
Massachusetts Institute of Technology Handout 19 
6.854J/18.415J: Advanced Algorithms Wednesday, November 9, 2005 
David Karger 

Problem Set 10 

Due: Wednesday, November 16, 2005. 

Problem 1. The following problem arises in both VLSI design (wiring together terminals 
on a chip) and in network routing (reserving bandwidth for a set of network connections). 
You are given a graph with integer capacitated edges (number of wires per channel on a chip, 
or number of virtual circuits through a link in a network) and a collection of pairs of vertices. 
Each pair must be connected by a single path, such that the number of paths through an 
edge is less than its capacity. Finding a feasible solution is NPcomplete, so instead we seek 
an almostfeasible solution, in which the usage of each edge is close to its capacity (this 
is easily turned into a solution that works if every edge has a little more capacity than is 
needed for a feasible solution). 

(a) Devise an integer linear program capturing this routing problem. Write it in

terms of fk


ij, an indicator variable for whether the path from between the kth 

demand pair uses edge ij. Hint: think of a unitvalue flow between each demand 
pair. 

(b)	 Consider the relaxation of this ILP. Argue that it can be seen as defining a

collection of fractional paths between each demand pair, of total capacity 1, and

that these paths can be read out of the solution in polynomial time.


(c) Given these fractional paths, devise a randomized rounding scheme that gives an

integer solution. Argue that if each edge has capacity 1, and the pathfinding

problem has a feasible solution, then the rounding scheme can find a solution in

polynomial time such that every edge carries O(log n) paths.


(d)	 Generalize, and argue that if a solution exists in which every edge carries only

w paths, then in polynomial time a solution can be found in which each edge

of capacity w carries only w + O(

√
w log n) paths (so for w > log n, we get a


“constant factor approximation”)


NONCOLLABORATIVE Problem 2. Consider the set basis problem: given a finite 
collection C of finite sets, and given a parameter k, is there a finite collection B of k sets 
such that every set A ∈ C equals the union of some subset of B? 

(a) If the answer to a setbasis instance is “yes”, what can you say about the number

of sets in C?




2 Handout 19: Problem Set 10 

(b)	 If two elements x and y appear in precisely the same family of sets in C (i.e., for

all S ∈ C, x ∈ S if and only if y ∈ S), show that removing y from all sets in C

preserves the answer to set basis.


(c) Show that set basis is fixedparameter tractable by reducing to a problem kernel

of size f(k).


Problem 3. In class we showed how the decision version of SAT is fixedparameter tractable 
with respect to the treewidth. Show that maximum satisfiability, the problem of simultane
ously satisfying as many clauses as possible, is also FPT with respect to treewidth. 

Problem 4. Consider the load balancing problem discussed in class, but assume that jobs 
have a finite but unknown duration and eventually vanish from the system. The load on a 
machine at a given time is just the sum of the pj values (which will not denote processing 
time, but some other quantity such as network bandwidth or memory that is consumed while 
the job is executing) of jobs assigned to that machine and active at the given time. Suppose 
that your goal is to minimize the maximum load achieved over the entire course of execution. 
Prove that Graham’s rule is (2 − 1/m) competitive for this generalization. 

Problem 5. Consider the problem of finding a lifetime companion. Among the pool of k 
potential partners at the university (MIT students being snobby about this) you can choose 
and date any one for a while and by doing so measure their suitability compared to all your 
previous significant others’. You then decide whether to stay together forever or break up 
forever. Your goal is to find the most suitable companion, as measured by a rank ordering 
of all the possibilities. 

(a) Show that any deterministic strategy for choosing dates and deciding whether to

break up is terrible from a competitive perspective: you can be forced by fate to

end up with the absolutely worst possible choice.


(b)	 Devise a randomized strategy that does better, giving you a constant probability

of ending up with the absolute best companion.


(c) Suppose that you want to play for slightly less high stakes. Give an algorithm

minimizing the expected rank of your final choice. Note that a constant is achiev

able, but (say) O(log k) is easier to achieve and is worth submitting if you can’t

achieve a constant.


(d)	 Comment on potential ramifications for dating at MIT. 


