 

≤ cj 

= cj 

constraints 

Derivation: 

•	 remember lower bounding plan: use yb = yAx ≤ cx relation. 

•	 If constraint is in “natural” direction, dual variable is positive. 

•	 We saw A11 and x1 case. x1 ≥ 0 ensured yAx1 ≤ c1x1 for any y 

•	 If some x2 ≤ 0 constraint, we want yA12 ≥ c2 to maintain rule that 
y1A12x2 ≤ c2x2 

•	 If x3 unconstrained, we are only safe if yA13 = c3. 

•	 if instead have A21x1 ≥ b2, any  old  y won’t do for lower bound via c1x1 ≥ 
y2A21x1 ≥ y2b2. Only works if y2 ≥ 0. 

•	 and so on (good exercise). 

•	 This gives weak duality derivation. Easiest way to derive strong duality 
is to transform to standard form, take dual and map back to original 
problem dual (also good exercise). 

Note: tighter the primal, looser the dual 

•	 (equality constraint leads to unrestricted var) 

•	 adding primal constraints creates a new dual variable: more dual flexibility 
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3.2 Shortest Paths 

A dual example: 

•	 shortest path is a dual (max) problem: 

w = max  dt − ds 

dj − di ≤ cij 

•	 constraints matrix A has ij rows, i columns, ±1 entries  (draw)  

•	 what is primal? unconstrained vars, give equality constraints, dual upper 
bounds mean vars must be positive. 

z = min  yij cij 

yij ≥ 0 

thus 
yji − yij = 1(i = s), −1(i = t), 0 ow  

j 

It’s the minimum cost to send one unit of flow from s to t! 

4 Complementary Slackness 

Leads to another idea: complementary slackness: 

• given feasible solutions x and y, cx − yb ≥ 0 is  duality gap.


• optimal iff gap 0 (good way to measure “how far off”


•	 Go back to original primal and dual forms 

•	 rewrite dual: yA + s = c for some s ≥ 0 (that is, sj = cj − yAj ) 

•	 The following are equivalent for feasible x, y: 

–	 x and y are optimal 

–	 sx = 0  

–	 xj sj = 0  for  all  j 

–	 sj > 0 implies xj = 0  

•	 We saw this in duality analysis: only tight constraints “push” on opt, 
giving nonzero dual variables. 

•	 proof: 
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–	 cx = by iff (yA + s)x = y(Ax), so sx = 0  

–	 if sx = 0,  then  since  s, x ≥ 0 have  sj xj = 0 (converse easy) 

–	 so sj > 0 forces xj = 0 (converse easy) 

•	 basic idea: opt cannot have a variable xj and corresponding dual con-
straint sj slack at same time: one must be tight. 

•	 Another way to state: in arbitrary form LPs, feasible points optimal if: 

yi(aix − bi) = 0∀i 

(cj − yAj)xj = 0∀j 

•	 proof: note in definition of primal/dual, feasiblity means yi(aix − bi) ≥ 0 
(since ≥ constraint corresponds to nonnegative yi). Also (cj −yAj )xj ≥ 0. 
Also, 

yi(aix − bi) + (cj − yAj )xj	 = yAx − yb + cx − yAx 

= cx − yb 

= 0  

at opt. But since all terms are nonnegative, all must be 0 

Let’s take some duals. 
Max-Flow min-cut theorem: 

•	 modify to circulation to simplify 

•	 primal problem: create infinite capacity (t, s) arc 

P = max  xts 

w 

xvw − xwv = 0  
w 

xvw ≤ uvw 

xvw ≥ 0 

•	 dual problem: vars zv dual to balance constraints, yvw dual to capacity 
constraints. 

D = min  yvwuvw 

vw 

yvw ≥ 0 

zv − zw + yvw ≥ 0 

zt − zs + yts ≥ 1 
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•	 Think of yvw as “lengths” 

•	 note yts = 0 since otherwise dual infinite. so zt − zs ≥ 1. 

•	 rewrite as zw ≤ zv + yvw. 

•	 deduce yvw are edge lengths, zv are distance upper bounds from source. 

•	 might as well set z to distances from source (doesn’t affect constraints) 

•	 So, are trying to maximiz source-sink distance 

–	 Good justification for shortest aug path, blocking flows 

•	 sanity check: mincut: assign length 1 to each mincut edge 

•	 unfortunately, might have noninteger dual optimum. 

•	 note zi are distances, rescale to zs = 0  

•	 let S = v | zv < 1 (so  s ∈ S, t /∈ S) 

•	 use complementary slackness: 

–	 if (v, w) leaves S, then  yvw ≥ zw − zv > 0, so xvw = uvw, (tight) i.e. 
(v, w) saturated. 

