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6.854 Advanced Algorithms 

Lecture 6: 9/24/2003 Lecturer: Erik Demaine, David Karger 
Scribes: Alexandr Andoni 

Maximum Flows 

6.1 The Maximum Flow Problem 

In this section we define a flow network and setup the problem we are trying to solve in this lecture: 
the maximum flow problem. 

Definition 1 A network is a directed graph G = (V, E) with a source  vertex  s ∈ V and a sink vertex 
t ∈ V . Each edge e = (v, w) from v to w has a defined capacity, denoted by u(e) or u(v, w). It  is  
useful to also define capacity for any pair of vertices (v, w), with  u(v, w) = 0  for any pair (v, w) �∈ E. 
Let m = |E| and n = |V | be the number of edges and vertices in the graph, respectively. 
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Figure 6.1: An example of a network with 4 vertices and 6 edges. The capacities of the edges are 
shown on the  edges.  

In a network flow problem, we assign a flow to each edge. There are two ways of defining a flow: 
raw (or gross) flow and net flow. 

Definition 2 Raw flow is a function r(v, w) :  V 2 → � that satisfies the following properties: 

• Conservation: r(w, v) − r(v, w) = 0, for all v ∈ V \ {s, t}. 
w∈V w∈V � �� � � �� � 

incoming flow outgoing flow 

• Capacity constraint: 0 ≤ r(v, w) ≤ u(v, w). 
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For every vertex v except the source or sink, conservation requires that the total flow entering v 
must equal the total flow leaving v. The capacity constraint requires that the flow along any edge 
be positive and less than the capacity of that edge. We say that a flow f is feasible if satisfies these 
two conditions. 
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Figure 6.2: An example of a raw flow for the network above. The flow has a value of 2. 

With a raw flow, we can have flows going both from v to w and flow going from w to v. In  a  net  
flow formulation however, we only keep track of the difference of these two flows. 

Definition 3 Net flow is a function f(v, w) :  V 2 → � that satisfies the following conditions: 

• Skew symmetry: f(v, w) =  −f(w, v). 

• Conservation: w∈V f(v, w) = 0, for all v ∈ V \ {s, t}. 
• Capacity constraint: f(v, w) ≤ u(v, w) for all v, w ∈ V . 

A raw  flow  r(v, w) can be converted into a net flow via the formula f(v, w) =  r(v, w) − r(w, v). For 
example, if we have 7 units of flow from v to w and 4 units of flow from w to v, then the net flow 
from v to w is f(v, w) = 3. Skew symmetry follows directly from this formula relating raw flows and 
net flows. Because we can convert from raw flows to net flows, for the rest of the lecture we consider 
only net flow problems. 

Although skew symmetry relates f(v, w) and  f(w, v), it is important to note that capacity is still 
directional for a net flow problem. The capacity in one direction u(v, w) is independent of the 
capacity in the reverse direction, u(w, v). 

To simplify notation later in the lecture, we denote f(v, w) by  f(v, S) or  −f(S, v).w∈S 

Definition 4 The value of a flow f is defined as |f | = f(s, v). v∈V 

The value of a flow is the sum of the flow on all edges leaving the source s. We later show that this 
is equivalent to the sum of all the flow going into the sink t. The value of a flow represents how 
much we can transport from the source to the sink. Our goal in this lecture is to solve the maximum 
flow problem. 

Definition 5 Maximum flow problem: Given a network G = (V, E),  find a feasible  flow  f with 
maximum value. 
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6.2 Flow Decomposition and Cuts 

In this section, we show that any feasible flow can be decomposed into paths from the source to the 
sink and cycles. We use this fact to derive an upper bound on the maximum flow value in terms of 
cuts of the network. 

Lemma 1 (Flow decomposition). We can decompose any feasible flow f on a network G into at 
most m cycles and s-t paths. 

Proof: The following algorithm extracts the m paths and cycles. 

1. Find a path with positive flow from the node s to node t. (If the flow is non-zero, 
there exists at least one such path.) 

2.	 Anti-augment the flow on this path—that is, reduce the flow in the path until the 
flow on some edge becomes 0. 

3. Add this path as an element of the flow decomposition. 

4. Continue these operations until there are no more paths from s to t with positive 
flow. 

5. If there are still some edges with non-zero flow, the remaining flow can be decom-
posed into cycles. Find a cycle in the following way: take any edge with non-zero 
flow and follow an outgoing edge with non-zero flow until a cycle is found. 

