
Lecture 8: Transformers

6.7960 Deep Learning Fall 2024

Speaker: Phillip Isola

https://phillipi.github.io/6.7960

10 CHAPTER 1. TRANSFORMERS

A generally good strategy is to select layers that reflect the symmetries in your data
domain or task: in object detection, translation equivariance makes sense because, roughly,
a bird is a bird no matter where it appears in an image. Permutation equivariance might
also make sense, for that same reason, but only to an extent: if you break up an image into
small patches and scramble them then this could disrupt spatial layout that is important
for recognition. We will see in Section 1.7 how transformers use something called positional
codes to re-insert useful information about spatial layout.

1.6 The full transformer architecture

A full transformer architecture is a stack of self-attention layers interleaved with token-wise
nonlinearities. These two steps are analogous to linear layers interleaved with neuron-wise
nonlinearities in an MLP:

MLP

linear

relu
(neuron-wise)

linear

o

o

f

f

Transformer (vanilla)

self attn

MLP
(token-wise)

self attn

Beyond this basic template, there are many variations that can be added, resulting in
di↵erent particular architectures within the transformer family. Some common additions are
normalization layers and residual connections.

1.6.1 Multihead self-attention

Additionally, it is common to use multihead self-attention, or MSH, which simply con-
sists of running k attention layers in parallel, applied to the same input tin, then concate-
nating all the outputs, and finally projecting back to the original dimensionality of tin:

Z =

0

B@
attn1(tin).zT

...
attnk(tin).zT

1

CA (1.31)

tout.z = WZ / W 2 RM2⇥kM1 (1.32)

W are learnable parameters of this layer (in addition to the query, key, and value projections
parameters for each of the k attention heads), M1 is the dimensionality of the value vectors
and M2 is the dimensionality of the code vectors of the output ([Dosovitskiy et al. 2021]
recommends setting kM1 = M2).

1.6.2 Input and output modules

The transformer also has an input and output module. The input module is the tokenization
layer that converts the input signal into a set of tokens. The output module converts the
transformed tokens into a target prediction or decision. The input and output modules are
specific to the type of input signal and the type of output task.

1

https://phillipi.github.io/6.7960

9. Transformers

• Three key ideas

• Tokens

• Attention

• Positional encoding

• Examples of architectures and applications

2

Don Quixote by Pierre Menard

3

How many birds are in this image?

Is the top right bird the same species
as the bottom left bird?

CNNs are built around the idea of locality, and are not well-suited to
modeling long distance relationships

A Limitation of CNNs

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

4

A Limitation of CNNs

i
i

i
i

i
i

i
i

26 Transformers

26.1 Introduction
Transformers are a recent family of architectures that generalize and expand the ideas
behind convolutional neural nets (CNNs). The term for this family of architectures was
coined by [487], where they were applied to language modeling. Our treatment in this
chapter more closely follows the vision transformers (ViTs) that were introduced in [109].

Like CNNs, transformers factorize the signal processing problem into stages that involve
independent and identically processed chunks.

Transformers were
originally introduced in
the field of natural
language processing,
where they were used to
model language, that is,
sequences of characters
and words. As a result,
some texts present
transformers as an
alternative to recurrent
neural nets (RNNs) for
sequence modeling, but in
fact transformer layers are
parallel processing
machines, like
convolutional layers,
rather than sequential
machines, like recurrent
layers.

However, they also include layers that mix
information across the chunks, called attention layers, so that the full pipeline can model
dependencies between the chunks.

26.2 A Limitation of CNNs: Independence between Far
Apart Patches

CNNs are built around the idea of locality: different local regions of an image can safely be
processed independently. This is what allows us to use filters with small kernels. However,
very often, there is global information that needs to be shared across all receptive fields in
an image. Convolutional layers are not well-suited to globalizing information since the only
way they can do so is by either increasing the kernel size of their filters or stacking layers
to increase the receptive field of neurons on deeper layers. Figure 26.1 shows the inability
of a shallow CNN to compare two input nodes (x1 and x7) that are spatially too far apart:

x1 x7

Figure 26.1: Consider a
2-layer CNN with kernel
size 3, tasked to compare
x1 and x7. It can’t do it:
there are no neurons that
are connected to both x1

and x7.
Hatch marks indicate
which neurons are
connected to x1 and x7

respectively.

How can we efficiently pass messages across large spatial distances? We already have
seen one option: just use a fully connected layer, so that every output neuron after this layer
takes input from every neuron on the layer before. However, fully connected layers have a

Far apart image patches do not interact

5

How many birds are in this image?

The Idea of Attention

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

6

Is the top right bird the same species
as the bottom left bird?

The Idea of Attention

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

7

What’s the color of the sky?

The Idea of Attention

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

8

Three Key Architectural Innovations

1. Tokens

2. Attention

3. Positional Codes

9

New idea #1: tokens

10

A New Data Type: Tokens
• A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons.

array of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit>

array of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3

crop

Wtokenize

o
t2Rd

…

tokens

patches

input

Figure 1.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
D dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

1.4.2 Data Structures and Notation for Working with Tokens

A sequence of tokens will be denoted by a matrix T2RN⇥d, in which each token in the
sequence, t1, …, tN is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (1.1)

Graphically, T is constructed from t1, …, tN like this (figure 1.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 1.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

Note: sometimes the word
“token” is instead used to
refer to the atomic units of
the data sequence we will
model. In this usage tokens
are the representation of the
data only at the input and
output layers. We use a more
general definition where
tokens are the representation
of the data at any layer.

11

A new data structure: Tokens
• A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons.

array of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit>

array of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3

crop

Wtokenize

o
t2Rd

…

tokens

patches

input

Figure 1.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
D dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

1.4.2 Data Structures and Notation for Working with Tokens

A sequence of tokens will be denoted by a matrix T2RN⇥d, in which each token in the
sequence, t1, …, tN is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (1.1)

Graphically, T is constructed from t1, …, tN like this (figure 1.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 1.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

12

A new data structure: Tokens

set of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit>

set of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3

crop

Wtokenize

o
t2Rd

…

tokens

patches

input

Figure 1.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
D dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

1.4.2 Data Structures and Notation for Working with Tokens

A sequence of tokens will be denoted by a matrix T2RN⇥d, in which each token in the
sequence, t1, …, tN is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (1.1)

Graphically, T is constructed from t1, …, tN like this (figure 1.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 1.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

• A token is just a vector of neurons. (note: GNNs also operate over tokens, but over there
we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons.

13

Tokenizing the input data
e.g., linear projection

• When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.g., pixels)

• When operating over tokens, we represent
the input as an array of vector-valued
measurements

i
i

i
i

i
i

i
i

Transformers 369

crop

Wtokenize

o
t2 Rd

…

tokens

patches

input

Figure 26.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
d dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

26.4.2 Data Structures and Notation for Working with Tokens
A sequence of tokens will be denoted by a matrix T2 RN⇥d, in which each token in the
sequence, t1, …, tN , is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (26.1)

Graphically, T is constructed from t1, …, tN like this (figure 26.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 26.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

14

Tokenizing the input data

Three guineafowl.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

byte pairs
<latexit sha1_base64="+Sf3zqHGAo2Kqc7zyjp9ki++ZDQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WPRi8cK9gPbUDbbTbt0swm7EyGE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmljc2t7p7xb2ds/ODyqHp90TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbT27nffeLaiFg9YJZwP6JjJULBKFrpMciQk4QKbYbVmlt3FyDrxCtIDQq0htWvwShmacQVMkmN6Xtugn5ONQom+awySA1PKJvSMe9bqmjEjZ8vLp6RC6uMSBhrWwrJQv09kdPImCwKbGdEcWJWvbn4n9dPMbz2c6GSFLliy0VhKgnGZP4+GQnNGcrMEsq0sLcSNqGaMrQhVWwI3urL66TTqHtu3btv1Jo3RRxlOINzuAQPrqAJd9CCNjBQ8Ayv8OYY58V5dz6WrSWnmDmFP3A+fwCKRZDP</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit> [Th][re] [wl][.]

