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9. Transtormers

* Three key ideas
e Tokens
e Attention
e Positional encoding

 Examples of architectures and applications



Don Quixote by Pierre Menard



A Limitation of CNNs

How many birds are in this image?

s the top right bird the same species
as the bottom left bird?

CNNs are built around the idea of locality, and are not well-suited to
modeling long distance relationships
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A Limitation of CNNs

QOO0 000

WM

Far apart image patches do not interact



The |dea of Attention

How many birds are in this image?




The |dea of Attention

s the top right bird the same species

| 4 as the bottom left bird?

A
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The |dea of Attention

What's the color of the sky?

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
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Three Key Architectural Innovations

1. Tokens

2. Attention

3. Positional Codes



New idea #1: tokens



A New Data Type: Tokens

e A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

e But the connotation is that a token is an encapsulated bundle ot information; with
transformers we will operate over tokens rather than over neurons.

Note: sometimes the word

array of neurons array of tokens | “ioken” is instead used to

refer to the atomic units of

the data sequence we will
model. In this usage tokens

are the representation of the
data only at the input and

output layers. We use a more

general definition where
tokens are the representation
of the data at any layer.

S
0l0]0]0)0,
=
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A new data structure: Tokens

e A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

e But the connotation is that a token is an encapsulated bundle ot information; with
transformers we will operate over tokens rather than over neurons.

array of neurons array of tokens
OOO00O o o
O0O0O0 shslche
X1 OO0 T BB
OOOO Ol 10 O [O
Slelets kI
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A new data structure: Tokens

e A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

e But the connotation is that a token is an encapsulated bundle ot information; with
transformers we will operate over tokens rather than over neurons.

set of neurons set of tokens
S
O 0O 1 H F
O~O 3
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Tokenizing the input data

Cokens | } t € R e.g., linear projection
- thokenize e
patches )

* When operating over neurons, we represent
the input as an array of scalar-valuea
measurements (e.g., pixels)

* When operating over tokens, we represent

input the input as an array of vector-valued

measurements
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Tokenizing the input data

You can tokenize anything.
General strategy: chop the input up into chunks, project each chunk to a vector.

tokens ‘ H H H}tERd tokens |:| |:| |:| |:| tokens ‘ |:| |:| |:| |:|

patches ey bytepalss | rpnjire] ... [wll[.] :g?gfets “* H"
bt t bt bt
Three guineafowl.

input input input
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Notation

transpose
///"\\A T T .
] CCT——— 1
T e
t; ty 3 t; — - ~— =

d channels
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L inear combination of tokens

Linear combination of neurons Linear combination of tokens
xOut O tOUt
W1 W1
Xin Tin
X1 X2 X3
t; t t3
Xout = W1X1 + WorXs + W3X3 Cout =Wt +WHrtH + w3ty
N N
Yout[i]= ) Wiixinl/] Touelir:]=>  wyTsalj,:]
j:l ]=1

Xout = W Xin Tout — WTin
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Token-wise nonlinearity

relu(x;,[0]) |
Xout = .
relu(r,[N—1])] F is typically an MLP
Equivalent to a CNN with 1x
kernels run over token sequence
Fo(L'i0[0, :])
Tout = '

F@(Tin[N_ 1, ])
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Token-wise nonlinearity

> @000
@000
CO0®
000
C000
(1 Je]
@OO00
000

re lu(xin [O])

Xout —

relu(x;,[N—1])

F@(Tin[oa ])

Tout —

0000
1 1GJ®
0000
eje] ]®
oje] J®
00C0®
el 1']®
0000

F@(Tin[N_ 19 ])
| - tokens
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Token nets

Neural net

O O O

linear comb of neurons > M
neuron-wise nonlinearity Dl l l
linear comb of neurons > M
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Token nets

Neural net Token net

O O O

linear comb of neurons > linear comb of tokens >

neuron-wise nonlinearity > token-wise nonlinearity > I I I

linear comb of tokens >

linear comb of neurons >
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GNN Token net

AGGREGATE linear comb of tokens >
may be
COMBINE I I I shared token-wise nonlinearity > I I I

weights

AGGREGATE m o linear comb of tokens >
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GNNs unrolled