–	 if (v, w) enters S, then  zv > zw. Also  know  yvw ≥ 0; add equations 
and get zv + yvw > zw i.e. slack. 

–	 so xwv = 0  

–	 in other words: all leaving edges saturated, all coming edges empty. 

•	 now just observe that value of flow equal value crossing cut equals value 
of cut. 

Min cost circulation: change the objective function associated with max-flow. 

•	 primal: 

z = min  cvwxvw 

xvw − xwv = 0  
w 

xvw ≤ uvw 

xvw ≥ 0 

•	 as before, dual: variable yvw for capacity constraint on fvw, zv for balance. 

•	 Change to primal min problem flips sign constraint on yvw 
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•	 What does change in primal objective mean for dual? Different constraint 
bounds! 

max yvwuvw 

zv − zw + yvw ≤ cvw 

yvw ≤ 0 

zv UIS 

•	 rewrite dual: pv = −zv 

max yvwuvw 

yvw ≤ 0 

= c(p)yvw ≤ cvw + pv − pw vw 

•	 Note: yvw ≤ 0 says the objective function is the sum of the negative 
parts of the reduced costs (positive ones get truncated to 0) 

•	 Note: optimum ≤ 0 since of course can set y = 0. Since since zero 
circulation is primal feasible. 

•	 complementary slackness. 

–	 Suppose fvw < uvw. 

–	 Then dual variable yvw = 0  

–	 So c(p) ≥ 0ij 

–	 Thus c(p) 
< 0 implies fij = uijij 

– that is, all negative reduced cost arcs saturated.


– on the other hand, suppose cij 
(p) 

> 0


–	 then constraint on zij is slack 

–	 so fij = 0  

–	 that is, all positive reduced arcs are empty. 

5 Algorithms 

5.1 Simplex 

vertices in standard form/bases: 

•	 Without loss of generality make A have full row rank (define): 

–	 find basis in rows of A, say  a1, . . . , ak 
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–	 any other a� is linear combo of those. 

–	 so a�x = λiaix 

–	 so better have bl = λiai if any solution. 

–	 if so, anything feasible for a1, . . . , a� feasible for all. 

•	 m constraints Ax = b all tight/active 

•	 given this, need n − m of the xi ≥ 0 constraints  

•	 also, need them to form a basis with the ai. 

•	 write matrix of tight constraints, first m rows then identity matrix 

•	 need linearly independent rows 

•	 equiv, need linearly independent columns 

•	 but columns are linearly independent iff m columns of A including all 
corresp to nonzero x are linearly independent 

•	 gives other way to define a vertex: x is vertex if 

–	 Ax = b 

–	 m linearly independent columns of A include all xj �= 0 


This set of m columns is called a basis.


•	 xj of columns called basic set B, others  nonbasic set N 

•	 given bases, can compute x: 

–	 AB is basis columns, m × m and full rank. 

–	 solve AB xB = b, set  other  xN = 0.  

– note can have many bases for same vertex (choice of 0 xj ) 

Summary: x is vertex of P if for some basis B, 

•	 xN = 0  

•	 AB nonsingular 

•	 A−1b ≥ 0B 

Simplex method: 

•	 start with a basic feasible soluion 

•	 try to improve it 

•	 rewrite LP: min cB xB + cN xN , AB xB + AN xN = b, x ≥ 0 

•	 B is basis for bfs 
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•	 since AB xB = b − AN xN , so  xB = A−1(b − AN xN ), know that B 

cx	 = cB xB + cN xN 

= cB A
−1(b − AN xN ) +  cN xNB 

= cB A
−1b + (cN − cB A

−1AN )xNB B 

•	 reduced cost c̃N = cN − cB A
−1ANB 

•	 if no c̃j < 0, then increasing any xj increases cost (may violate feasiblity 
for xB , but who cares?), so are at optimum! 

•	 if some c̃j < 0, can increase xj to decrease cost 

•	 but since xB is func of xN , will have to stop when xB 

•	 this happens when some xi, i ∈ B hits 0. 

•	 we bring j into basis, take i out of basis. 

•	 we’ve moved to an adjacent basis. 

•	 called a pivot 

•	 show picture 

Notes: 

•	 Need initial vertex. How find? 

hits a constraint. 

•	 maybe some xi ∈ B already 0, so can’t increase xj , just pivot to same obj 
function. 

•	 could lead to cycle in pivoting, infinite loop. 