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

...

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

You can tokenize anything.
General strategy: chop the input up into chunks, project each chunk to a vector.

sound
<latexit sha1_base64="55NdVzHkFl0bC+gNosRoHYa+/sc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkveix68VjBtIU2lM1m0i7dbMLuRiihv8GLB0W8+oO8+W/ctjlo64OFx3szszMvzATXxnW/nY3Nre2d3cpedf/g8Oi4dnLa0WmuGPosFanqhVSj4BJ9w43AXqaQJqHAbji5m/vdJ1Sap/LRTDMMEjqSPOaMGiv5do6MhrW623AXIOvEK0kdSrSHta9BlLI8QWmYoFr3PTczQUGV4UzgrDrINWaUTegI+5ZKmqAOisWyM3JplYjEqbJPGrJQf3cUNNF6moS2MqFmrFe9ufif189NfBMUXGa5QcmWH8W5ICYl88tJxBUyI6aWUKa43ZWwMVWUGZtP1YbgrZ68TjrNhuc2vIdmvXVbxlGBc7iAK/DgGlpwD23wgQGHZ3iFN0c6L86787Es3XDKnjP4A+fzBw4mjtM=</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit>

snippets
<latexit sha1_base64="VMwPDJ1tm9HmaHgdH2KJkvnCQic=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SaBm0sYxgPiA5wt5mL1myt7fuzgkh5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXaSks+v63V9jY3NreKe6W9vYPDo/Kxyctm2aG8SZLZWo6EbVcCsWbKFDyjjacJpHk7Wh8O/fbT9xYkaoHnGgeJnSoRCwYRSd1rBJac7T9csWv+guQdRLkpAI5Gv3yV2+QsizhCpmk1nYDX2M4pQYFk3xW6mWWa8rGdMi7jiqacBtOF/fOyIVTBiROjSuFZKH+npjSxNpJErnOhOLIrnpz8T+vm2F8HU6F0hlyxZaL4kwSTMn8eTIQhjOUE0coM8LdStiIGsrQRVRyIQSrL6+TVq0a+NXgvlap3+RxFOEMzuESAriCOtxBA5rAQMIzvMKb9+i9eO/ex7K14OUzp/AH3ucPfWWQPg==</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit>

i
i

i
i

i
i

i
i

Transformers 369

crop

Wtokenize

o
t2 Rd

…

tokens

patches

input

Figure 26.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
d dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

26.4.2 Data Structures and Notation for Working with Tokens
A sequence of tokens will be denoted by a matrix T2 RN⇥d, in which each token in the
sequence, t1, …, tN , is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (26.1)

Graphically, T is constructed from t1, …, tN like this (figure 26.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 26.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

15

Notation

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3

crop

Wtokenize

o
t2Rd

…

tokens

patches

input

Figure 1.2: Tokeniza-
tion: converting an
image to a set of vectors.
Wtokenize is a learnable
linear projection from
the dimensionality of
the vectorized crops to
D dimensions. This is
just one of many possi-
ble ways to tokenize an
image.

1.4.2 Data Structures and Notation for Working with Tokens

A sequence of tokens will be denoted by a matrix T2RN⇥d, in which each token in the
sequence, t1, …, tN is transposed to become a row of the matrix:

As we will see,
transformers are invariant
to permutations of the
input sequence, so, as far
as transformers are
concerned, groups of
tokens should be thought
of a sets rather than
ordered sequences.

T =

2

64
tT

1
...
tT

N

3

75 (1.1)

Graphically, T is constructed from t1, …, tN like this (figure 1.3):

t1 t2 t3

transpose

tT
1

tT
2

tT
3

T

d channels

N
to

ke
ns

Figure 1.3: In this chap-
ter, we will represent a
set of tokens as a matrix
whose rows are the token
vectors.

The idea of this notation is that tokens are to transformers as neurons are to neural
nets. Neural net layers operate over arrays of neurons; for example, an MLP takes as input
a column vector x, whose rows are scalar neurons. Transformers operate over arrays of
tokens. A matrix T is just a convenient representation of 1D array of vector-value tokens.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We just
need to define how basic
operators, like summation,
operate over these groups
(and, ideally, in a
differentiable manner).

Transformers consist of two main operations over tokens: (1) mixing tokens via a
weighted sum, and (2) modifying each individual token via a nonlinear transformation.
These operations are analogous to the two workhorses of regular neural nets: the linear
layer and the pointwise nonlinearity.

16

Linear combination of tokens

i
i

i
i

i
i

i
i

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

1.4.3 Mixing Tokens

Once we have converted our data to tokens, we now need to define operations for trans-
forming these tokens and eventually making decisions based on them. The first operation
we will define is how to take a linear combination of tokens.

A linear combination of tokens is not the same as a fully connected layer in a neural net.
Instead of taking a weighted sum of scalar neurons, it takes a weighted sum of vector-valued
tokens (figure 1.4):

Figure 1.4: Lin-
ear combination of

neurons versus tokens.

Linear combination of neurons

xin

xout

x1 x2 x3

w1 w2 w3

xout = w1x1 + w2x2 + w3x3

Linear combination of tokens

Tin

tout

t1 t2 t3

w1 w2 w3

tout = w1t1 + w2t2 + w3t3

The general form of these equations for multiple input and output neurons/tokens is:

xout[i] =
NX

j=1

wijxin[j] (1.2)

xout = Wxin / linear combination of neurons (1.3)

Tout[i, :] =
NX

j=1

wijTin[j, :] (1.4)

Tout = WTin / linear combination of tokens (1.5)

As can be seen above, operations over tokens can be defined just like operations over
neurons except that the tokens are vector-valued while the neurons are scalar-valued. Most
layers we have encountered in previous chapters can be defined for tokens in an analogous
way to how they were defined for neurons.

For example, we can define a fully connected layer (fc layer) over token codes as a
mapping from N1 input tokens to N2 output tokens, parameterized by a matrix W 2RN2⇥N1

(and, optionally, by a set of token biases b2RN2⇥d):

Tout = WTin + b / fc layer over tokens (1.6)

Our notation here, which
represents a set of tokens
as a matrix T, transforms
working with tokens into

an exercise in matrix
algebra. However, this

notation is also somewhat
limiting, as it only applies

to vector-valued tokens.
What if we want tokens

that are tensor-valued, or
tokens whose codes are
elements of an abstract

group such as SO(3)?
There is not yet standard

notation for working with
tokens like this. As you
read this chapter, try to

think about how the
operations we define for

standard vector-valued
tokens could be instead

defined for other kinds of
tokens.

1.4.4 Modifying Tokens

Linear combinations only let us linearly mix and recombine tokens, and stacking linear
functions can only result in another linear function. In standard neural nets, we ran into the

i
i

i
i

i
i

i
i

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

1.4.3 Mixing Tokens

Once we have converted our data to tokens, we now need to define operations for trans-
forming these tokens and eventually making decisions based on them. The first operation
we will define is how to take a linear combination of tokens.

A linear combination of tokens is not the same as a fully connected layer in a neural net.
Instead of taking a weighted sum of scalar neurons, it takes a weighted sum of vector-valued
tokens (figure 1.4):

Figure 1.4: Lin-
ear combination of

neurons versus tokens.

Linear combination of neurons

xin

xout

x1 x2 x3

w1 w2 w3

xout = w1x1 + w2x2 + w3x3

Linear combination of tokens

Tin

tout

t1 t2 t3

w1 w2 w3

tout = w1t1 + w2t2 + w3t3

The general form of these equations for multiple input and output neurons/tokens is:

xout[i] =
NX

j=1

wijxin[j] (1.2)

xout = Wxin / linear combination of neurons (1.3)

Tout[i, :] =
NX

j=1

wijTin[j, :] (1.4)

Tout = WTin / linear combination of tokens (1.5)

As can be seen above, operations over tokens can be defined just like operations over
neurons except that the tokens are vector-valued while the neurons are scalar-valued. Most
layers we have encountered in previous chapters can be defined for tokens in an analogous
way to how they were defined for neurons.