6.	 Anti-augment on the cycle found. 

7. Add the cycle as an element of the flow decomposition. 

8.	 Continue finding cycles until there are no more edges with non-zero flow. 

Each time we anti-augment a path or a cycle, we zero out the flow on some edge. There are at most 
m anti-augmentations, and, consequently, m paths/cycles in the flow decomposition. 

In a network flow problem, it is useful to work with a cut of the graph, particularly an s-t cut. 

Definition 6 A cut of network G is a partition of the vertices V into 2 groups: S and S ̄ = V \ S. 

Definition 7 An s-t cut is a cut such that s ∈ S and t ∈ S̄ . 

We will usually represent a cut as the pair (S, S̄), or just S. We generalize the concept of the net 
flow and the capacity of an edge to define the net flow and capacity of a cut. 

Definition 8 The net flow along cut (S, S̄) is defined as f(S) =  f(v, w). v∈S w∈S̄ 

Definition 9 The value (or capacity) of a cut is defined as u(S) =  v∈S w∈ ( )u v, w .S̄ 
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¯Figure 6.3: An illustration of the s-t cut. s ∈ S and t ∈ S̄. There might be both edges from S to S 
and from S ̄ to S. 
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Figure 6.4: An example of a cut in a network. The s-t cut is represented by a dashed line. The 
value (capacity) of the cut is equal to 3. This is one of the minimum s-t cuts. 

In summary, the flow (or capacity) of a cut is the sum of all flows (capacities) of edges that go from 
¯ S to S. Note that direction is important in these definitions. Flow or capacity along an edge in the 

reverse direction, from w ∈ S ̄ to v ∈ S, does not  count.  

Working with cuts is useful because of the following lemma: 

Lemma 2 Given a flow f , for any cut S, f(S) =  |f |. In other words, all s-t cuts carry the same 
flow: the value of the flow f . 

Proof: We can use Lemma 1 to prove this statement directly. We decompose the flow into s-t paths 
¯and cycles. Each s-t path must end up in S̄, so it must go from set S to S one more time than it 

goes from S ̄ to S. Therefore, an s-t path carring x flow along that path contributes exactly x to the 
¯value of the cut. A cycle must go from S to S ̄ the same number of times as it goes from S to S, 

contributing 0 to the value of the cut. Therefore the total value of the cut S is equal to the sum of 
the flows along every s-t path, which is equal to |f |. 
Alternatively, we can prove the lemma by induction on the size of the sets S. For  S = s, the  claim  
is true. Now, suppose we move one vertex v from S ̄ to S. The  value  f(S) changes in the following 
way: 

• f(S) increases by f(v, S̄). 

• f(S) decreases by f(S, v) =  −f(v, S). 
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In conclusion, the total change in the value of f(S) after moving the vertex v from S to S ̄ is equal 
to f(v, S̄) +  f(v, S) =  f(v, V ) = 0 (by conservation of flow). 

For a flow network, we define a minimum cut to be a cut of the graph with minimum capacity. 
Then, Lemma 3 gives us an upper bound on the value of any flow. 

Lemma 3 If f is a feasible flow, then |f | ≤ u(S) for any cut S. 

Proof: For all edges e, f(e) ≤ u(e), so f(S) ≤ u(S) (the flow across any cut S is not more than the 
capacity of the cut). By Lemma 2, |f | = f(S), so |f | ≤ u(S) for any cut S. 

If we pick S to be a minimum cut, then we get an upper bound on the maximum flow value. 

6.3 Max-Flow Min-Cut Theorem 

In this section, we show that the upper bound on the maximum flow given by Lemma 3 is exact. 
This is the max-flow min-cut theorem. 

To prove the theorem, we introduce the concepts of a residual network and an augmenting path. 

Definition 10 Let f be a feasible flow on a network G. The corresponding residual network, denoted 
Gf , is a network that has the same vertices as the network G, but has edges with capacities uf (v, w) =  
u(v, w) − f(v, w). Only edges with non-zero capacity, uf (v, w) > 0, are included in Gf . 

Note that the feasibility conditions imply that uf (v, w) ≥ 0 and  uf (v, w) ≤ u(v, w) +  u(w, v). This 
means all capacities in the residual network will be non-negative. 

Definition 11 An augmenting path is a directed path from the node s to node t in the residual 
network Gf . 
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Figure 6.5: An example of a residual network. This residual network corresponds to the network de-
picted in Figure 6.1 and the flow in Figure 6.2. The dashed line corresponds to a possible augmenting 
path. 
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Note that if we have an augmenting path in Gf , then this means we can push more 
flow along such a path in the original network G.  To  be more precise,  if  we have  
an augmenting path (s, v1, v2, . . . vk, t), the maximum flow we can push along that path is 
min{uf(s, v1), uf (v1, v2), uf (v2, v3), . . . uf(vk−1, vk), uf(vk, t)}. Therefore, for a given network G and 
flow f , if there exists an augmenting path in Gf , then the flow f is not a maximum flow. 

