L ecture 9: Hacker’s quide to DL
Speaker: Phillip Isola

6.7960 Deep Learning https://phil|ipi.github.i0/6.79601 Fall 2024

https://phillipi.github.io/6.7960

9. Hacker's quide to DL

e Data

Disclaimer:
e Model

This lecture is my

* Optimization personal opinions ana

| | | | anecdotes!
e Evaluation, Experimentation, and Debugging

e Compute

Acknowledgements:

_ots of slides adapted from Evan Shelhamer’s “DIY Deep Learning: Advice on Weaving Nets.” Builds on advice from Andrej
Karpathy (http://karpathy.github.io/2019/04/25/recipe/), feedback from Isolab members and MIT community, slides from Dylan
Hadtield-Menell, twitter feedback (https://twitter.com/phillip_isola/status/15769654253842636807

s=20&t=3el. g6JBYVSkacUtNIz83pA)

2

http://karpathy.github.io/2019/04/25/recipe/
https://twitter.com/phillip_isola/status/1576965425384263680?s=20&t=3eLg6JBYVSkacUtNlz83pA
https://twitter.com/phillip_isola/status/1576965425384263680?s=20&t=3eLg6JBYVSkacUtNlz83pA
https://twitter.com/phillip_isola/status/1576965425384263680?s=20&t=3eLg6JBYVSkacUtNlz83pA

Part of the story of deep learning has been the (temporary) success ot hacking over theory

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang” Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht' Oriol Vinyals

preanteborkeloy oa e fast.ai—Making neural nets uncool again

vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional

wisdom attributes small generalization error either to properties of the model fam- Software: f"_ﬂ stai for PyTorch; nbdev . _
ily, or to the regularization techniques used during training. Book: Practical Deep Learning for Coders with fastai and PyTorch

Through extensive systematic experiments, we show how these traditional ap- e In the news: The Economist; The New York Times; MIT Tech Review

proaches fail to explain why large neural networks generalize well in practice. Corporate partner program: Get help with fast.ai technologies & courses from the partner program
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
ready have perfect finite sample expressivity as soon as the number of parameters
exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.

Courses: Practical Deep Learning for Coders; From Deep Learning Foundations to Stable Diffusion

Left © Zhang, et al. Right © fast.ai. All rights
reserved. This content is excluded from our
Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-
fair-use/

© DeGrave, Janizek, and Lee. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

Look at the input

DeGrave, Janizek, Lee, 2020

ook at the output

L Oss

Data Look at the datal

inspect the distribution of inputs and targets

* inspect random selection of inputs and targets to have a general
sense

 histogram input dimensions to see range and variability
* histogram targets to see range and imbalance

* select, sort, and inspect by type of target or whatever else

[slide adapted from Evan Shelhamer]

Data

Inspect the inliers, outliers, and neighbors:

* visualize distribution and data, especially outliers, to uncover dataset
Issues

* |look at nearest neighbors

e examples:

* rare grayscale images in color dataset, huge images that should have
been rescaled, corrupted class labels that had been cast to uint8

[slide adapted from Evan Shelhamer]

Data

pre-processing: the data as it is loaded is not always the data as it is stored!

e inspect the data as it is given to the model by output = model(data)

Cafte

original

Image © source unknown. All rights reserved.

This content is excluded from our Creative .
[slide adapted from Evan Shelhamer]

Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/ 7

Data

Most important function in deep learning:

def inspect data(X):
print(type: ', X.type())
print('shape: ', X.shape)
print(' requires grad:' , X.requilres grad)
print('numerical range: [{:.2f}, {:.2f}]' .format(X.min(), X.max()))
print('mean and var: {:.2f}, {:.2f} ' .format(X.mean(), X.var()))

A library that gives this kind of info by default: https://github.com/x|0/lovely-tensors

Data

pre-processing:

e standardize:

Tl — 43[a:k]

\/Var[a:k]

e Squashes all your data dimensions into the same standard range

Tl < VEk

* This makes it so that, a priori, no one dimension is valued more than any other

* |Important when different measurements have vastly different scales or units

Beware of low dimensions

RMS-norm layernorm In high dimensions, normalization

x|k] = xin|k] —

1
k

Touwt = RMS-norm(x;iy,) Tout = RMS—norm(

Z layers can make entries ~N(0,1),
]j whose typical set is ~surtace of

hypersphere.