UPDATE®

N

AGGREGATE®

e | ike an MLP but nodes are vectors rather than

scalars, edges are potentially complex functions
(e.g., an edge can be an MLP)

UPDATEW

. . L AGGREGATEW
e Each iteration of GNN message passing is a layer

o AGGREGATE is akin to a linear layer

e UPDATE is akin to a pointwise layer
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A view from the graph perspective

Transtormers may be viewed as Graph Neural Networks over tully-connected graphs

24



New idea #2: attention



tout

tin

is free parameters.

fc layer

X

/

|

\

attn layer

A=£(..)
Tout :ATin

< attention

is a function of some input data. The data tells us which tokens to
attend to (assign high weight in weighted sum)
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tout

How many
animals are
in the photo?
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44

the
?

is
color of the
impala

What

28

tout

How many
animals are
the photo?

in

tin



query-key-value query key value
attention [ .

q=W,t
A = softmax(s)
Tout — . V = ‘N/ Vt
ayvy.
} value
.
r key
/
_ [~ T
S = [qquestionk17 R qq_uestionkN]
4 I* " O’ \
o aae” T g , query

What color
is the
impala’s head
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Self-attention
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Attention maps in a trained transformer

-
- e \\
% l
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fc layer
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self attn layer

Tout

X

)
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self attn layer (expanded)

Tout

query key value

I

\

q ] [(Wet)"
Qin=1| : | = : = TinW; < query matrix

_q]-l\-f_ _(thN)T_

ki [(Wit)T
Kin=| ' | = : =T inW,I < key matrix

kil (Wit

_V-lr_ _(thl)T-
Vin=| ¢ | = : =T inWVT < value matrix

vyl LWLt

inKT
A =f(T;,)=softmax ( Q Jm = ) < attention matrix
m

Tout — AVin
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A tamily of linear layers

Wiring graph

OOOOOO

O0O000O0

OOQICOO

Matrix

\,
[T TT1
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Properties

Fixed input dimensionality

N*? learnable parameters

Variable input dimensionality

k +1 learnable parameters ( k= kernel size)

conv(translate(x)) = translate(conv(x))

Variable input dimensionality

'W,| 4+ |Wg| 4+ |W,| learnable parameters

attn(permute(T)) = permute(attn(T))



ML P Transformer (vanilla)

linear self attn <> /
relu kMLP . 1 1 1
(neuron-wise) (token-wise)

linear M self attn
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Multihead selt-attention (MSA)

Rather than having just one way of attending, why not have k?

Each gets its own parameterized query(), key(), value() functions.

Run them all in parallel, then (weighted) sum the output token code vectors

T . =attn'(Ty,) forie{l,..., k}
- T. . [0,:1 ... T*.[0,:] °

Tous = f E 5 4 Touy € RV
T! . [IN-1,:] ... T¢ [N-1,:]

T kvxd
Tout — ToutWMSA < WMSA cR v
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Transformer (ViT)

- E oy
......
- ~

layernorm’

Lout [k] —

Tin K| — El2:n K]

\/Varktnjkﬂ

repeat XL

MLP
(tokenwise)

token norm

MSA

“token norm

I

!

I
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# ¢ : input data (RGB image)

# K : tokenization patch stize

# d : token/query/key/value dimensionality (setting these all as the same)
# L : number of layers

# W q T, Wk T, Wv_ T : transposed query/key/value projection matrices

# mlp: tokenwise mlps

# tokenize input image
T = tokenize(x,K) # 3 ¢ H o W image ——> N = d array of token code vectors

# run tokens through all L layers
for 1 in range(L):

# attention layer

Q, K, V = nn.matmul (nn.layernorm(T),[W_q_T[1], W_k_T[1], W_v_T[1]])
# mn.matmul does matrix multiplication

A = nn.softmax(nn.matmul (Q,K.transpose()), dim=0)/sqrt(d)

T = nn.matmul(A,V) + T # note residual connection

# tokenwise mlp
T = mlp[l] (nn.layernorm(T)) + T # note residual connection

# T now contains the output token representation computed by the transformer
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New idea #3: positional encoding



Permutation equivariance

tl tz t3 t2 t3 t1
£ tr || €3 t)
ti|]| || t3 —— permute — t,

Fy(permute(T,)) = permute(Fp(Tiy))

attn(permute(Tin)) = permute(attn(Tin))

l

transformer(permute(T;,))=permute(transformer(T;,))

Set2Set
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What it you don’t want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this Is
called positional encoding

pos  signal

i

OO000@OO
OQQOQQ!}O
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What if you don’t want to be permutation invariant?