•	 can prove exist noncycling pivots (eg, lexicographically first j and i) 

•	 no known pivot better than exponential time 

•	 note traverse path of edges over polytope. Unknown what shortest such 
path is 

•	 Hirsh conjecture: path of m − d pivots exists. 

•	 even if true, simplex might be bad because path might not be monotone 
in objective function. 

•	 certain recent work has shown nlog n bound on path length 
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5.2 Simplex and Duality 

•	 defined reduced costs of nonbasic vars N by 

c̃N = cN − cB A
−1ANB 

and argued that when all c̃N ≥ 0, had optimum. 

•	 Define y = cB A
−1 (so of course cB = yAB )B 

•	 nonegative reduced costs means cN ≥ yAN 

•	 put together, see yA ≤ c so y is dual feasible 

•	 but, yb = cB A
−1b = cB xB = cx (since xN = 0)  B 

•	 so y is dual optimum. 

•	 more generally, y measures duality gap for current solution! 

•	 another way to prove duality theorem: prove there is a terminating (non 
cycling) simplex algorithm. 

5.3 Polynomial Time Bounds 

We know a lot about structure. And we’ve seen how to verify optimality in 
polynomial time. Now turn to question: can we solve in polynomial time? 
Yes, sort of (Khachiyan 1979): 

•	 polynomial algorithms exist 

• strongly polynomial unknown. 

Claim: all vertices of LP have polynomial size. 

•	 vertex is bfs 

•	 bfs is intersection of n constraints AB x = b 

• invert matrix. 

Now can prove that feasible alg can optimize a different way: 

•	 use binary search on value z of optimum 

•	 add constraint cx ≤ z 

•	 know opt vertex has poly number of bits 

•	 so binary search takes poly (not logarithmic!) time 

•	 not as elegant as other way, but one big advantage: feasiblity test over 
basically same polytope as before. Might have fast feasible test for this 
case. 
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6 Ellipsoid 

Lion hunting in the desert. 
Define an ellipsoid 

• generalizes ellipse 

• write some D = BBT “radius” 

• center z 

• point set {(x − z)T D−1(x − z) ≤ 1} 

• note this is just a basis change of the unit sphere x2 ≤ 1. 

• under transform x → Bx + z 

Outline of algorithm: 

• goal: find a feasible point for P = {Ax ≤ b} 

• start with ellipse containing P , center z 

• check if z ∈ P 

• if not, use separating hyperplane to get 1/2 of ellipse containing P 

• find a smaller ellipse containing this 1/2 of original ellipse 

• until center of ellipse is in P . 

Consider sphere case, separating hyperplane x1 = 0  

• try center at (a, 0, 0, . . .) 

• Draw picture to see constraints 

• requirements: 

d−1 2– d−1(x1 − a)2 +1 i>1 i xi ≤ 1 

– constraint at (1, 0, 0): d−1(x − a)2 = 1  so  d1 = (1  − a)2 1 

– constraint at (0, 1, 0): a2/(1−a)2+d−1 = 1  so  d−1 = 1−a2/(1−a)2 ≈2 2 
21 − a


2)n/2
• What is volume? about (1 − a)/(1 − a

• set a about 1/n, get  (1  − 1/n) volume ratio. 

Shrinking Lemma: 

• Let E = (z, D) define an n-dimensional ellipsoid 

• consider separating hyperplane ax ≤ az 
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•	 Define E′ = (z′, D′) ellipsoid: 

1 DaT 

z ′ = z − √ 
n + 1  aDaT 

D′ n2 2 DaT aD 
)= 

n2 − 1
(D − 

n + 1  aDaT 

•	 then 

E ∩ {x | ax ≤ ez} ⊆ E′ 

vol(E′) ≤ e1/(2n+1)vol(E) 

•	 for proof, first show works with D = I and z = 0. new ellipse:


1

z ′ = − 

n + 1  

D′ n2 2 
I11)= 

n2 − 1
(I − 

n + 1 


and volume ratio easy to compute directly.


•	 for general case, transform to coordinates where D = I (using new basis 
B), get new ellipse, transform back to old coordinates, get (z′, D′) (note  
transformation don’t affect volume ratios. 

So ellipsoid shrinks. Now prove 2 things: 

•	 needn’t start infinitely large 

• can’t get infinitely small 

Starting size: 

•	 recall bounds on size of vertices (polynomial) 

•	 so coords of vertices are exponential but no larger 

•	 so can start with sphere with radius exceeding this exponential bound 

•	 this only uses polynomial values in D matrix. 