For example, we can define a fully connected layer (fc layer) over token codes as a
mapping from N1 input tokens to N2 output tokens, parameterized by a matrix W 2RN2⇥N1

(and, optionally, by a set of token biases b2RN2⇥d):

Tout = WTin + b / fc layer over tokens (1.6)

Our notation here, which
represents a set of tokens
as a matrix T, transforms
working with tokens into

an exercise in matrix
algebra. However, this

notation is also somewhat
limiting, as it only applies

to vector-valued tokens.
What if we want tokens

that are tensor-valued, or
tokens whose codes are
elements of an abstract

group such as SO(3)?
There is not yet standard

notation for working with
tokens like this. As you
read this chapter, try to

think about how the
operations we define for

standard vector-valued
tokens could be instead

defined for other kinds of
tokens.

1.4.4 Modifying Tokens

Linear combinations only let us linearly mix and recombine tokens, and stacking linear
functions can only result in another linear function. In standard neural nets, we ran into the

i
i

i
i

i
i

i
i

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

1.4.3 Mixing Tokens

Once we have converted our data to tokens, we now need to define operations for trans-
forming these tokens and eventually making decisions based on them. The first operation
we will define is how to take a linear combination of tokens.

A linear combination of tokens is not the same as a fully connected layer in a neural net.
Instead of taking a weighted sum of scalar neurons, it takes a weighted sum of vector-valued
tokens (figure 1.4):

Figure 1.4: Lin-
ear combination of

neurons versus tokens.

Linear combination of neurons

xin

xout

x1 x2 x3

w1 w2 w3

xout = w1x1 + w2x2 + w3x3

Linear combination of tokens

Tin

tout

t1 t2 t3

w1 w2 w3

tout = w1t1 + w2t2 + w3t3

The general form of these equations for multiple input and output neurons/tokens is:

xout[i] =
NX

j=1

wijxin[j] (1.2)

xout = Wxin / linear combination of neurons (1.3)

Tout[i, :] =
NX

j=1

wijTin[j, :] (1.4)

Tout = WTin / linear combination of tokens (1.5)

As can be seen above, operations over tokens can be defined just like operations over
neurons except that the tokens are vector-valued while the neurons are scalar-valued. Most
layers we have encountered in previous chapters can be defined for tokens in an analogous
way to how they were defined for neurons.

For example, we can define a fully connected layer (fc layer) over token codes as a
mapping from N1 input tokens to N2 output tokens, parameterized by a matrix W 2RN2⇥N1

(and, optionally, by a set of token biases b2RN2⇥d):

Tout = WTin + b / fc layer over tokens (1.6)

Our notation here, which
represents a set of tokens
as a matrix T, transforms
working with tokens into

an exercise in matrix
algebra. However, this

notation is also somewhat
limiting, as it only applies

to vector-valued tokens.
What if we want tokens

that are tensor-valued, or
tokens whose codes are
elements of an abstract

group such as SO(3)?
There is not yet standard

notation for working with
tokens like this. As you
read this chapter, try to

think about how the
operations we define for

standard vector-valued
tokens could be instead

defined for other kinds of
tokens.

1.4.4 Modifying Tokens

Linear combinations only let us linearly mix and recombine tokens, and stacking linear
functions can only result in another linear function. In standard neural nets, we ran into the

i
i

i
i

i
i

i
i

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

1.4.3 Mixing Tokens

Once we have converted our data to tokens, we now need to define operations for trans-
forming these tokens and eventually making decisions based on them. The first operation
we will define is how to take a linear combination of tokens.

A linear combination of tokens is not the same as a fully connected layer in a neural net.
Instead of taking a weighted sum of scalar neurons, it takes a weighted sum of vector-valued
tokens (figure 1.4):

Figure 1.4: Lin-
ear combination of

neurons versus tokens.

Linear combination of neurons

xin

xout

x1 x2 x3

w1 w2 w3

xout = w1x1 + w2x2 + w3x3

Linear combination of tokens

Tin

tout

t1 t2 t3

w1 w2 w3

tout = w1t1 + w2t2 + w3t3

The general form of these equations for multiple input and output neurons/tokens is:

xout[i] =
NX

j=1

wijxin[j] (1.2)

xout = Wxin / linear combination of neurons (1.3)

Tout[i, :] =
NX

j=1

wijTin[j, :] (1.4)

Tout = WTin / linear combination of tokens (1.5)

As can be seen above, operations over tokens can be defined just like operations over
neurons except that the tokens are vector-valued while the neurons are scalar-valued. Most
layers we have encountered in previous chapters can be defined for tokens in an analogous
way to how they were defined for neurons.

For example, we can define a fully connected layer (fc layer) over token codes as a
mapping from N1 input tokens to N2 output tokens, parameterized by a matrix W 2RN2⇥N1

(and, optionally, by a set of token biases b2RN2⇥d):

Tout = WTin + b / fc layer over tokens (1.6)

Our notation here, which
represents a set of tokens
as a matrix T, transforms
working with tokens into

an exercise in matrix
algebra. However, this

notation is also somewhat
limiting, as it only applies

to vector-valued tokens.
What if we want tokens

that are tensor-valued, or
tokens whose codes are
elements of an abstract

group such as SO(3)?
There is not yet standard

notation for working with
tokens like this. As you
read this chapter, try to

think about how the
operations we define for

standard vector-valued
tokens could be instead

defined for other kinds of
tokens.

1.4.4 Modifying Tokens

Linear combinations only let us linearly mix and recombine tokens, and stacking linear
functions can only result in another linear function. In standard neural nets, we ran into the

17

Token-wise nonlinearity

F is typically an MLP

Equivalent to a CNN with 1x1
kernels run over token sequence

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

same problem with fully-connected and convolutional layers, which, on their own, are inca-
pable of modeling nonlinear functions. To get around this limitation, we added pointwise
nonlinearities to our neural nets. These are functions that apply a nonlinear transforma-
tion to each neuron individually, independently from all other neurons. Analogously, for
networks of tokens we will also introduce “pointwise” operators; these are functions that
apply a nonlinear transformation to each token individually, independently from all other
tokens. Given a nonlinear function F✓ :RN !RN , a tokenwise nonlinearity layer, taking
input Tin, can be expressed as:

Tout =

2

64
F✓(Tin[0, :])

...
F✓(Tin[N – 1, :])

3

75 / per-token nonlinearity (1.7)

Notice that this operation is generalization of the pointwise nonlinearity in regular neural
nets; a relu layer is the special case where F✓ = relu and the layer operates over a set of
neuron inputs (scalars) rather than token inputs (vectors):

xout =

2

64
relu(xin[0])

...
relu(xin[N – 1])

3

75 / per-neuron nonlinearity (relu) (1.8)

The F✓ may be any nonlinear function but some choices will work better than others. One
popular choice is for F✓ to be a multilayer perceptron (MLP); see chapter ??. In this case,
F✓ has learnable parameters ✓, which are the weights and biases of the MLP. This reveals an
important difference between pointwise operations in regular neural nets and in token nets:
relus, and most other neuron-wise nonlinearities, have no learnable parameters, whereas
F✓ typically does. This is one of the interesting things about working with tokens, the
pointwise operations become expressive and parameter-rich.

1.5 Token Nets

We will use the term token nets to refer to computation graphs that use tokens as the pri-
mary nodes, rather than neurons.

Note that the terminology
in this chapter is not
standard. The term token
nets, and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully connected linear layers, convolu-
tional layers, etc.) and layers that apply a pointwise nonlinearity to each node (e.g., relus,
per-token MLPs). Of course, since tokens are simply groups of neurons, every token net
is itself also a neural net, just viewed differently—it is a net of subnets. In figure 1.5, we
show a standard neural net and a token net side by side, to emphasize the similarities in
their operations.