Xout
<— Not so in low dimensions.

Many normalization layers behave

badly in low dimensions.

—> Avoid low dimensions! All tensor dimensions should be big numbers: [BxXNxMxC] data
batches, [NxM] weights

10

Data

pre-processing:

* summary statistics: check the min/max and mean/variance to catch mistakes like
loading values in the range [0,255] when the model expects values in the range [0, 1].

e shape: are you certain of each dimension and its size?

* sanity check with dummy data of prime dimensions: there are no common factors,
so mistaken reshaping/flattening/permuting will be more obvious. example: a
64x64x64x64 array can be permuted without knowing

* type: check for casting, especially to lower precision

e what's -1 for a byte? how does standardization change integer data?

[slide adapted from Evan Shelhamer]

11

Data

e A lot of your code will just be reshaping tensors

e \What does reshape (X, (X.shape(0)*X.shape(l)) do? Is it column order or row
order?

e Tools like einops can make it much easier to avoid mistakes

e https://github.com/arogozhnikov/einops/tree/master/docs

or compose a new dimension of batch and width
rearrange(ims, b hwc¢c -> h (b w) c')

elnNopSs

Data Data augmentation

Training data

X Y
{ ”FiSh" }
B

"Grizzly”

y

{ ”Chameleon”}
,

Image © source unknown. All rights reserved.
This content is excluded from our Creative
Commons license . For more information, see
https://ocw.mit.edu/help/fag-fair-use/

“Fish”

"Fish”

"Fish”

“Fish”

—— —— = =

Mirror

Crop

Crop

Darken

ldea: Train on randomly perturbed data, so that test set just

looks like another random perturbation

Data space

Trainina dat ‘ Test dat
raining data est data
‘.

@ o © “
‘000

This is called domain randomization or data augmentation

14

What does a good training curve look like?

loss

loss loss

Iter

iter iter

Bad! Bad! Gooo
Your data is too easy You aren't fitting your data Fitting a hard problem

You roughly want to select data and parameters as: max_data min_params loss(data, params)

15

Domain randomization

Training data Test data

[Sadeghi & Levine 2016

© Tobin, et al. All rights reserved. This

content is excluded from our Creative
Commons license. For more information, see

e et edu/melpyfac ar-te! Abqve example is from [Tobin, Fong, Ray et al. 2017

. target domain
source domain
\ (where we actual use our model)

/

Domain gap between Psource ana Ptarget will cause
us to fail to generalize.

Space of images

Source data

—

Target data

© OpenAl, Tobin, et al. All rights reserved.

This content is excluded from our Creative
Commons license . For more information, see
https://ocw.mit.edu/help/fag-fair-use/

17

Table 1: Ranges of physics parameter randomizations.

Parameter

Scaling factor range

Additive term range

object dimensions

object and robot link masses
surface friction coefficients
robot joint damping coefficients

actuator force gains (P term)

uniform(
uniform

uniform(

0.95,1.05))
0.5,1.5])

0.7,1.3])

loguniform([0.3, 3.0])
loguniform([0.75, 1.5])

joint limits
gravity vector (each coordinate)

N (0,0.15) rad

N(0,0.4) m/s’

40

30

20

10

Consecutive Goals Achieved

® All Randomizations

10

Years of Experience

No Randomizations

A \ '
PRI A)
M f‘-‘f,;“?m“.'.é'-i "1 w.

