
6.854 Advanced Algorithms

Lecture 11: 10/18/2004 Lecturer: David Karger
Scribe: David Schultz

11.1 Algorithms for Linear Programming

11.1.1 Last Time: The Ellipsoid Algorithm

Last time, we touched on the ellipsoid method, which was the first polynomial-time algorithm for
linear programming. A neat property of the ellipsoid method is that you don’t have to be able to
write down all of the constraints in a polynomial amount of space in order to use it. You only need
one violated constraint in every iteration, so the algorithm still works if you only have a separation
oracle that gives you a separating hyperplane in a polynomial amount of time. This makes the
ellipsoid algorithm powerful for theoretical purposes, but isn’t so great in practice; when you work
out the details of the implementation, the running time winds up being O(n6 log nU).

11.1.2 Interior Point Algorithms

We will finish our discussion of algorithms for linear programming with a class of polynomial-time
algorithms known as interior point algorithms. These have begun to be used in practice recently;
some of the available LP solvers now allow you to use them instead of Simplex.

The idea behind interior point algorithms is to avoid turning corners, since this was what led to
combinatorial complexity in the Simplex algorithm. They do this by staying in the interior of the
polytope, rather than walking along its edges. A given constrained linear optimization problem
is transformed into an unconstrained gradient descent problem. To avoid venturing outside of the
polytope when descending the gradient, these algorithms use a potential function that is small at
the optimal value and huge outside of the feasible region.

interior opt

polytope boundary

Figure 11.1: An interior point search.

11-1

11-2 Lecture 11: 10/18/2004

To make this idea more concrete, let us consider a specific interior point algorithm due to Ye.
Consider the following linear program:

minimize cx

subject to Ax = b

x ≥ 0

The dual of this program can be written with slack variable s as follows:

maximize yb

subject to yA + s = c

s ≥ 0

Ye’s algorithm solves the primal and the dual problem simultaneously; it approaches optimality as
the duality gap gets smaller. The algorithm uses the following potential function:

φ = A ln xs −
�

ln xi −
�

ln si

The intent of the A ln xs term is to make the optimal solution appealing. Note that ln xs approaches
−∞ as the duality gap approaches 0. The two subtracted terms are logarithmic barrier functions,
so called because their purpose is to make infeasible points unappealing. When one of the xi or si

is small, they add a large amount to the potential function. When one of the xi or si is negative,
these functions are infinitely unappealing. The constant A needs to be made large enough that the
pull towards the optimal solution outweights the tight constraints at the optimal point.

To minimize φ, we use a gradient descent. We need to argue that the number of gradient steps is
bounded by a polynomial in the size of the input. It turns out that this can be done by arguing that
in each step, we get a large improvement. Finally, when we reach a point that is very close to the
optimum, we use the trick from last time to move to the closest vertex of the polyhedron.

11.1.3 Conclusion to Linear Programming

Linear programming is an incredibly powerful sledgehammer. Just about any combinatorial problem
that can be solved can be solved with linear programming (although many of these special cases
of linear programming can be solved more quickly by other methods). For the rest of the lecture,
however, we will look at some of the problems that cannot be solved by linear programming.

Lecture 11: 10/18/2004	 11-3

11.2 Polynomial-Time Approximation Algorithms

NP -hard problems are a vast family of problems that (to the best of our knowledge) cannot be
solved in polynomial time. It is important to be able to identify such problems because it tells you
where to direct your efforts. In this class, we will not prove any of these problems to be NP -hard;
you should take 6.840 to learn how to do that. 1

Instead, the question we concern ourselves with is how to cope once it has been proved that a
problem is NP -hard. Here are three possible strategies:

•	 Assume that the input is random, and prove that an algorithm will perform well in the average
case. For example, the NP -hard problem of finding the maximum clique in a graph can be
solved efficiently by this argument because the maximum clique in a randomly-chosen graph
is small. This argument is often used in practice, but it has the problem that not everyone
will agree that the input distribution is random.

•	 Run a super-polynomial algorithm anyway. Techniques such as branch-and-bound (known as
∗A search in the AI world) allow you to enumerate options in a way that lets you skip most of

the problem space. However, the desired complexity bounds on these algorithms are usually
not provable, and even “slightly” super-polynomial is often too much to be practical.

•	 Settle for a suboptimal solution (an approximation) that can be found in polynomial time,
and prove that this solution is “good enough”. This is the technique that we will look at in
the rest of the lecture.