1.6 The Attention Layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
different matrix, which we call the attention matrix A. The important difference between
A and W is that A is data-dependent, that is, the values of A are a function the data input

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

same problem with fully-connected and convolutional layers, which, on their own, are inca-
pable of modeling nonlinear functions. To get around this limitation, we added pointwise
nonlinearities to our neural nets. These are functions that apply a nonlinear transforma-
tion to each neuron individually, independently from all other neurons. Analogously, for
networks of tokens we will also introduce “pointwise” operators; these are functions that
apply a nonlinear transformation to each token individually, independently from all other
tokens. Given a nonlinear function F✓ :RN !RN , a tokenwise nonlinearity layer, taking
input Tin, can be expressed as:

Tout =

2

64
F✓(Tin[0, :])

...
F✓(Tin[N – 1, :])

3

75 / per-token nonlinearity (1.7)

Notice that this operation is generalization of the pointwise nonlinearity in regular neural
nets; a relu layer is the special case where F✓ = relu and the layer operates over a set of
neuron inputs (scalars) rather than token inputs (vectors):

xout =

2

64
relu(xin[0])

...
relu(xin[N – 1])

3

75 / per-neuron nonlinearity (relu) (1.8)

The F✓ may be any nonlinear function but some choices will work better than others. One
popular choice is for F✓ to be a multilayer perceptron (MLP); see chapter ??. In this case,
F✓ has learnable parameters ✓, which are the weights and biases of the MLP. This reveals an
important difference between pointwise operations in regular neural nets and in token nets:
relus, and most other neuron-wise nonlinearities, have no learnable parameters, whereas
F✓ typically does. This is one of the interesting things about working with tokens, the
pointwise operations become expressive and parameter-rich.

1.5 Token Nets

We will use the term token nets to refer to computation graphs that use tokens as the pri-
mary nodes, rather than neurons.

Note that the terminology
in this chapter is not
standard. The term token
nets, and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully connected linear layers, convolu-
tional layers, etc.) and layers that apply a pointwise nonlinearity to each node (e.g., relus,
per-token MLPs). Of course, since tokens are simply groups of neurons, every token net
is itself also a neural net, just viewed differently—it is a net of subnets. In figure 1.5, we
show a standard neural net and a token net side by side, to emphasize the similarities in
their operations.

1.6 The Attention Layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
different matrix, which we call the attention matrix A. The important difference between
A and W is that A is data-dependent, that is, the values of A are a function the data input