' & Lial ’w‘i
ik 1 ded/ SR R
i A

i i '{fv’éi

100

18

* High train accuracy can mean problem is
too easy

* Add more data to make problem harder

© OpenAl, Tobin, et al. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[https://openai.com/blog/learning-dexterity/]

https://openai.com/blog/learning-dexterity/

In the academy we typically take data as fixed, and design
models that learn from it

Data —> Learner —> f

8

19

In industry, it's usually then other way around. We use a
standard learning algorithm, and get to collect data to
Instruct 1t

Data Learner

8

20

Which is the hardest prediction problem?

“Call me 7 —>» —> ?
“All happy families 7 —> —> ?

Prediction gets easier the longer the input!

21

You can change your data to make the learning work
petter!

Suppose you are designing a pharmaceutical drug

X — NN — Y

Chemical tformula drug effectiveness
Folding structure
Patient age

Patient biopsy

We will treat our prediction targets as fixed (given)

... the universe
22

Adding info to X reduces uncertainty over Y

* [t's really hard to model a complicated distribution, P(YIX), over all the possible

values of Y for some given observation X (we will get to this in the generative
modeling lectures).

e Standard NN regression outputs a single point prediction for each X.

 The hack is to put so much info in X that P(YIX) looks like a single point!

23

Evolution of image generation

2019: StyleGANZ2

A generative
model that can
only make frontal
views of faces

—_—p BRG] —>

2021: DALL-E

Can make
basically any
Image you can

think of

“an 1llustration
of a baby daikon
radish 1n a tutu
walking a dog”

)

—_—p B —

24

You can change your data to make the learning work
petter!

® Use big data

e Big as in lots of {x,y} training pairs

e Big asin xis a big object, replete with information (+ high-dimensional)

e (Bigasinyisa big object too)

25

M Odel Keep it as simple as possible!

do your first experiment with the simplest possible model w/ and w/o your idea

Why keep it simple?
* easy to build, debug, share
* tractable to understand, make robust, build theories around
* simple models also work better (Occam’s razor, Solomonoff Induction)

» if you focus on simplicity you will have an unfair advantage

26

Model

start with a standard and popular model (popularity matters more than performance)

if you have an image classification problem, you might try:

model = torch.hub.load('pytorch/vision:v0.9.0', 'resnetl8')

L https://pytorch.org/hub/pytorch_vision_resnet/ O
if you have text problem, you might try:

>>> from transformers import pipeline, set_seed , o
. . | «— https://huggingtface.co/ [~
>>> generator = pipeline('text-generation', model='gpt2')

find popular models and code here: https://paperswithcode.com/

27

Stable Diffusion
M O e Stable Diffusion was made possible thanks to a collaboration with Stability Al and Runway and builds upon our

previous work:

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach* Andreas Blattmann* Dominik Lorenz, Patrick Esser, Bjorn Ommer
CVPR '22 Oral | GitHub [arXiv | Project page

stand on the shoulders ot giants

use pretralned mOde‘S ‘= README.md

(but be aware of their flaws and

limitations)

AlphaFold

Top © Robin Rombach and Patrick Esser and This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new
contributors. Bottom © DeepMind

Technologies Limited. All rights reserved. model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold

This content is excluded from our Creative throughout the rest of this document.
Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/ 28

Model

Transform your problem into a “solved” problem

e Case study: transforming image colorization to image classification

[c.t. the strategy of “polynomial-time reduction”]
29

lmage colorization

Input X

Training data

x (4 y(i))

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
® information, see https://ocw.mit.edu/help/fag-fair-use/

[Zhang, Isola, Efros, ECCV 2016]

30

Grayscale image: L channel

X ©

HxW x1

31

Color information: ab channels

HxW x2

Yy ©

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

[Zhang, Isola, Efros, ECCV 2016]

Grayscale image: L channel

X ©

HxW x1

32

Color information: ab channels

HXxW x2

Yy ©

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

[Zhang, Isola, Efros, ECCV 2016]

Colorization — Classification

vellow

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

33

Colors — Classes

one-hot representation of K discrete classes

y € HXxW x2 L»yé yH X W X K

1.1 = remerers oo o s 0

: HEEEE
: - HHEEEEEE

: : HEEREEEEEEE .

