
Massachusetts Institute of Technology Handout 8 
6.854J/18.415J: Advanced Algorithms Wednesday, September 28, 2005 
David Karger 

Problem Set 3 Solutions 

Problem 1. We augment the vEB queue to also hold a maximum element. We implement 
the desired operations as follows: 

•	 find(x,Q): We check if x is either the minimum or maximum of the current queue. 
If so, we return it. Otherwise, make a recursive call and find low(x) in the subqueue 
Q[high(x)]. 

•	 predecessor(x,Q): If x is less than the minimum of Q, return null. If x is greater 
than the maximum of Q, return the maximum of Q. Otherwise, we make a recursive 
call to find the predecessor of low(x) in the subqueue Q[high(x)]. If the result of this 
recursive call is nonnull, then we return the result. Otherwise, we make a call to find 
the predecessor of high(x) in Q.summary. The result of this call tells us the subqueue 
that is nonempty among the subqueues. In particular, if it is nonnull, then we return 
the maximum element from that subqueue. However, if the result of the call was null, 
then we can return the minimum of Q. 

•	 successor(x,Q): The algorithm is very similar to predecessor. 

Problem 2. Let us first recall Dijkstra’s algorithm. Given a weighted graph G = (V, E), 
and a node s ∈ V , it finds the length of the shortest path from s to any node u ∈ V . The 
algorithm works by maintaining a set of nodes S for which the shortest path from s to v ∈ S 
is already known. During each iteration, the algorithm chooses the node in u ∈ V \ S whose 
estimated distance from s is minimum. Then, for each node w that is adjacent to u, the 
algorithm sets the estimated distance from s to w to be the the minimum of the current 
estimated distance and the distance from s to u, and then using the edge (u, w). 

The key property to note in the above algorithm is that the maximum difference between 
the estimated distances from s to any node in the priority queue holding the nodes in V \ S 
is C. This can be proven by induction on the iteration on the number of nodes in S. 

The solution then is to use two vEB queues, where the range of values in each vEB queue 
is [1, C]. The “left” queue will store the smaller values, and the “right” queue will store the 
larger values. When we want to insert an estimated distance into the queue, we only insert 
the distance mod C. Along with each queue, we will store the “base” value of that queue, 
which will be a multiple of C. By the key property above, we will never have to worry about 
filling a third queue, since the difference between any values in the two queues is at most C. 

Problem 3. 

(a) We will present how to perform the operations, and how to amortize the cost. 



� � �	 � 

� �	 �� 

� � �� 

2 Handout 8: Problem Set 3 Solutions 

Insert We associate with each inserted item a potential of k+ k
t 
Δ . The additive 

factor of k will be spent on constant time operations that will be performed each 
time an item goes one level down, and the factor of k

t 
Δ will reimburse the cost 

of scanning nodes. A new node is created when the number of elements in a 
heap exceeds t. Each of these elements donates Δ of energy, and goes one level 

t 

down, so in total we collect Δ units of energy, and assign it to the newly created 
node as a reimbursement for scanning this node. Eventually, while performing 
insert of x, we descent down the trie, charging x’s energy, until we meet either a 
blob, into which we insert x in constant time, or a heap, into which we insert x 
in O(I(t)) time, or which is expanded down, and the heap’s elements pay for it. 
Finally, the amortized cost of the operation is O(k + k

t 
Δ + I(t)). 

Decreasekey We remove an element x from a structure in which it is. It 
can be either a heap or a blob, and the operation costs us at most O(D(t)) 
time. Next, in constant time, we determine a new bucket in which it should be, 
and follow down if the bucket has been already expanded (this is paid by the 
potential of x). Eventually, we determine a bucket or a blob into which x has to 
be inserted, and we can do it in O(I(t)) time. Possible expansions are paid by 
the potential of elements of a heap. The amortized cost of decreasekey operation 
is O(D(t) + I(t)) time. 

