
�

Massachusetts Institute of Technology Handout 4
6.854J/18.415J: Advanced Algorithms Wednesday, September 14, 2005
David Karger

Problem Set 1 Solutions

Problem 1. Suppose we have a Fibonacci heap that is a single chain of k − 1 nodes. The
following operations make a chain of length k. Let min be the current minimum of the
Fibonacci heap:

1. Insert items x1 < x2 < x3 < min in an arbitrary order.

2. Delete the minimum, which is x1.

3. Decrease the key of x3 to be −∞, i.e. the minimum.

4. Delete the minimum, which is x3 = −∞.

The second step is the key one: it removes x1, joins x2 and x3 as a chain, and then joins the
original chain with the chain containing x2 and x3 (obtaining a tree where x2 is the root,
with x3 and the original k− 1nodes chain as children). The third step just removes x3 from
the chain, and the last step completely deletes it. The result is that x2 is now the root of
the original chain, so we have constructed a chain of length k. For the base case, just insert
a single node.

Thus, we obtain knodes chain with O(k) operations; therefore, we can construct Ω(n)nodes
chain with n operations.

Note that decreasekey operation was essential for obtaining Ω(n) depth: without it, you
can only obtain binomial heaps (which have logarithmic depth).

Problem 2. For each node, we store a counter of how many of its children were removed
(call counti the counter of node i). To analyze the running time of the operations, we use

2 countiithe following potential function: φ = #roots +
k−1

.

The insert operation has O(1) amortized cost. Note that φ increases by 1 unit as in the
case of the original Fibonacci heap. Thus, the cost of insert does not change.

The decreasekey operation will have a lower amortized cost. Suppose there are c cascading
cuts. Then, the amortized cost of decreasekey is 1 + c + Δφ, with Δφ = +c + −2c(k−1)+2 .

k−1
2Concluding, the cost of decreasekey is 1 + c + c − 2c + 2 = 1 + . Note that in the

k−1 k−1

original Fibonacci heaps, this cost was 1 + 2 = 3.

Conversely, the deletemin operation will have a higher amortized cost. The analysis is the
same as in the case of the original Fibonacci heaps. Thus, the amortized cost of deletemin
is bounded by the maximum degree of a heap in our data structure.

�

�

2 Handout 4: Problem Set 1 Solutions

To analyze the maximum degree, we use arguments similar to those used for the original
Fibonacci heaps. Let Sm be the minimum number of nodes in a heap with degree m. We
will try to find a recurrence formula for Sm and then lower bound Sm.

Consider a node with degree m. Then the degree of its i’s child is at least max{0, i − k}.
Considering that Sm = m + 1 for m = 0 . . . k − 1, we have that Sm = k + m Si−k fori=k

mm ≥ k. Next, note that Sm − Sm−1 = Sm−k. The solution for this recurrence is Sm ≥ Ω(λk),
where λk is the largest solution to the characteristic equation λk − λk−1 − 1 = 0 (note that in
the case of k = 2, the largest solution, λ2, is the golden ratio). If M is the highest possible

degree of a heap, then we have that SM ≤ n, meaning that M ≤ O(logλk
n) = O(

logλ2
n

).
logλ2

λk

Thus, our modification slows down the running time of deletemin by a factor of log λ2 (λklog λk

is a decreasing function of k).

Note: a common mistake was to take a potential function that gives suitable amortized
cost of one operation. Remember that if you use a potential function, you have to check the
running time of all operations using the same potential function.

Another common mistake was to use for the analysis the same potential function as was used
for the original Fibonacci heaps. That function does not give you a lower amortized cost for
decreasekey (consider the case when there are no cuts).

Problem 3. (a) We can augment the priority queue P with a linked list l. We
modify the insert operation so it just puts the element in the linked list l. Now
we define a consolidate operation that adds the elements of the linked list to the
priority queue. We do this by creating a new priority queue P � containing only the
items in the linked list l using makeheap. This takes O(m) time, where m is the
size of the linked list. We then merge the two queues P and P � in O(log n) time.
Therefore, the total consolidation time is O(m + log n). We modify deletemin
to first consolidate, and then call the original deletemin. We modify merge to
first consolidate each of the augmented priority queues, and then call the original
merge.