1. Use an architecture that is not permutation invariant (e.g., MLP)

2. Add location information to the token code vectors — this Is called
positional encoding

tout

})f

L]
]
[]
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Fourier positional codes

Represent coordinates on Fourier basis

input s1n(x) sin(x/B) sin(x/ 32 sin(x/ B3

sin(y) sin(y/B) sm( /B%) 1n(i/B3

44
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Other positional encodings

ScaleMAE uses ground sample distance positional encoding to train an

MAE across spatial scales of remote sensing data
GSDPE PE

9|eds a1njosge YIm sallen 3dadsD
uolnjosal |[9xid Yyim Ajuo saliea 34

© Reed, et al. All rights reserved. This content is excluded from our
Creative Commons license . For more information, see
https://ocw.mit.edu/help/fag-fair-use/

https://arxiv.org/abs/2212.14532



Other positional encodings

Geographic location encoding with spherical harmonics and sinusoidal
representation networks

LLINEAR ‘“Neural Network™

VN
w;" an
75,
|
L -
s
O
=
" N
Y, -»
N
|
-
O
Yt
o
. N

<

m =

SPHERICAL HARMONICS [ = L =10 L = 20

Courtesy of RuBwurm, et al. Used under CC BY.

https://arxiv.org/abs/2310.06743
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Other positional encodings

Laplacian positional encodings to encode node positions in a graph

Eigenvector ¢
colormap

Max l

Courtesy of Kreuzer, et al. Used under CC BY-NC-SA.

https://arxiv.org/albs/2106.03893
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Once upon

Once

Autoregressive models

a time —»

Predictor

Predictor
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a0 Once upon a , time

-

E There and back , again .

= — | Learner | — Predictor

CS The slow brown fox P

— To be or not to, be

a0

S X1, .o X1 X,
]

g‘ Colorless green 1deas sleep % Predictor % furiously
4w

P
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GPT (and many other related models)

furiously

T

[ AR A S A A

110000001
o

[ NS N S A O

Colorless green 1deas sleep



GPT training (and many other related models)

Colorless green i1ideas sleep furiously

[ N U A

[ N T A

time 1ndex: 1 2 3 4

110000001
o

[ N U O

Colorless green 1deas sleep furiously




AZ Tin Tout

7 "

Al Tin Tout

A,

time 1ndex: 1 2 3 4
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Qutput
Probabilities

Attention Is All You Need

. Softmax |

token-wise MLP
(a.k.a. 1x1 conv)

Linear

Add & Norm

Ashish Vaswani” Noam Shazeer* Niki Parmar” Jakob Uszkoreit* .'.
Google Brain Google Brain Google Research Google Research . Feed
avaswani@google.com noam@google.com nikip@google.com usz@google.com - Forward
Llion Jones* Aidan N. Gomez* T Fukasz Kaiser* “.’ Add & Norm

Google Brain
lukaszkaiser@google.com

Google Research
llion@google.com

University of Toronto
aidan@cs.toronto.edu

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Nx Add & Norm

Abstract Multi-Head
The dominant sequence transduction models are based on complex recurrent or goaon
convolutional neural networks that include an encoder and a decoder. The best 1 J -
performing models also connect the encoder and decoder through an attention S pe Cl 'ﬁ C to
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions Positional .
entirely. Experiments on two machine translation tasks show these models to Encoding e . d UtO reg ressive

be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.
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Multi-Head
Attention

Add & Norm
Feed
Forward

modeling

Input
Embedding

Inputs
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lmage-to-text architecture
(autoregressive)

cross—attn

Image Encoder

self—attn.(f{
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causal
self-attn

causal
self-attn

Text Decoder
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