11.2.1 Preliminaries

Definition 1 An optimization problem consists of:

A set of instances I

A set of solutions S(I)

An objective function2 f : S(I) → R

The problem is to find s ∈ S(I) that maximizes (or minimizes) f(s).

Some technicalities: When we come to analyze the complexity of such problems, we will assume
that all inputs and the range of f are in the rational numbers. We will also assume that if σ is an
optimal solution, then f(σ) is polynomial in the number of bits in the input. Our goal will be to
find algorithms that take a polynomial amount of time in the representation of the input in bits.

1Briefly, P is the set of problems solvable in polynomial time, and NP is a particular superset of P . A problem is
NP -hard if it is at least as hard as all problems in NP , and NP -complete if it is in NP and it is also NP -hard. An
unproven but generally accepted conjecture, which we will assume is true, is that P �= NP .

2The restriction that the range of the objective function is R might be limiting in some situations, but most
problems can be formulated this way.

11-4 Lecture 11: 10/18/2004

Example 1 Graph Coloring is an optimization problem with the following form:

I: graphs

S(I): assignments of colors to each vertex such that no neighbors have the same color

f(s): number of colors used in s

Often when people talk about NP -hard problems, they are referring to decision problems, which are
algorithms for which the output is yes or no. For instance, a decision version of Graph Coloring is
the problem of determining whether a graph is 3-colorable. We need a notion of NP -hardness that
applies to optimization problems as well.

Definition 2 NP -hardness: An optimization problem is NP -hard if it can be used as a subroutine
to solve an NP -hard decision problem in polynomial time, with the optimization problem used as a
black box.

Definition 3 An approximation algorithm is any algorithm that gives a feasible solution to an
optimization problem.

The above definition sounds a bit silly. For instance, a valid approximation algorithm for Graph
Coloring is to color each vertex with its own color. In order to formulate useful approximation algo-
rithms, we need a way to be able to differentiate them based on the “goodness” of the approxmiation.
In the rest of the lecture, we will consider two ways to measure “goodness.”

11.2.2 Absolute Approximations

One way to compare approximation algorithms is to measure the solutions they find relative to the
optimal solution, OPT (I).

Definition 4 A is a k-absolute approximation algorithm if |A(I) − OPT (I)| ≤ k.

The absolute value in the above definition allows us to cover both maximization and minimization
problems with the same definition. A(I) ≤ OPT (I) in a maximization problem, and A(I) ≥ OPT (I)
in a minimization problem.

Our next example will involve planar graphs. Recall the following definition:

Definition 5 A planar graph is a graph that can be drawn on the blackboard without any edges
crossing.

Euler’s formula for planar graphs tells us that m ≤ 3n − 6 for n ≥ 3, where n is the number of
vertices and m is the number of edges. As a particular corollary, every planar graph has at least one
vertex with degree less than 6, since the sum of the degrees of the vertices is 2m, which by Euler’s
formula is less than 6n.

11-5 Lecture 11: 10/18/2004

Planar Planar	 Not Planar

Figure 11.2: Examples of planar and non-planar graphs.

Definition 6 Planar Graph Coloring is a restricted version of Graph Coloring where the inputs
are constrained to be planar.

Theorem 1 There exists a 3-absolute approximation algorithm for Planar Graph Coloring.

Proof: We will exhibit such an algorithm. First, note that if a graph is 1-colorable, then it has no
edges and we can trivially color it. Similarly, a 2-colorable graph is bipartite, and all other graphs
require at least 3 colors. We can color any other planar graph with 6 colors with the following greedy
algorithm:

•	 Remove a vertex with degree less than 6. Such a vertex must exist, as we showed above.
•	 The remainder of the graph is still planar, so recursively color it with 6 colors.
•	 Re-insert the missing vertex and color it with a color that is not used by any of its (up to 5)

neighbors.

The complete algorithm for an arbitrary planar graph uses the above algorithm as a subroutine, and
works as follows:

•	 If the graph is 1-colorable, then color it optimally.
•	 If the graph is bipartite, color it with 2 colors.
•	 Otherwise, the graph requires at least 3 colors. Color it with 6 colors.

This algorithm achieves a 3-absolute approximation. 3

Unfortunately, the set of NP -hard problems with absolute approximations is very small. This is
because in general, we can transform an absolute approximation into an exact solution by a scaling
technique, which would imply that P = NP . Assuming that P �= NP , we can prove that no absolute
approximation exists for problems that have this property. We will do this for Knapsack, one of
the first problems that was shown to be NP -complete, and for Maximum Independent Set, another
NP -complete problem.