Consider a set of initially empty augmented priority queues {P �} (that may be
merged later) on which all operations are performed. The potential function φ�

is defined as the sum of the size of the lists of each of the priority queues P �.
Note that inserting in a particular priority queue takes O(1) amortized time.
Deletemin on any particular priority queue also takes only O(log nh) amortized,
time, where nh is the size of that priority queue, since the O(mh + log nh) real
work to consolidate is decreased to amortized O(log nh) by the potential from
the queue before deletemin was processed. Now, consider the amortized time
to merge two of the augmented priority queues. We spend amortized time of
O(log nh) + O(log nh) to consolidate each one, plus the real work of merging the
two priority queues which takes O(log nh) time, assuming nh > n�

h. The total
amortized time, then, is O(log nh)

3 Handout 4: Problem Set 1 Solutions

(b)	 The basic idea is to use a heap of heaps (together with a list as in part (a)).

The data structure is composed of several binary heaps P1, . . . Pk and a “master”

binary heap M . The heaps P1, . . . Pk contain the elements of the data struc

ture. The heap M contains as its elements the heaps P1, . . . Pk, which are keyed

(compared) according to the values of their roots.

To insert an element into the data structure, we just add it to the linked list l.

Deletemin first does a consolidation (which takes O(m+log n) time, where m is
the length of l). Then, deletemin retrieves the “smallest” heap Pi from M . The
root of Pi is the minimum element in the data structure. Remove the minimum
from Pi (usual heap operation). If Pi is not empty, insert the modified Pi back

into M .

In the consolidation step, we construct a binary heap Pk+1 from l (if l is non

empty) and empty the list l. This can be done in O(m) using a standard heap
construction algorithm. To finish the consolidation step, we insert Pk+1 into into
M .

To analyze the running time, let the potential function be equal to the length
of the list l. Then, insert takes O(1). Consolidation takes O(m + log n) real
time, but O(log n) amortized time (since the length of the list decreases by m).
Deletemin takes O(log n) time (note that the depth of all heaps, M, P1, . . . Pk is
always O(log n)).

Problem 4. Consider the offline algorithm: we process nodes in postorder (i.e., we traverse
the nodes using DFS, and process a node only after processsing all of its children). When
we process a node a, we answer queries (a, b), such that b was processed earlier than a by
doing a find in our unionfind data structure D; the “name” of the result is the answer to
the query. Then we union a with the parent of a, and set the name of the setrepresentative
to be the name of the parent.

The relationship to persistent data structures is as follows. We view the order in which
we process the nodes as time. Note that changes to the unionfind data structure D occur
exactly at the times the nodes are processed, so that we can think of the data structure as
changing over time: D1, D2, . . . Dn. Suppose we run the above algorithm, but at each time
t we process a node, we save the state of Dt . Now, suppose we wish to answer a query of
the form (a, b). Suppose b was processed after a at time t. Revert to the data structure Dt,
and do a “find” of a. This would answer the query (a, b).

The goal, then, is to design a persistent version of the unionfind data structure to support
the following two operations:

•	 find(x,t): Find the name of x’s component at time t.

•	 union(w,p,t): Union the component with name w and the component with name p at
time t.

4 Handout 4: Problem Set 1 Solutions

We use the disjointforest implementation of the unionfind data structure using the union
by rank heuristic. For each node, the parent pointer will also store the timestamp t at which
the parent pointer became nonnull (note that this occurs exactly once for each node in the
tree).

Therefore, to do find(x,t), we walk up the parent pointers until we find a node whose parent
pointer became nonnull at a time later than t. However, we need to find the name of
this component. To do this, we create a log of the operations done on the unionfind data
structure. The log is an array mapping timestamps to the names of the components unioned.
To compute the root node, we can lookup the name of the parent component corresponding
to the timestamp of the last edge traversed. Following parent pointers takes O(log n) time
due to union by rank, so the find operation takes O(log n) time.

To do a union(w,p,t), we first do a find(w,t) and a find(p,t). Then we do union by rank and
timestamp the edge added with t. Now we need to update the log: a log entry (w, p) is
added to the tth element in the log array. It is clear that the union operation takes O(log n)
time, so the preprocessing time takes O(n log n) time.