18

Token-wise nonlinearity

F✓
<latexit sha1_base64="um61rPmPHdwSl/+/QA0VWgLUwUI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LEoiMcKthbbUjbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw5HnfTmFldW19o7hZ2tre2d0r7x80TZxqjg0ey1i3AmZQCoUNEiSxlWhkUSDxIRhdT/2HJ9RGxOqexgl2IzZQIhSckZUeb3pZh4ZIbNIrV7yqN4O7TPycVCBHvVf+6vRjnkaoiEtmTNv3EupmTJPgEielTmowYXzEBti2VLEITTebXTxxT6zSd8NY21LkztTfExmLjBlHge2MGA3NojcV//PaKYWX3UyoJCVUfL4oTKVLsTt93+0LjZzk2BLGtbC3unzINONkQyrZEPzFl5dJ86zqe1X/7rxSu8rjKMIRHMMp+HABNbiFOjSAg4JneIU3xzgvzrvzMW8tOPnMIfyB8/kDtRmQ7Q==</latexit><latexit sha1_base64="4NulWlVbCeg2+Dif57dg4RwCLWI=">AAACFnicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBkUxFLBPDBZwuxkNhkyO7vM3BXCkr+wsPFXbERsxc6/cZJsoYmFBwYO55zLnXuCRAqDrvvlFJaWV1bXiuuljc2t7Z3y7l7DxKlmvM5iGetWQA2XQvE6CpS8lWhOo0DyZjC8nPjNB66NiNUdjhLuR7SvRCgYRSvdX3WzDg440nG3XHGr7hRkkXg5qUCO/8W75c9OL2ZpxBUySY1pe26CfkY1Cib5uNRJDU8oG9I+b1uqaMSNn03PGpMjq/RIGGv7FJKp+nMio5ExoyiwyYjiwMx7E/Evr51ieO5nQiUpcsVmi8JUEozJpCPSE5ozlCNLKNPC/pWwAdWUoW2yZE/35g9dJI2TqudWvdvTSu0i76wIB3AIx+DBGdTgGm6gDgwUPMIzvDpPzovz5rzPogUnn9mHX3A+vgGiBZhm</latexit><latexit sha1_base64="4NulWlVbCeg2+Dif57dg4RwCLWI=">AAACFnicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBkUxFLBPDBZwuxkNhkyO7vM3BXCkr+wsPFXbERsxc6/cZJsoYmFBwYO55zLnXuCRAqDrvvlFJaWV1bXiuuljc2t7Z3y7l7DxKlmvM5iGetWQA2XQvE6CpS8lWhOo0DyZjC8nPjNB66NiNUdjhLuR7SvRCgYRSvdX3WzDg440nG3XHGr7hRkkXg5qUCO/8W75c9OL2ZpxBUySY1pe26CfkY1Cib5uNRJDU8oG9I+b1uqaMSNn03PGpMjq/RIGGv7FJKp+nMio5ExoyiwyYjiwMx7E/Evr51ieO5nQiUpcsVmi8JUEozJpCPSE5ozlCNLKNPC/pWwAdWUoW2yZE/35g9dJI2TqudWvdvTSu0i76wIB3AIx+DBGdTgGm6gDgwUPMIzvDpPzovz5rzPogUnn9mHX3A+vgGiBZhm</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="NilUTz7C6pktkKvy/vfnPqGo834=">AAAB5nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhSEMRlBduK7VAy6Z02NJMZkjtCGfoWblwo4iO5821MfxbaeiDwcU5C7j1RpqQl3//2ShubW9s75d3KXnX/4LB2VG3bNDcCWyJVqXmMuEUlNbZIksLHzCBPIoWdaHwzyzvPaKxM9QNNMgwTPtQyloKTs55u+0WPRkh82q/V/YY/F1uHYAl1WKrZr331BqnIE9QkFLe2G/gZhQU3JIXCaaWXW8y4GPMhdh1qnqANi/nEU3bmnAGLU+OOJjZ3f78oeGLtJInczYTTyK5mM/O/rJtTfBUWUmc5oRaLj+JcMUrZbH02kAYFqYkDLox0szIx4oYLciVVXAnB6srr0L5oBH4juPehDCdwCucQwCVcwx00oQUCNLzAG7x71nv1PhZ1lbxlb8fwR97nD3a2j5E=</latexit><latexit sha1_base64="NilUTz7C6pktkKvy/vfnPqGo834=">AAAB5nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhSEMRlBduK7VAy6Z02NJMZkjtCGfoWblwo4iO5821MfxbaeiDwcU5C7j1RpqQl3//2ShubW9s75d3KXnX/4LB2VG3bNDcCWyJVqXmMuEUlNbZIksLHzCBPIoWdaHwzyzvPaKxM9QNNMgwTPtQyloKTs55u+0WPRkh82q/V/YY/F1uHYAl1WKrZr331BqnIE9QkFLe2G/gZhQU3JIXCaaWXW8y4GPMhdh1qnqANi/nEU3bmnAGLU+OOJjZ3f78oeGLtJInczYTTyK5mM/O/rJtTfBUWUmc5oRaLj+JcMUrZbH02kAYFqYkDLox0szIx4oYLciVVXAnB6srr0L5oBH4juPehDCdwCucQwCVcwx00oQUCNLzAG7x71nv1PhZ1lbxlb8fwR97nD3a2j5E=</latexit><latexit sha1_base64="yS+qtiOoHmENP51U2yKEqB0NpPs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRe9FgUxGMF+4FtKJvttF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJlIY8rxvp7C2vrG5Vdwu7ezu7R+UD4+aJk41xwaPZazbITMohcIGCZLYTjSyKJTYCsc3M7/1hNqIWD3QJMEgYkMlBoIzstLjbS/r0giJTXvlilf15nBXiZ+TCuSo98pf3X7M0wgVccmM6fheQkHGNAkucVrqpgYTxsdsiB1LFYvQBNn84ql7ZpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uAqyIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSCUbgr/88ippXlR9r+rfe5XadR5HEU7gFM7Bh0uowR3UoQEcFDzDK7w5xnlx3p2PRWvByWeO4Q+czx+z2ZDp</latexit><latexit sha1_base64="um61rPmPHdwSl/+/QA0VWgLUwUI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LEoiMcKthbbUjbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw5HnfTmFldW19o7hZ2tre2d0r7x80TZxqjg0ey1i3AmZQCoUNEiSxlWhkUSDxIRhdT/2HJ9RGxOqexgl2IzZQIhSckZUeb3pZh4ZIbNIrV7yqN4O7TPycVCBHvVf+6vRjnkaoiEtmTNv3EupmTJPgEielTmowYXzEBti2VLEITTebXTxxT6zSd8NY21LkztTfExmLjBlHge2MGA3NojcV//PaKYWX3UyoJCVUfL4oTKVLsTt93+0LjZzk2BLGtbC3unzINONkQyrZEPzFl5dJ86zqe1X/7rxSu8rjKMIRHMMp+HABNbiFOjSAg4JneIU3xzgvzrvzMW8tOPnMIfyB8/kDtRmQ7Q==</latexit><latexit sha1_base64="um61rPmPHdwSl/+/QA0VWgLUwUI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LEoiMcKthbbUjbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw5HnfTmFldW19o7hZ2tre2d0r7x80TZxqjg0ey1i3AmZQCoUNEiSxlWhkUSDxIRhdT/2HJ9RGxOqexgl2IzZQIhSckZUeb3pZh4ZIbNIrV7yqN4O7TPycVCBHvVf+6vRjnkaoiEtmTNv3EupmTJPgEielTmowYXzEBti2VLEITTebXTxxT6zSd8NY21LkztTfExmLjBlHge2MGA3NojcV//PaKYWX3UyoJCVUfL4oTKVLsTt93+0LjZzk2BLGtbC3unzINONkQyrZEPzFl5dJ86zqe1X/7rxSu8rjKMIRHMMp+HABNbiFOjSAg4JneIU3xzgvzrvzMW8tOPnMIfyB8/kDtRmQ7Q==</latexit><latexit sha1_base64="um61rPmPHdwSl/+/QA0VWgLUwUI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LEoiMcKthbbUjbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw5HnfTmFldW19o7hZ2tre2d0r7x80TZxqjg0ey1i3AmZQCoUNEiSxlWhkUSDxIRhdT/2HJ9RGxOqexgl2IzZQIhSckZUeb3pZh4ZIbNIrV7yqN4O7TPycVCBHvVf+6vRjnkaoiEtmTNv3EupmTJPgEielTmowYXzEBti2VLEITTebXTxxT6zSd8NY21LkztTfExmLjBlHge2MGA3NojcV//PaKYWX3UyoJCVUfL4oTKVLsTt93+0LjZzk2BLGtbC3unzINONkQyrZEPzFl5dJ86zqe1X/7rxSu8rjKMIRHMMp+HABNbiFOjSAg4JneIU3xzgvzrvzMW8tOPnMIfyB8/kDtRmQ7Q==</latexit><latexit sha1_base64="a/q7+fcqiuW6hynSnwHeEnwCaDg=">AAAB+nicbVBNS8NAEJ3Ur1q/qh69BIvgKSQi6LEoiCdRtB/ahrLZbtqlm03YnQgl9l949eJFxKu/xJv/xm2bg7Y+GHi8N8PMvCARXKPrfluFhcWl5ZXiamltfWNzq7y9U9dxqiir0VjEqhkQzQSXrIYcBWsmipEoEKwRDM7HfuORKc1jeYfDhPkR6UkeckrQSA8XnayNfYZk1ClXXMedwJ4nXk4qkOP+6tbRqLjsdcpf7W5M04hJpIJo3fLcBP2MKORUsFGpnWqWEDogPdYyVJKIaT+bnD6yD4zStcNYmZJoT9TfExmJtB5GgemMCPb1rDcW//NaKYanfsZlkiKTdLooTIWNsT3Owe5yxSiKoSGEKm5utWmfKELRpFUyaXizv8+T+pHjuY53c1ypnuW5FGEP9uEQPDiBKlzCNdSAgoRneIE368l6td6tj2lrwcpnduEPrM8f8lOUkg==</latexit><latexit sha1_base64="a/q7+fcqiuW6hynSnwHeEnwCaDg=">AAAB+nicbVBNS8NAEJ3Ur1q/qh69BIvgKSQi6LEoiCdRtB/ahrLZbtqlm03YnQgl9l949eJFxKu/xJv/xm2bg7Y+GHi8N8PMvCARXKPrfluFhcWl5ZXiamltfWNzq7y9U9dxqiir0VjEqhkQzQSXrIYcBWsmipEoEKwRDM7HfuORKc1jeYfDhPkR6UkeckrQSA8XnayNfYZk1ClXXMedwJ4nXk4qkOP+6tbRqLjsdcpf7W5M04hJpIJo3fLcBP2MKORUsFGpnWqWEDogPdYyVJKIaT+bnD6yD4zStcNYmZJoT9TfExmJtB5GgemMCPb1rDcW//NaKYanfsZlkiKTdLooTIWNsT3Owe5yxSiKoSGEKm5utWmfKELRpFUyaXizv8+T+pHjuY53c1ypnuW5FGEP9uEQPDiBKlzCNdSAgoRneIE368l6td6tj2lrwcpnduEPrM8f8lOUkg==</latexit><latexit sha1_base64="a/q7+fcqiuW6hynSnwHeEnwCaDg=">AAAB+nicbVBNS8NAEJ3Ur1q/qh69BIvgKSQi6LEoiCdRtB/ahrLZbtqlm03YnQgl9l949eJFxKu/xJv/xm2bg7Y+GHi8N8PMvCARXKPrfluFhcWl5ZXiamltfWNzq7y9U9dxqiir0VjEqhkQzQSXrIYcBWsmipEoEKwRDM7HfuORKc1jeYfDhPkR6UkeckrQSA8XnayNfYZk1ClXXMedwJ4nXk4qkOP+6tbRqLjsdcpf7W5M04hJpIJo3fLcBP2MKORUsFGpnWqWEDogPdYyVJKIaT+bnD6yD4zStcNYmZJoT9TfExmJtB5GgemMCPb1rDcW//NaKYanfsZlkiKTdLooTIWNsT3Owe5yxSiKoSGEKm5utWmfKELRpFUyaXizv8+T+pHjuY53c1ypnuW5FGEP9uEQPDiBKlzCNdSAgoRneIE368l6td6tj2lrwcpnduEPrM8f8lOUkg==</latexit>

tokens

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

same problem with fully-connected and convolutional layers, which, on their own, are inca-
pable of modeling nonlinear functions. To get around this limitation, we added pointwise
nonlinearities to our neural nets. These are functions that apply a nonlinear transforma-
tion to each neuron individually, independently from all other neurons. Analogously, for
networks of tokens we will also introduce “pointwise” operators; these are functions that
apply a nonlinear transformation to each token individually, independently from all other
tokens. Given a nonlinear function F✓ :RN !RN , a tokenwise nonlinearity layer, taking
input Tin, can be expressed as:

Tout =

2

64
F✓(Tin[0, :])

...
F✓(Tin[N – 1, :])

3

75 / per-token nonlinearity (1.7)

Notice that this operation is generalization of the pointwise nonlinearity in regular neural
nets; a relu layer is the special case where F✓ = relu and the layer operates over a set of
neuron inputs (scalars) rather than token inputs (vectors):

xout =

2

64
relu(xin[0])

...
relu(xin[N – 1])

3

75 / per-neuron nonlinearity (relu) (1.8)

The F✓ may be any nonlinear function but some choices will work better than others. One
popular choice is for F✓ to be a multilayer perceptron (MLP); see chapter ??. In this case,
F✓ has learnable parameters ✓, which are the weights and biases of the MLP. This reveals an
important difference between pointwise operations in regular neural nets and in token nets:
relus, and most other neuron-wise nonlinearities, have no learnable parameters, whereas
F✓ typically does. This is one of the interesting things about working with tokens, the
pointwise operations become expressive and parameter-rich.