Definition 7 In the Knapsack problem, we are given a knapsack of size B and items i with size
si and profit pi. We can think of this as a kind of shoplifting problem; the goal is to find the subset
of the items with maximum total profit that fits into the knapsack.

3With a little bit more effort, we can obtain a 5-coloring of any planar graph, and hence, a 2-absolute approximation.
Of course, the famous Four Color Theorem states that any planar graph can be 4-colored.

11-6 Lecture 11: 10/18/2004

Theorem 2 There is no k-absolute approximation algorithm for Knapsack for any number k.

Proof: Suppose for the sake of contradiction that we have a k-absolute approximation algorithm.
First we will consider the case where the prices pi are integers. We multiply all the prices by k + 1
and run our k-absolute approximation algorithm on the resulting instance. The difference between
any two solutions in the original instance is at least 1, so the difference between any two solutions
in the scaled instance is at least k + 1. As a result of scaling, the optimum solution increases by a
factor of k + 1, but our k-approximate solution is within k of this. Therefore, the approximation
algorithm gives an exact solution for the scaled graph. We divide by k + 1 to obtain an optimal
solution for the original graph. This would constitute a polynomial-time solution for a problem that
is believed to be super-polynomial, so we have a contradiction.

Note that if the prices are rational numbers rather than integers, we can simply multiply all of the
prices by their common denominator, which has a polynomial number of bits. Then the problem
reduces to the integer case above.

Definition 8 In the Maximum Independent Set problem, we are given a graph G and we must
find the largest subset of the vertices in G such that there is no edge between any two vertices in the
set.

Note that a graph’s maximum independent set is identical to the maximum clique in the comple-
mentary graph. (The complement of a graph is the graph obtained by taking the same set of vertices
as in the original graph, and placing edges only between vertices that had no edges between them
in the original graph.)

Theorem 3 There is no k-absolute approximation for Maximum Independent Set, for any number
k.

Proof: Suppose for the sake of contradiction that we have a k-absolute approximation algorithm
for Maximum Independent Set. Although there are no numbers to scale up in this problem, there
is still a scaling trick we can use.

For an instance G, we make a new instance G′ out of k + 1 copies of G that are not connected to
each other. Then a maximum independent set in G′ is composed of one independent set in each copy
of G, and in particular, OP T (G′) is k + 1 times as large as OP T (G). A k-absolute approximation
to a maximum independent set of G′ has size at least (k + 1)|OP T (G′)| − k. This approximation
consists of independent sets in each copy of G. At least one of the copies must contain a maximum
independent set (i.e., an independent set of size |OP T (G)|), because otherwise the total number
of elements in the approximation would be at most (k + 1)|OP T (G)| − (k + 1), contradicting the
assumption that we have a k-absolute approximation. Hence, we can obtain an exact solution to
Maximum Independent Set in polynomial time, which we presume is impossible.

Lecture 11: 10/18/2004 11-7

11.2.3 Relative Approximations

Since absolute approximations are often not achievable, we need a new technique—a new way to
measure approximations. Since we can’t handle additive factors, we will try multiplicative ones.

Definition 9 An α-approximate solution S(I) has value ≤ α|OP T (I)| if the problem is a min
imization problem and value ≥ |OP T (I)|/α if the problem is a maximization problem.

Definition 10 An algorithm has an approximation ratio α if it always yields an α-approximate
solution.

Of course, α must be at least 1 in order for these definitions to make sense. We often call an algorithm
with an approximation ratio α an α-approximate algorithm. Since absolute approximations are so
rare, people will assume that a relative approximation is intended when you say this.

Once we have formulated an algorithm, how can we prove that it is α-approximate? In general, it
is hard to describe the optimal solution, since it is our inability to talk about OP T that prevents
us from formulating an exact polynomial-time algorithm for the problem. Nevertheless, we can
establish that an algorithm is α-approximate by comparing its output to some upper or lower bound
on the optimal solution.

Greedy approximation algorithms often wind up providing relative approximations. These greedy
methods are algorithms in which we take the best local step in each iteration and hope that we don’t
accumulate too much error by the time we are finished. To illustrate this technique, we will consider
Maximum Cut, which is the obvious complement to the Minimum Cut problem we studied earlier.

Definition 11 In the Maximum Cut problem (for undirected graphs), we are given an undirected
graph and wish to partition the vertices into two sets such that the number of edges crossing the
partition is maximized.