55| : HEEEEREEREREEEE .
' : LT T R [R

. I H IR EEEEEN
HNEEEEEEEEEEEEEN
ENEEEEEEEEEEEEN
HEEEEEEEEEEEEEN
EEEEEEEEEEERE - -
HENEEEEEREEEE

551}

4

B

FEEE

W

il

. T
r aass

55} T
3 EE

T
EEEEEEEENEEEEEEEEEE
110} ;. WEEEEEEEER @ L

110}

One hot codes:

—» |—| |—| || || |—™ rockfish

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

35

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

36

Image classitication = Pixel classification

—_ | | |—| || |—] || |— vellow

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

37

Image classitication = Pixel classification

— — |—| |—] |— —| |—

vellow

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

38

Image classitication = Pixel classification

Original image © source unknown. Colorized image © Zhang, Isola, and Efros. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

39

Model

* Formulate your problem as softmax regression (a.k.a. classification)
® cross-entropy loss, 1-hot labels
e \Why?
1. No restriction on shape of predictive distribution [up to
quantization] (this is not the case for least-squares regression, which assumes

Gaussian predictions)

2. Discrete classes are easy to label

3. All labels are equidistant under 1-hot representation

40

M Od e | good default choices ca 2024

Recipe for deep learning in a new domain

1. Transform your data into numbers (one-hot vectors)
2. Transtorm your goal into an numerical measure (cross-entropy loss)

3. Use a generic optimizer (Adam) and an standard architecture (transformer)
to solve the learning problem

41

M Od e | good default choices ca 2024

Don't use batch norm

* [ntroduces a strong dependency on batch size (now batch size becomes
an even more critical hyperparameter)

e Different behavior at train and test time

* Makes distributed computing hard — requires communication between
all elements in a batch

* Use layer norm instead

42

Longer rant | wrote a few years ago:

(Disclaimer that this is my personal opinion)

Batchnorm can be a useful tool, but in my experience it’s usually more trouble than it’s worth. Below are some things that make working with batchnorm a headache. You can work around all these issues... or you
can just not use batchnorm &.

1. Behavior at train time and test time is different. Forgot to set model.eval()? You will have a bug. More generally, differences in train vs test behavior make it harder to anticipate test behavior from training
behavior. You might be in for surprises.

2. It only works if batch size is sufficiently big. Suppose your batch size is 1. Then if you have an activation vector z and subtract the mean over the batch, you get z — z = 0. The model just zeroed out the
activation vector and your net won’t work. Worse, the variance is undefined for batch size 1 and that could cause bugs too. For small batch size the variance could be a very poor estimate of the true
variance of the activations and cause numerical and optimization issues. [| had this bug in the original version of the pix2pix paper, and it made the baseline work worse than it should have (which might not
have been a bad thing for making the paper popular...). See change log in appendix here: https://arxiv.org/abs/1611.07004]

3. Suppose your batch size is large, but all activations in a batch happen to have the same value. Again the variance is undefined and the activations get zeroed out by subtracting the mean. [This was the “bug’
that the SPADE paper tried to fix: https://arxiv.org/abs/1903.07291]

4. Want to train a really big model in parallel across many machines? With SGD and no batchnorm you can run forward and back propagation independently on subbatches distributed across the machines,
then only communicate between them once to aggregate the gradients. With batchnorm, the activations for one subbatch will depend on the activations for another subbatch - you need to communicate all
these activations between the machines. Naively you need to do this after each layer of your network, to compute the inputs to the next layer, which is a huge communication overhead, but in practice people
use various (bug-prone) speedups.