1.5 Token Nets

We will use the term token nets to refer to computation graphs that use tokens as the pri-
mary nodes, rather than neurons.

Note that the terminology
in this chapter is not
standard. The term token
nets, and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully connected linear layers, convolu-
tional layers, etc.) and layers that apply a pointwise nonlinearity to each node (e.g., relus,
per-token MLPs). Of course, since tokens are simply groups of neurons, every token net
is itself also a neural net, just viewed differently—it is a net of subnets. In figure 1.5, we
show a standard neural net and a token net side by side, to emphasize the similarities in
their operations.

1.6 The Attention Layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
different matrix, which we call the attention matrix A. The important difference between
A and W is that A is data-dependent, that is, the values of A are a function the data input

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

same problem with fully-connected and convolutional layers, which, on their own, are inca-
pable of modeling nonlinear functions. To get around this limitation, we added pointwise
nonlinearities to our neural nets. These are functions that apply a nonlinear transforma-
tion to each neuron individually, independently from all other neurons. Analogously, for
networks of tokens we will also introduce “pointwise” operators; these are functions that
apply a nonlinear transformation to each token individually, independently from all other
tokens. Given a nonlinear function F✓ :RN !RN , a tokenwise nonlinearity layer, taking
input Tin, can be expressed as:

Tout =

2

64
F✓(Tin[0, :])

...
F✓(Tin[N – 1, :])

3

75 / per-token nonlinearity (1.7)

Notice that this operation is generalization of the pointwise nonlinearity in regular neural
nets; a relu layer is the special case where F✓ = relu and the layer operates over a set of
neuron inputs (scalars) rather than token inputs (vectors):

xout =

2

64
relu(xin[0])

...
relu(xin[N – 1])

3

75 / per-neuron nonlinearity (relu) (1.8)

The F✓ may be any nonlinear function but some choices will work better than others. One
popular choice is for F✓ to be a multilayer perceptron (MLP); see chapter ??. In this case,
F✓ has learnable parameters ✓, which are the weights and biases of the MLP. This reveals an
important difference between pointwise operations in regular neural nets and in token nets:
relus, and most other neuron-wise nonlinearities, have no learnable parameters, whereas
F✓ typically does. This is one of the interesting things about working with tokens, the
pointwise operations become expressive and parameter-rich.

1.5 Token Nets

We will use the term token nets to refer to computation graphs that use tokens as the pri-
mary nodes, rather than neurons.

Note that the terminology
in this chapter is not
standard. The term token
nets, and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully connected linear layers, convolu-
tional layers, etc.) and layers that apply a pointwise nonlinearity to each node (e.g., relus,
per-token MLPs). Of course, since tokens are simply groups of neurons, every token net
is itself also a neural net, just viewed differently—it is a net of subnets. In figure 1.5, we
show a standard neural net and a token net side by side, to emphasize the similarities in
their operations.

1.6 The Attention Layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
different matrix, which we call the attention matrix A. The important difference between
A and W is that A is data-dependent, that is, the values of A are a function the data input

19

Token nets

1.4. TOKEN NETS 5

1.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

1.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A

and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A

f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (1.16)

Zout = AZin (1.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

20

Token nets

1.4. TOKEN NETS 5

1.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

1.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A

and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A

f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (1.16)

Zout = AZin (1.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

21

1.4. TOKEN NETS 5

1.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

1.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A

and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A

f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (1.16)

Zout = AZin (1.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

GNN
<latexit sha1_base64="DJrrsRx/ZbxSjm4zeJPqXp6e54w=">AAAB83icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYMWWoUI5gNyIext9pIle3vH7pwYjvwNGwtFbP0zdv4bN8kVmvhg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDPz249cGxGrB5wkvBfRoRKhYBSt5PvInzAIs9t6fdovld2KOwdZJV5OypCj0S99+YOYpRFXyCQ1puu5CfYyqlEwyadFPzU8oWxMh7xrqaIRN71sfvOUnFtlQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMOrXiZUkiJXbLEoTCXBmMwCIAOhOUM5sYQyLeythI2opgxtTEUbgrf88ippVSueW/Huq+XadR5HAU7hDC7Ag0uowR00oAkMEniGV3hzUufFeXc+Fq1rTj5zAn/gfP4AGnSRtA==</latexit><latexit sha1_base64="P+14qgiHqVBONjjjwstPOXfLo0s=">AAACGHicjVC7SgNBFL0bXzG+opY2i0GwCrtptAxaaBUUzAOyS5idzCZDZmeXmbtiWPIbFjb+io2IbTr/xkmyhSYWHhg4nHMud+4JEsE1Os6XVVhb39jcKm6Xdnb39g/Kh0ctHaeKsiaNRaw6AdFMcMmayFGwTqIYiQLB2sHoeua3H5nSPJYPOE6YH5GB5CGnBI3kecieMAizm0Zj0itXnKozh71K3JxUIMf/4r3y1OvHNI2YRCqI1l3XSdDPiEJOBZuUvFSzhNARGbCuoZJETPvZ/LCJfWaUvh3GyjyJ9lz9OZGRSOtxFJhkRHCol72Z+JfXTTG89DMukxSZpItFYSpsjO1ZS3afK0ZRjA0hVHHzV5sOiSIUTZclc7q7fOgqadWqrlN172uV+lXeWRFO4BTOwYULqMMt3EETKCTwDK/wbr1Yb9aH9bmIFqx85hh+wZp+AyHTmS0=</latexit><latexit sha1_base64="P+14qgiHqVBONjjjwstPOXfLo0s=">AAACGHicjVC7SgNBFL0bXzG+opY2i0GwCrtptAxaaBUUzAOyS5idzCZDZmeXmbtiWPIbFjb+io2IbTr/xkmyhSYWHhg4nHMud+4JEsE1Os6XVVhb39jcKm6Xdnb39g/Kh0ctHaeKsiaNRaw6AdFMcMmayFGwTqIYiQLB2sHoeua3H5nSPJYPOE6YH5GB5CGnBI3kecieMAizm0Zj0itXnKozh71K3JxUIMf/4r3y1OvHNI2YRCqI1l3XSdDPiEJOBZuUvFSzhNARGbCuoZJETPvZ/LCJfWaUvh3GyjyJ9lz9OZGRSOtxFJhkRHCol72Z+JfXTTG89DMukxSZpItFYSpsjO1ZS3afK0ZRjA0hVHHzV5sOiSIUTZclc7q7fOgqadWqrlN172uV+lXeWRFO4BTOwYULqMMt3EETKCTwDK/wbr1Yb9aH9bmIFqx85hh+wZp+AyHTmS0=</latexit><latexit sha1_base64="P+14qgiHqVBONjjjwstPOXfLo0s=">AAACGHicjVC7SgNBFL0bXzG+opY2i0GwCrtptAxaaBUUzAOyS5idzCZDZmeXmbtiWPIbFjb+io2IbTr/xkmyhSYWHhg4nHMud+4JEsE1Os6XVVhb39jcKm6Xdnb39g/Kh0ctHaeKsiaNRaw6AdFMcMmayFGwTqIYiQLB2sHoeua3H5nSPJYPOE6YH5GB5CGnBI3kecieMAizm0Zj0itXnKozh71K3JxUIMf/4r3y1OvHNI2YRCqI1l3XSdDPiEJOBZuUvFSzhNARGbCuoZJETPvZ/LCJfWaUvh3GyjyJ9lz9OZGRSOtxFJhkRHCol72Z+JfXTTG89DMukxSZpItFYSpsjO1ZS3afK0ZRjA0hVHHzV5sOiSIUTZclc7q7fOgqadWqrlN172uV+lXeWRFO4BTOwYULqMMt3EETKCTwDK/wbr1Yb9aH9bmIFqx85hh+wZp+AyHTmS0=</latexit>