Extractmin Starting from the last entry from which we have extracted a 
minimum, we scan for the first nonempty entry, possibly going down, if the 
starting entry has been meanwhile expanded. In total, we scan each entry once, 
and the scanning is paid by the potential associated with nodes. We find a heap 
or a blob. If the latter, we convert it into a heap, and if an expansion occurs, we 
continue scanning. After all we find a nonempty heap, from which we remove the 
minimum in O(X(t)) time. For everything except the last removal the potential 
is charged. The amortized time cost is only O(X(t)). 

(b)	 We perform at most n inserts, n extractmin, and m decreasekey operations.

This means that running time R can be bounded by


kΔ 
O n k + + I(t) + nX(t) + m (D(t) + I(t)) . 

t 

Since in the case of Fibonacci heaps I(t) = O(1), D(t) = O(1), X(t) = O(log t), 
we can simplify our upper bound to 

kΔ 
O m + n k + + log t . 

t 

We substitute first Δ = C1/k, and t = 2k, achieving 

kC1/k 

R = O m + n k + . 
2k 



� 

� 

3 Handout 8: Problem Set 3 Solutions 

We transform the last addend, knowing that k = 
√

log C: 

kC1/k 
√

log C2log C/
√

log C � 

2k 
=

2
√

log C 
= log C. 

Eventually, we achieve 
R = O(m + n log C). 

Problem 4. (a) Consider the (k + 1)st item inserted. Since only k buckets (at 
worst) are occupied, the probability that both candidate locations are occupied is 
only (k/n1/5)2 . Thus, the expected number of times an item is actually inserted 
into an alreadyoccupied bucket is at most 

n−1

(k/n 1.5)2 =
(n − 1)(n)(2n − 1) 

6n3 
k=0 

≤ 1/3 

Now let’s consider pairwise collisions. Item k collides with item j < k only 
if (i) one of the candidate locations of item k is the location as item j (this 
has probability at most 2/n1.5) and (ii) the other candidate location for item 
k contains at least one element (probability k/n1.5). Thus, the probability k 
collides with j is at most k/n3 . Summing over the k possible values of j < k, 
we find the expected number of collisions for item k is at most k2/n3 . Summing 
over all k, we get the same result as above: O(1) expected collisions. 

(b)	 Start with a 2universal family of hash functions mapping n items to 2n1.5 lo

cations. Consider any particular set of n items. Consider choosing a random

function from the hash family family. The probability that item k collides with

item j is 1/2n1.5 by pairwise independence, implying by the union bound that

the probability k collides with any item is at most 1/2

√
n.


Now suppose that we allocate two arrays of size 2n1.5 and choose a random 2
universal hash function from the family independently for each array. If an item 
has no collision in either array, then it will be placed in an empty bucket by 
the bash function. We need merely analyze the probability that this happens for 
every item (this would make the bash function perfect). 

The probability that item k has a collision in both arrays is at most (1/2
√

n)2 = 
1/4n. It follows that the expected number of items colliding with some other 
item is at most 1/4. This implies in turn that with probability 3/4, every item is 
placed in an empty bucket by the (perfect) bash function. This in turn implies 
that some pair of 2universal hash functions defines a perfect bash for our set of 
n items. 

Since every set of items gets a perfect bash from this scheme, it follows that the 
family of pairs of 2universal functions above is a perfect bash family. Since the 



4 Handout 8: Problem Set 3 Solutions 

2universal family has size polynomial in the universe, so does the family of pairs 
of 2universal functions. 

(c) If we map our n items to k candidate locations in an array of size n1+1/k, our

collision odds work out as above and we get a constant number of collisions.

Similarly, k random 2universal hash families, each mapping to a set of size

n1+1/k, has a constant probability of being perfect for any particular set of items,

so the set of all such functions provides a perfect family (of polynomial size for

any constant k). This gives a tradeoff of k probes for perfect hashing in space


1+1/k).O(n

Note that while we can achieve perfect hashing to O(n) space, the resulting family 
does not have polynomial size (since a different, subsidiary hash function must 
be chosen for each subhashtable). 