5. More generally, batchnorm introduces a dependency between different elements of your batch. Different training examples are not processed iid. This not only gives implementation headaches but also
makes the theoretical analysis harder. This might be one reason why the theory of why batchnorm works is still not really resolved.

6. There are lots of tricks and hacks to fix the above issues - these tricks add more potential bugs and complexity. Sometimes the fix is worse than the original problem. In distributed training sometimes people
run batchnorm independently on each machine. That fixes the communication problem, but now you have a maybe worse problem: your results change dramatically depending on how many machines are in
your cluster (since the number of machines determines the size of the subbatches when you distribute across machines and subbatch size has a big effect on how well batchnorm works).

Feel free to add to this list if anyone has more - | think the list could go on and on.

43

Model

Remember that often the easiest way to get better performance is:

1) Scale your data: more (diverse) training examples

2) Scale your model: more layers, more channels

3) Scale your compute: train for longer

In the current era, | would say these are the top three factors that determine success

... but working at small scale forces efticiency, and then when you do scale up, you
get more bang for your buck

44

Model

Once you get your system working, you are only halfway done

Second half is to remove everything nonessential

“Pertection 1s finally attained not when there 1s no longer anything to
add, but when there 1s no longer anything to take away”
— Antoine de Saint Exupéry

45

CO p' | OtS g %'g;!.‘:)? Colab Al

Good for boilerplate code, visualization, getting syntax right. Ever
improving.

Don’t use it for your psets but you can use it for your final projects. You
should learn how to use these tools eftectively.

Think first, then ask an LLM for help.

Don't trust the code without verification.

46

)] @ ColabA

Copilots

m Copy code

General advice: the more
documentation you provide, the e I et

real_pred netD(real)

better the Comp‘etion Wi” be. fake_pred = netD(fake)

real_labels torch.ones_like(real_pred)

fake_labels torch.zeros_like(fake_pred)

PH def backward D _basic(self, netD, real, fake):

"mCalculate GAN loss for the discriminator criterion = torch.nn.BCELoss()

real_loss criterion(real_pred, real_labels)
Parameters:

netD (network) --the discriminator D

real (tensor array) -- real images

fake (tensor array) -- images generated by a generator

fake_loss criterion(fake_pred, fake_labels)

loss_ D = real_loss + fake_loss

loss _D.backward()

Return the discriminator loss.
We also call loss_D.backward() to calculate the gradients.

nmmnn

eturn loss_D

47

Optimization

figure out optimization on one/few/many datapoints, in that order
* overtit to a data point
* then fit a batch
 and finally try fitting the dataset (or a miniature version of it)

first make sure you can fit train set, then consider generalization to test set

[slide adapted from Evan Shelhamer]

48

Optimization
sanity check the loss against a suitable reference value
» classitication with cross-entropy loss: uniform distribution
e get to know log loss numbers:
-0.69 = In(0.5) [chance on binary classification]
-2.3 = In(0.1) [chance on 10-way classification]

* regression with squared loss: mean of targets (or even just zero)

and if your loss is constant, double check for zero initialization ot the weights

[slide adapted from Evan Shelhamer]

49

Optimization
Most important hyperparameters: learning rate and batch size

* first, use a constant rate; don't schedule until everything else is
figured out

* schedule according to number of iterations of SGD, not epochs

* use biggest batch size that will fit in memory Until Jeremy solves Ir-free optimization

\
“
.
.
.
.
.
.
A
.
.
.
.
.
L
L
.
.
“
L

““
“‘
.

may look like your model is training much fasteag, but really you just scaled the effective Ir

Optimization
Be caretful with the concept of “epochs”

* There are no epochs in the wilo
» Trend toward single-epoch training in LLMs
* Don't tie Ir schedule to epochs

* makes it hard to compare learning curves
between experiments

[Tian, Sun, Poole, et al., 2020]
e be careful with cosine Ir (looks like it is

converging when it is not)