AGGREGATE
<latexit sha1_base64="q28pG2hmzvmJ7hvFX0O0w0DW1to=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmLiiexy0SNoCB7R8GVgQ7qlCw1td9N2TQjhV3jxoDFe/Tne/DcW2IOCL5nk5b2ZzMwLYs60cd1vJ7OxubW9k93N7e0fHB7lj09aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfj27nffqJKs0g2zCSmvsBDyUJGsLHSY6VWe6jWKo1qP19wi+4CaJ14KSlAino//9UbRCQRVBrCsdZdz42NP8XKMMLpLNdLNI0xGeMh7VoqsaDany4OnqELqwxQGClb0qCF+ntiioXWExHYToHNSK96c/E/r5uY8NqfMhknhkqyXBQmHJkIzb9HA6YoMXxiCSaK2VsRGWGFibEZ5WwI3urL66RVKnpu0bsvFco3aRxZOINzuAQPrqAMd1CHJhAQ8Ayv8OYo58V5dz6WrRknnTmFP3A+fwA19I9Z</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit>

COMBINE
<latexit sha1_base64="bViO6R5qPPIW9uklYljepOlOB+0=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9ntRY+lRdCDWsF+QLuUbJptQ7PZkGSFsvRHePGgiFd/jzf/jWm7B219MPB4b4aZeYHkTBvX/XZya+sbm1v57cLO7t7+QfHwqKXjRBHaJDGPVSfAmnImaNMww2lHKoqjgNN2MK7P/PYTVZrF4tFMJPUjPBQsZAQbK7Xr97e1m7urfrHklt050CrxMlKCDI1+8as3iEkSUWEIx1p3PVcaP8XKMMLptNBLNJWYjPGQdi0VOKLaT+fnTtGZVQYojJUtYdBc/T2R4kjrSRTYzgibkV72ZuJ/Xjcx4aWfMiETQwVZLAoTjkyMZr+jAVOUGD6xBBPF7K2IjLDCxNiECjYEb/nlVdKqlD237D1UStVaFkceTuAUzsGDC6jCNTSgCQTG8Ayv8OZI58V5dz4WrTknmzmGP3A+fwAW1o67</latexit><latexit sha1_base64="6lckfGZPhU+OYulg8mqW7f1qVGs=">AAACE3icjVC7SgNBFL3rM8ZX1NJmMAhWYTeNliFB0MIXmAckS5idzCZDZmaXmVkhLPkICxt/xUbE1sbOv3GSbKGJhQcGDuecy517gpgzbVz3y1laXlldW89t5De3tnd2C3v7DR0litA6iXikWgHWlDNJ64YZTluxolgEnDaDYW3iNx+o0iyS92YUU1/gvmQhI9hYqVm7uapeXp93C0W35E6BFomXkSJk+F+8W/js9CKSCCoN4VjrtufGxk+xMoxwOs53Ek1jTIa4T9uWSiyo9tPpTWN0bJUeCiNlnzRoqv6cSLHQeiQCmxTYDPS8NxH/8tqJCc/8lMk4MVSS2aIw4chEaFIQ6jFFieEjSzBRzP4VkQFWmBhbY96e7s0fukga5ZLnlry7crFSzTrLwSEcwQl4cAoVuIBbqAOBITzCM7w6T86L8+a8z6JLTjZzAL/gfHwDtqqWNA==</latexit><latexit sha1_base64="6lckfGZPhU+OYulg8mqW7f1qVGs=">AAACE3icjVC7SgNBFL3rM8ZX1NJmMAhWYTeNliFB0MIXmAckS5idzCZDZmaXmVkhLPkICxt/xUbE1sbOv3GSbKGJhQcGDuecy517gpgzbVz3y1laXlldW89t5De3tnd2C3v7DR0litA6iXikWgHWlDNJ64YZTluxolgEnDaDYW3iNx+o0iyS92YUU1/gvmQhI9hYqVm7uapeXp93C0W35E6BFomXkSJk+F+8W/js9CKSCCoN4VjrtufGxk+xMoxwOs53Ek1jTIa4T9uWSiyo9tPpTWN0bJUeCiNlnzRoqv6cSLHQeiQCmxTYDPS8NxH/8tqJCc/8lMk4MVSS2aIw4chEaFIQ6jFFieEjSzBRzP4VkQFWmBhbY96e7s0fukga5ZLnlry7crFSzTrLwSEcwQl4cAoVuIBbqAOBITzCM7w6T86L8+a8z6JLTjZzAL/gfHwDtqqWNA==</latexit><latexit sha1_base64="6lckfGZPhU+OYulg8mqW7f1qVGs=">AAACE3icjVC7SgNBFL3rM8ZX1NJmMAhWYTeNliFB0MIXmAckS5idzCZDZmaXmVkhLPkICxt/xUbE1sbOv3GSbKGJhQcGDuecy517gpgzbVz3y1laXlldW89t5De3tnd2C3v7DR0litA6iXikWgHWlDNJ64YZTluxolgEnDaDYW3iNx+o0iyS92YUU1/gvmQhI9hYqVm7uapeXp93C0W35E6BFomXkSJk+F+8W/js9CKSCCoN4VjrtufGxk+xMoxwOs53Ek1jTIa4T9uWSiyo9tPpTWN0bJUeCiNlnzRoqv6cSLHQeiQCmxTYDPS8NxH/8tqJCc/8lMk4MVSS2aIw4chEaFIQ6jFFieEjSzBRzP4VkQFWmBhbY96e7s0fukga5ZLnlry7crFSzTrLwSEcwQl4cAoVuIBbqAOBITzCM7w6T86L8+a8z6JLTjZzAL/gfHwDtqqWNA==</latexit>

AGGREGATE
<latexit sha1_base64="q28pG2hmzvmJ7hvFX0O0w0DW1to=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmLiiexy0SNoCB7R8GVgQ7qlCw1td9N2TQjhV3jxoDFe/Tne/DcW2IOCL5nk5b2ZzMwLYs60cd1vJ7OxubW9k93N7e0fHB7lj09aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfj27nffqJKs0g2zCSmvsBDyUJGsLHSY6VWe6jWKo1qP19wi+4CaJ14KSlAino//9UbRCQRVBrCsdZdz42NP8XKMMLpLNdLNI0xGeMh7VoqsaDany4OnqELqwxQGClb0qCF+ntiioXWExHYToHNSK96c/E/r5uY8NqfMhknhkqyXBQmHJkIzb9HA6YoMXxiCSaK2VsRGWGFibEZ5WwI3urL66RVKnpu0bsvFco3aRxZOINzuAQPrqAMd1CHJhAQ8Ayv8OYo58V5dz6WrRknnTmFP3A+fwA19I9Z</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit><latexit sha1_base64="uPTxfhX6kU40pSqUsB3vgBJDxfw=">AAACFXicjVDLSgMxFL3js9ZX1aWbYBFclZludNkqpS5V+pJ2KJk0bUOTzJBkhDL0K1y48VfciLgV3Pk3pu0stHXhgcDhnHO5uSeIONPGdb+cldW19Y3NzFZ2e2d3bz93cNjQYawIrZOQh6oVYE05k7RumOG0FSmKRcBpMxhdTf3mA1WahbJmxhH1BR5I1mcEGyvdl6vVu0q1XKt0c3m34M6AlomXkjyk+F+8m/vs9EISCyoN4VjrtudGxk+wMoxwOsl2Yk0jTEZ4QNuWSiyo9pPZVRN0apUe6ofKPmnQTP05kWCh9VgENimwGepFbyr+5bVj07/wEyaj2FBJ5ov6MUcmRNOKUI8pSgwfW4KJYvaviAyxwsTYIrP2dG/x0GXSKBY8t+DdFvOly7SzDBzDCZyBB+dQgmu4gToQEPAIz/DqPDkvzpvzPo+uOOnMEfyC8/EN6gSW0g==</latexit>

may be
shared
weights

1.4. TOKEN NETS 5

1.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

1.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A

and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A

f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (1.16)