• if unbounded, no vertices of P , will get vertex of box. 

Ending size: 

•	 convenient to assume that polytope full dimensional 

•	 if so, it has n + 1 affinely indpendent vertices 

•	 all the vertices have poly size coordinates 
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•	 so they contain a box whose volume is a poly-size number (computable as 
determinant of vertex coordinates) 

Put together: 

•	 starting volume 2n O(1) 

•	 ending volume 2−n O(1) 

•	 each iteration reduces volume by e1/(2n+1) factor 

•	 so 2n + 1 iters reduce by e 

n•	 so nO(1) reduce by e
O(1) 

•	 at which point, ellipse doesn’t contain P , contra  

• must have hit a point in P before. 

Justifying full dimensional: 

•	 take {Ax ≤ b}, replace with P ′ = {Ax ≤ b + ε} for tiny ε 

•	 any point of P is an interior of P ′, so  P ′ full dimensional (only have 
interior for full dimensional objects) 

•	 P empty iff P ′ is (because ε so small) 

• can “round” a point of P ′ to P . 

Infinite precision: 

•	 built a new ellipsoid each time. 

•	 maybe its bits got big? 

•	 no. 

6.1 Separation vs Optimization 

Notice in ellipsoid, were only using one constraint at a time. 

•	 didn’t matter how many there were. 

•	 didn’t need to see all of them at once. 

•	 just needed each to be represented in polynomial size. 

•	 so ellipsoid works, even if huge number of constraints, so long as have 
separation oracle: given point not in P , find separating hyperplane. 

•	 of course, feasibility is same as optimize, so can optimize with sep oracle 
too. 

•	 this is on a polytope by polytope basis. If can separate a particular poly-
tope, can optimize over that polytope. 

This is very useful in many applications. e.g. network design. 
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7 Interior Point 

Ellipsoid has problems in practice (O(n6) for one). So people developed a dif-

ferent approach that has been extremely successful.

What goes wrong with simplex?


•	 follows edges of polytope 

•	 complex stucture there, run into walls, etc 

•	 interior point algorithms stay away from the walls, where structure sim-
pler. 

•	 Karmarkar did the first one (1984); we’ll descuss one by Ye 

7.1 Potential Reduction 

Potential function: 

•	 Idea: use a (nonlinear) potential function that is minimized at opt but 
also enforces feasibility 

•	 use gradient descent to optimize the potential function. 

•	 Recall standard primal {Ax = b, x ≥ 0} and dual yA + s = c, s ≥ 0. 

•	 duality gap sx 

•	 Use logarithmic barrier function 

G(x, s) =  q ln xs − ln xj − ln sj 

and try to minimize it (pick q in a minute) 

•	 first term forces duality gap to get small 

•	 second and third enforce positivity 

•	 note barrier prevents from ever hitting optimum, but as discussed above 
ok to just get close. 

Choose q so first term dominates, guarantees good G is good xs 

•	 G(x, s) small should mean xs small 

•	 xs large should mean G(x, s) large 

•	 write G = ln(xs)q / xj sj 

•	 xs > xj sj , so  (xs)n > xj sj . So  taking  q >  n  makes top term dominate, 
G >  ln xs 

How minimize potential function? Gradient descent. 
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•	 have current (x, s) point.  

•	 take linear approx to potential function around (x, s) 

•	 move to where linear approx smaller (−∇xG) 

•	 deduce potential also went down. 

•	 crucial: can only move as far as linear approximation accurate

√ √


Firs wants big q, second small q. Compromise at n + n, gives  O(L n) itera
-
tions.

Must stay feasible:


•	 Have gradient g = ∇xG 

•	 since potential not minimized, have reasonably large gradient, so a small 
step will improve potential a lot. picture 

•	 want to move in direction of G, but want to stay feasilbe 

•	 project G onto nullspace(A) to get  d 

•	 then A(x + d) =  Ax = b 

•	 also, for sufficiently small step, x ≥ 0 

•	 potential reduction proportional to length of d 

•	 problem if d too small 

•	 In that case, move s (actually y) by  g − d which will be big. 

•	 so can either take big primal or big dual step 

•	 why works? Well, d (perpendicular to A) has  Ad = 0, so good primal 
move. 

•	 converseley, part spanned by A has g − d = wA, 

•	 so can choose y = y+w and get s = c−Ay′ = c−Ay −(g−d) =  s−(g −d). 

•	 note dG/dxj = sj /(xs) − 1/xj 

•	 and dG/dsj = xj /(xs) − 1/sj = (xj /sj )dG/dxj ≈ dG/dxj 
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