51

Optimization

checkpoint features + gradients to trade space for time and fit large
models

* can then accumulate gradients across checkpoints
* can resume training it your computer crashes

* have a "paper trail” to debug later

[slide adapted from Evan Shelhamer]

52

Optimization

ive on the edge and try extreme settings (but just a little bit)
* |f optimization never diverges, your learning rate is too low
in the style of Umeshism
* |f you've never missed a tlight, you're spending too much time in

alrports

[slide adapted from Evan Shelhamer]

53

Optimization

Use exponentially moving averages (EMA) QEMA 59&@1 + (1 _ 6)6“5—1

Replace a g
exponential

uantity with a weighted average of its previous values, with weight

y decaying over time

Time averages (EMA) can achieve a similar effect as “space” averages (e.g.,
average gradients over batch)

Usetul for many quantities in deep learning, including gradients (where it is known
as momentum), weights, data, activations, targets, etc.

(Basically for any variable in DL, try replacing it with its EMA version and it may be better)

54

Optimization

optimizers:
« Adam (or AdamW) is good for prototyping (generally just works)

« SGD may be slightly better tor performance (but requires more tuning of
hyperparameters)

 Clip gradients to improve stability

95

Fvaluation

switch to evaluation mode by model.eval() (PyTorch)
no, really

and check the mode by model.training

[slide adapted from Evan Shelhamer]

56

Evaluation

ook at the output

L Oss

Ground Truth | Olayers | llayers | 3layers | ~ 6layers

naq

rr I . ﬂ -y h ‘i
\u'!ﬁ.llml|".'|
o et W)
o HC S Sl I

exc_lluded from © Creatlve Commons ||cense ‘
For more mforma ion, see
“ https: J/ocw.mitieq u/hef'p/faq falr use/

~ -

Fvaluation

WandB and Tensorboard can be your friends (?). Or roll your own logs/viz.
* When in doubt, log it

 |f you're logging it, make it easy to see the results

[slide adapted from Dylan Hadfield-Menell]

59

Weights& Biases Products v Resources W Company WV Docs Pricing Enterprise

Sweep: shape_sweep &= Results of Hyperparameter Sweep

val-full/z =

lucky-swee; 0.981

The developer-first

> @ atomic-swe 0.9795

MLOps platform S

> @ visionary-sv 0.9781

Build better models faster with experiment tracking, oM soleb 2570 ossvalbath

Parameter importance with respect to val-fu

rural-sweep 0.9756

§0b Parameters *A* Rowspe "10 of 18

dataset versioning, and model management |

@ scarlet-swe: 0.9756

Config parameter Importance ¥ Correlation

ar- 5 3
super-swee 0.9754 n_params e

© @ morning-sw 0.9754 budget
RE Q UEST DEMO O prime-swee 0.9752 parameter_budget
® @ fresh-sweer 0.9752 Runtime

» @ rose-sweep 0.9751 Ir = . Best Model by Val Acc

batch_size
rose-sweep 0.9748

activation.value_relu

© @ easy-sweep 0.9747
activation.value_tanh
@

© @ easy-sweep 0.9737 2 .
activation.value_sig...

toasty-swee 0.9734 shape.value_deep

o @ ruby-sweep 0.9733

© Weights & Biases. All rights reserved. This content is excluded from our Creative https://wandb_ai/site

Commons lig()se. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Tuning

ﬁqp

connecnons

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Cayenne pepper is all you need?

No! Each spice has its use. But combination matters. And don't over spice.