Example 2 A Greedy Algorithm for Maximum Cut: In each step, we pick any vertex and
place it on one side of the cut or the other. In particular, we place each vertex on the side opposite
most of its previously placed neighbors. (If the vertex has no previously placed neighbors, or an equal
number of neighbors on each side, then we place it on either side.) The algorithm terminates when
all vertices have been placed.

We can say very little about the structure of the optimum solution to Maximum Cut for an arbitrary
graph, but there’s an obvious bound on the number of edges in the cut, namely m, the total number
of edges in the graph. We can measure the goodness of our greedy algorithm’s approximation with
respect to this bound.

Theorem 4 The aforementioned greedy algorithm for Maximum Cut is 2-approximate.

Proof: We say that an edge is “fixed” if both of its endpoints have been placed. Every time we
place a vertex, some number of edges get fixed. At least half of these edges are cut by virtue of the

11-8 Lecture 11: 10/18/2004

heuristic used to choose a side for the vertex. The algorithm completes when all edges have been
fixed, at which point m/2 edges have been cut, whereas we know that optimum solution has at most
m edges.

The approach we just described was the best known approximation algorithm for Maximum Cut for
a long time. It was improved upon in the last decade using a technique that we will discuss in the
next lecture.

Example 3 A Clustering Problem: Suppose we are given a set of points, along with distances
satisfying the triangle inequality. Our goal is to partition the points into k groups such that the
maximum diameter of the groups is minimized. The diameter of a group is defined to be the maximum
distance between any two points in the group.

An approximation algorithm for this problem involves first picking k cluster “centers” greedily. That
is, we repeatedly pick the point at the greatest distance from the existing centers to be a new center.
Then we assign the remaining points to the closest centers. The analysis of this problem is left as a
problem set exercise.

As we demonstrated, Maximum Cut has a constant-factor approximation. We will now consider an
algorithm that has no constant-factor approximation, i.e., α depends on the size of the input.

Definition 12 In the Set Cover problem, we are given a collection of n items and a collection of
(possibly overlapping) sets, each of which contains some of the items. A cover is a collection of sets
whose union contains all of the items. Our goal is to produce a cover using the minimum number of
sets.

A natural local step for Set Cover is to add a new set to the cover. An obvious greedy strategy is
to always choose the set that covers the most new items.

Theorem 5 A greedy algorithm for Set Cover that always chooses the set that covers the most new
items is O(log n)-approximate.

Proof: Suppose that the optimum cover has k sets. Then at a stage where r items remain to be
covered, some set covers r/k of them. Therefore, choosing the set that covers the most new points
reduces the number of uncovered points to r − r/k = r(1 − 1/k). If we start with n points and repeat
this process n times, r ≤ n(1 − 1/k)j. Since r is an integer, we are done when n(1 − 1/k)j < 1. This
happens when j = O(k log n). Hence, α = j/k = O(log n).

This result is much better than an O(n)-approximate solution, but you have to wonder if we could
do beter with a cleverer algorithm. People spent a long time trying to find a constant approxi-
mation. Unfortunately, it was recently proven that O(log n) is the best possible polynomial-time
approximation.

However, we can do better for a special case of Set Cover called Vertex Cover. Both problems are
NP -hard, but it turns out that the latter does indeed have a constant factor approximation.

11-9 Lecture 11: 10/18/2004

Definition 13 In the Vertex Cover problem, we are given a graph G, and we wish to find a
minimal set of vertices containing at least one endpoint of each edge.

After seeing a greedy algorithm for Set Cover, it might seem natural to devise a scheme for Vertex
Cover in which a local step consists of picking the vertex with the highest uncovered indegree. This
does indeed give a O(log n) approximation, but we can do better with another heuristic.

As a starting point, imagine that instead of looking at the number of covered edges on each vertex,
we simply picked any uncovered edge and covered it. Clearly one of the two endpoints for the edge
is in the optimum cover. Unfortunately, we might get unlucky and pick the wrong one. Consider
the graph in Figure 11.3. If we chose the peripheral vertices first, our cover would contain n − 1
vertices.

Figure 11.3: A pathological case for näıve greedy Set Cover.

To solve this problem, when we choose an edge to cover, we add both of its endpoints to the cover.
This gives us a 2-approximate cover because one of the two endpoints is in the optimum cover. This
is a beautiful case of bouding an approximation against a bound of the optimum solution without
actually knowing the optimum solution.

Relatively recently, someone improved the vertex cover bound to a 2 − O(log log n/ log n) approxi-
mation with a significant amount of work. It is known to be impossible to do better than 4/3, but
nobody knows how to close the gap.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