More generally, if f ′ is a feasible flow in Gf , then  f + f ′ is a feasible flow in G. The flow f + f ′ still 
satisfies conservation because flow conservation is linear. The flow f + f ′ is feasible because we can 
rearrange the inequality f ′(e) ≤ uf (e) =  u(e) − f(e) to  get  f ′(e) +  f(e) ≤ u(e). Conversely, if f ′ is 
a feasible  flow  in  G, then the flow f − f ′ is a feasible in Gf . 

Using residual networks and augmenting paths, we can state and prove the max-flow min-cut theo-
rem. 

Theorem 1 (Max-flow min-cut theorem). In a flow network G, the following conditions are equiv
alent: 

1. A flow f is a maximum flow. 

2. The residual network Gf has no augmenting paths. 

3. |f | = u(S) for some cut S. 

These conditions imply that the value of the maximum flow is equal to the value of the minimum s-t 
cut: maxf |f | = minS u(S), where  f is a flow and S is as-t cut. 

Proof: We show that each condition implies the other two. 

•	 1 ⇒ 2: If there is an augmenting path in Gf , then we previously argued that we can push 
additional flow along that path, so f was not a maximum flow. 1 ⇒ 2 is  the  contrapositive  of  
this statement. 

•	 2 ⇒ 3: 

If the residual network Gf has no augmenting paths, s and t must be disconnected. Let 
S = {vertices reachable from s in Gf}. Since  t is not reachable, the set S describes a s-t cut. 
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Figure 6.6: Network Gf is disconnected. The set S contains all the nodes that are reachable from s. 

By construction, all edges (v, w) straddling the cut have residual capacity 0. This means in 
the original network G, these  edges  have  f(v, w) =  u(v, w). Therefore, |f | = f(S) =  u(S). 
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•	 3 ⇒ 1: If for some cut S, |f | = u(S), we know f must be a maximum flow. Otherwise, we 
would have a flow g with |g| > u(S), contradicting Lemma 3. 

From (1) and (3), we know that the maximum flow can not be less than the value of the minimum 
cut, because for some S, |f | = u(S) and  u(S) is at least as big as the minimum cut value. Lemma 
3 tells us that the maximum flow can not be greater than the minimum cut value. Therefore, the 
maximum flow value and the minimum cut value are the same. 

6.4 Ford-Fulkerson Algorithm 

The Ford-Fulkerson algorithm solves the problem of finding a maximum flow for a given network. 
The description of the algorithm is as follows: 

1. Start with f(v, w) =  0.  

2. Find an augmenting path from s to t (using, for example, a depth first search or 
similar algorithms). 

3.	 Use the augmenting path found in the previous step to increase the flow. 

4. Repeat until there are no more augmenting paths. 

If the capacities are all integers, then the running time is O(m|f |). This is true because finding an 
augmenting path and updating the flow takes O(m) time, and every augmenting path we find must 
increase the flow by an integer that is at least 1. 

In general, if we have integral capacities, then our solution satisfies an integrality property: there  
exists an integral maximal flow. This happens because every augmenting path increases flows by an 
integer amount. 

Since the running time is directly proportional to the value of the maximal flow, this particular 
algorithm is only good for cases when the value |f | is small. For example, when all capacities are at 
most 1, the maximum flow |f | is at most n. In general, the algorithm may be as bad as linear in unary 
representation of the input. Figure 6.7 illustrates a bad case for this form of the Ford-Fulkerson 
algorithm. 

We describe such an algorithm as being pseudo-polynomial, because it is polynomial in terms of 
variables we care about (but not necessarily the input). 

If the capacities are rational, then it can be shown that the algorithm will finish. It might, however, 
require more than O(m|f |) time. If the capacities are real, the algorithm might never finish, or even 
converge to a non-optimal value. 

If we setup better rules for selecting the augmentation paths however, we might get better results. 
Before showing some improvements to the Ford-Fulkerson algorithm, we will introduce some new 
notions on the running time of algorithms. 



6-8 Lecture 6: 9/24/2003 

11s 

2 

t 

1 

� 

��� 

� 

���� 

��� 

� 

��� 

Figure 6.7: An example for which the Ford-Fulkerson, in the stated form, might perform very badly. 
The algorithm runs slowly if at each step, the augmentation path is either s → 1 → 2 → t or 
s → 2 → 1 → t (shown with dashed lines). At an augmentation, the flow will increase by at most 2. 