61

Experimentation and debugging

don’t be finger-bound! script the optimization + evaluation of your models
every character you type is a chance to make a mistake
also scripting makes the work reproduciblel!

use config files (e.g., yaml) to manage experiments; log all arguments

[slide adapted from Evan Shelhamer]

62

Experimentation and debugging

debug with the default python debugger: pdb

import pdb; pdb.set trace()

https://www.digitalocean.com/community/tutorials/how-to-use-the-python-

debugger

For tfinding nans during debugging:
torch.autograd.set detect anomaly(True)

[slide adapted from Evan Shelhamer]
63

https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger
https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger

Common bugs

RuntimeError: a view of a leaf Variable that requires grad i1s being used 1in an
in-place operation.

X = torch.ones(2,2, requires grad=True)

fails . . .

< 4= 1 A leat variable is one that you directly
create, that is not the result of any

works . . .

oo o) differentiable operation.

fails .

x[0,0] = 1 These are the leaves, the inputs, to the

| computation graph.
works (but what should the gradient be?)

y = X.clone()
y[(0,0] =1

64

Common bugs

Out of memory

At inference time, don't store gradients:

with torch.no grad():
Y = model.forward(X)

Clear memory where appropriate:

torch.cuda.empty cache()
del variable name

65

Common bugs

Timing your code

GPU calls may run asynchronously, so if you want to time an operation, make sure
to synchronize first:

torch.cuda.synchronize()
timer.start()

Y = model.forward(X)
timer.stop()

66

Common bugs

RuntimeError: Trying to backward through the graph a second time, but the
buffers have already been freed. Specify retain graph=True when calling
backward the first time.

PyTorch frees computational graph after

x = torch.randn(1l, requires grad=True) Ca||ing backward().

y = X **)

First backward pass If you see this error it's likely you are
.backward(retain graph=True : : ,

Y (—I5eb) doing something you don’t want to be

Second backward pass (this works now) dcﬂng}

y . backward()

But sometimes you do want to call
backward twice on same computation
graph, or subparts of it, in which case
just set retain_graph=True.

67

Compute

more hardware, more problems don’t parallelize immediately
* make your model work on a single device first
* attempt to parallelize on a single machine
* only then go to a multi machine set

* and check that iterations/time actually improves

see Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour tor good advice

68

https://arxiv.org/abs/1706.02677

Compute

Saturate your GPUs
» Check GPU utilization (memory and tlops): nvtop nvidia-smi

 |ncrease batch size until ~100% utilization

69

Compute

Include this at the top of your scripts:

torch.cudnn.benchmark = True

Try AMP (https://developer.nvidia.com/automatic-mixed-precision)

scaler = GradScaler()

with autocast():
output = model (input)
loss = loss fn(output, target)

scaler.scale(loss) .backward()
scaler.step(optimizer)

scaler.update()

Try torch.compile (https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html)

70

MIT group with presentations /
tutorials on cutting edge practice
of training big models

© scale-ml.org. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

https://scale-ml.org/

Scale ML /

» We are a cross-lab MIT Al graduate student collective focusing on Algorithms That Learn and Scale.
» The group is open to all with an academic email - however if you are still interested shoot us an email or

message us via Twitter. We currently host bi-weekly seminars and will have hands on sessions and research

socials in the future.

» Our snacks = are currently funded by generous donations from Pulkit Agrawal and Yoon Kim.
» Please contact the organizers for inquires

» Join our next seminar on Zoom or in-person:

Click here to join the mailing list

Discussion Schedule

10/30 u-pP: The Unit-Scaled Maximal Update Parametrization Charlie Blake (Graphcore)
10/16 Transformers and Turing Machines Eran Malach (Harvard)
09/04 A New Perspective on Shampoo's Preconditioner Nikhil Vyas (Harvard)
08/22 1B parameter model training. (hands on session) Aniruddha Nrusimha (MIT)
08/12 How to scale models with Modula in NumPy. (hands on session) Jeremy Bernstein (MIT)
07/24 FineWeb: Creating a large dataset for pretraining LLMse Guilherme Penedo (Hugging Face)
07/17 Hardware-aware Algorithms for Language Modeling Tri Dao (Princeton)

71

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

72

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page