Definition 12 An algorithm is psuedo-polynomial if it is polynomial in the unary representation of 
the input. 

Definition 13 An algorithm is weakly polynomial if it is polynomial in the binary representation of 
the input. 

Definition 14 An algorithm is strongly polynomial if it is polynomial in combinatorial complexity 
of input. (For example, in the case of max-flow problem, the algorithm would have to be polynomial 
in n and m.) 

6.4.1 Improvements to the Ford-Fulkerson Algorithm 

The are at least two possible ideas for improving the Ford-Fulkerson algorithm. Both of the im-
provements rely on a better choice of an augmenting path (rather than a random selection of an 
augmenting path). 

1. Using breadth-first search, we can choose shortest-length augmenting path.	 With this path-
selection rule, the number of augmentations is bounded by n · m, and thus the running time 
of the algorithm goes down to O(nm2) time.  

2.	 We can also choose the maximum-capacity augmenting path: the augmenting path among 
all augmenting paths that increases the flow the most (max-capacity augmenting path). It is 
possible to find such a path in O(m log n) time using a modified Dijkstra’s algorithm (ignoring 
the cycles). The number of augmentations will be at most m ln |f | ≤ m ln(nU ), where U = 
max{u(v, w)} (for integral capacities). 

In this lecture we prove the time bound for the second improvement. Consider the maximum flow 
f in the current residual network. We apply the flow-decomposition lemma, Lemma 1 (discarding 
the cycles because they do not modify |f |). There are at most m paths carrying all the flow, so 
there must be at least one path carrying at least |f |/m flow. Therefore, the augmenting path with 
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maximum capacity increases the flow in the original network by at least |f |/m. This decreases the 
maximum possible flow in the residual graph from |f | to (1 − 1/m)|f | (remember, the smaller is the 
maximum possible flow in the residual graph, the greater is the corresponding flow in the original 
graph). 

We need to decrease the flow |f | by a factor of (1 − 1/m) about  m ln |f | times before we decrease 
the max flow in the residual graph to 1. This is because 

m ln |f | �ln |f |1 1 |f | 1 − ≈ |f | ≈ 1. 
m e 

In one more step, the residual graph will have a maximum flow of 0, meaning that the corresponding 
flow in the original graph is maximal. Thus, we need O(m ln |f |) augmentations. Since one augmen-
tation step takes about O(m log n) time, the total running time is O(m2 ln |f | · ln n). This algorithm 
is weakly polynomial, but not strongly polynomial. 

6.4.2 Scaling Algorithm 

We can also improve the running time of the Ford-Fulkerson algorithm by using a scaling algorithm. 
The idea is to reduce our max flow problem to the simple case, where all edge capacities are either 
0 or 1.  

The scaling idea, described by Gabow in 1985 and also by Dinic in 1973, is as follows: 

1.	 Scale the problem down somehow by rounding off lower order bits. 

2.	 Solve the rounded problem. 

3. Scale the problem back up, add back the bits we rounded off, and fix any errors in our solution. 

In the specific case of the maximum flow problem, the algorithm is: 

1. Start with all capacities in the graph at 0. 

2. Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1. 

3.	 Solve this maximum flow problem. 

4.	 Repeat this process until we have processed all remaining bits. 

This description of the algorithm tells us how to scale down the problem. However, we also need to 
describe how to scale our algorithm back up and fix the errors. 

To scale back up: 

1. Start with some max flow for the scaled-down problem.	 Shift the bit of each capacity by 1, 
doubling all the capacities. If we then double all our flow values, we still have a maximum 
flow. 
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2. Increment some of the capacities. This restores the lower order bits that we truncated.	 Find 
augmenting paths in the residual network to re-maximize the flow. 

We will need to find at most m augmenting paths. Before we scaled our problem back up, we had 
solved a maximum flow problem, so some cut in the residual network had 0 capacity. Doubling all 
the capacities and flows keeps this the same. When we increment the edges however, we increase 
the cut capacity by at most m: once for each edge. Each augmenting path we find increases the 
flow by at least 1, so we need at most m augmenting paths. 

Each augmenting path takes at most O(m) time to find, so we spend O(m2) time  in each iteration  
of the scaling algorithm. If the capacity of any edge is at most U , which  is  an  O(lg U) bit  number,  
we require O(lg U) iterations of the scaling algorithm. 

Therefore the total running time of the algorithm is O(m2 lg U). This algorithm is also a weakly 
polynomial algorithm. 
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