Zout = AZin (1.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

22

GNNs unrolled

UPDATE(1)
<latexit sha1_base64="I4qsSmXmUuQHd5lNONKlUnZe98w=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiQi6LK+wGWFpi20sUymk3bo5MHMjVhC/BU3LhRx64e482+ctllo64ELh3Pu5d57vFhwBZb1bSwtr6yurRc2iptb2zu75t5+U0WJpMyhkYhk2yOKCR4yBzgI1o4lI4EnWMsbXU381gOTikdhA8YxcwMyCLnPKQEt9cxSF9gjpE79+qJxk92nFfs465llq2pNgReJnZMyylHvmV/dfkSTgIVABVGqY1sxuCmRwKlgWbGbKBYTOiID1tE0JAFTbjo9PsNHWuljP5K6QsBT9fdESgKlxoGnOwMCQzXvTcT/vE4C/rmb8jBOgIV0tshPBIYIT5LAfS4ZBTHWhFDJ9a2YDokkFHReRR2CPf/yImmeVG2rat+dlmuXeRwFdIAOUQXZ6AzV0C2qIwdRNEbP6BW9GU/Gi/FufMxal4x8poT+wPj8AawFlB0=</latexit><latexit sha1_base64="dewkFQeq5NlF4sVVPvXL32Vslr0=">AAACIXicjVDLSsNAFJ3UV62vaJdugkWom5KIoMv6ApcVmrbQxjKZTtqhkwczN2II+RYXbvwVNyLdiT/jtM1CWxceGDiccy537nEjziSY5qdWWFldW98obpa2tnd29/T9g5YMY0GoTUIeio6LJeUsoDYw4LQTCYp9l9O2O76e+u1HKiQLgyYkEXV8PAyYxwgGJfX1cg/oE6R24+ayeZs9pFXrJOvrFbNmzmAsEysnFZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNSr1Y0giTMR7SrqIB9ql00tmFmXGslIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSS+p0a/HQZdI6rVlmzbo/q9Sv8s6K6BAdoSqy0DmqozvUQDYiKEHP6BW9ay/am/ahTebRgpbPlNEvaF/fAKGblg==</latexit><latexit sha1_base64="dewkFQeq5NlF4sVVPvXL32Vslr0=">AAACIXicjVDLSsNAFJ3UV62vaJdugkWom5KIoMv6ApcVmrbQxjKZTtqhkwczN2II+RYXbvwVNyLdiT/jtM1CWxceGDiccy537nEjziSY5qdWWFldW98obpa2tnd29/T9g5YMY0GoTUIeio6LJeUsoDYw4LQTCYp9l9O2O76e+u1HKiQLgyYkEXV8PAyYxwgGJfX1cg/oE6R24+ayeZs9pFXrJOvrFbNmzmAsEysnFZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNSr1Y0giTMR7SrqIB9ql00tmFmXGslIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSS+p0a/HQZdI6rVlmzbo/q9Sv8s6K6BAdoSqy0DmqozvUQDYiKEHP6BW9ay/am/ahTebRgpbPlNEvaF/fAKGblg==</latexit><latexit sha1_base64="dewkFQeq5NlF4sVVPvXL32Vslr0=">AAACIXicjVDLSsNAFJ3UV62vaJdugkWom5KIoMv6ApcVmrbQxjKZTtqhkwczN2II+RYXbvwVNyLdiT/jtM1CWxceGDiccy537nEjziSY5qdWWFldW98obpa2tnd29/T9g5YMY0GoTUIeio6LJeUsoDYw4LQTCYp9l9O2O76e+u1HKiQLgyYkEXV8PAyYxwgGJfX1cg/oE6R24+ayeZs9pFXrJOvrFbNmzmAsEysnFZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNSr1Y0giTMR7SrqIB9ql00tmFmXGslIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSS+p0a/HQZdI6rVlmzbo/q9Sv8s6K6BAdoSqy0DmqozvUQDYiKEHP6BW9ay/am/ahTebRgpbPlNEvaF/fAKGblg==</latexit>

AGGREGATE(1)
<latexit sha1_base64="91aurg0Lf74Ktb1RsL5s4vigRxc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIdVMSEXTZKqUuq/QFbSyT6aQdOnkwcyOWmIW/4saFIm79DXf+jdM2C209cOFwzr3ce48TcibBNL+1zNLyyupadj23sbm1vaPv7jVlEAlCGyTggWg7WFLOfNoABpy2Q0Gx53DackZXE791T4VkgV+HcUhtDw985jKCQUk9/aAL9AHicrV6W6mW65XkLi5YJ0lPz5tFcwpjkVgpyaMUtZ7+1e0HJPKoD4RjKTuWGYIdYwGMcJrkupGkISYjPKAdRX3sUWnH0/sT41gpfcMNhCofjKn6eyLGnpRjz1GdHoahnPcm4n9eJwL3wo6ZH0ZAfTJb5EbcgMCYhGH0maAE+FgRTARTtxpkiAUmoCLLqRCs+ZcXSfO0aJlF6+YsX7pM48iiQ3SECshC56iErlENNRBBj+gZvaI37Ul70d61j1lrRktn9tEfaJ8/V0+U/w==</latexit><latexit sha1_base64="A5vz24bgvFtMcWzOAS+/MS6loYw=">AAACJHicjVDLSsNAFJ3UV62vqODGTbAIdVMSEXTZKqUuVfqCNpbJdNIOnTyYuRFLzM+4cOOvuFFx4cZvcdpmoa0LDwwczjmXO/c4IWcSTPNTyywsLi2vZFdza+sbm1v69k5DBpEgtE4CHoiWgyXlzKd1YMBpKxQUew6nTWd4Mfabd1RIFvg1GIXU9nDfZy4jGJTU1fc6QO8hLlerN5VquVZJbuOCdZR09bxZNCcw5omVkjxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TXKdSNIQkyHu07aiPvaotOPJkYlxqJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2p063ZQ+dJ47homUXr+iRfOk87y6J9dIAKyEKnqIQu0RWqI4Ie0CN6Rq/ak/aivWsf02hGS2d20S9oX9/In5x4</latexit><latexit sha1_base64="A5vz24bgvFtMcWzOAS+/MS6loYw=">AAACJHicjVDLSsNAFJ3UV62vqODGTbAIdVMSEXTZKqUuVfqCNpbJdNIOnTyYuRFLzM+4cOOvuFFx4cZvcdpmoa0LDwwczjmXO/c4IWcSTPNTyywsLi2vZFdza+sbm1v69k5DBpEgtE4CHoiWgyXlzKd1YMBpKxQUew6nTWd4Mfabd1RIFvg1GIXU9nDfZy4jGJTU1fc6QO8hLlerN5VquVZJbuOCdZR09bxZNCcw5omVkjxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TXKdSNIQkyHu07aiPvaotOPJkYlxqJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2p063ZQ+dJ47homUXr+iRfOk87y6J9dIAKyEKnqIQu0RWqI4Ie0CN6Rq/ak/aivWsf02hGS2d20S9oX9/In5x4</latexit><latexit sha1_base64="A5vz24bgvFtMcWzOAS+/MS6loYw=">AAACJHicjVDLSsNAFJ3UV62vqODGTbAIdVMSEXTZKqUuVfqCNpbJdNIOnTyYuRFLzM+4cOOvuFFx4cZvcdpmoa0LDwwczjmXO/c4IWcSTPNTyywsLi2vZFdza+sbm1v69k5DBpEgtE4CHoiWgyXlzKd1YMBpKxQUew6nTWd4Mfabd1RIFvg1GIXU9nDfZy4jGJTU1fc6QO8hLlerN5VquVZJbuOCdZR09bxZNCcw5omVkjxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TXKdSNIQkyHu07aiPvaotOPJkYlxqJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2p063ZQ+dJ47homUXr+iRfOk87y6J9dIAKyEKnqIQu0RWqI4Ie0CN6Rq/ak/aivWsf02hGS2d20S9oX9/In5x4</latexit>

…

UPDATE(2)
<latexit sha1_base64="hdrkLuxpoZbllLJFpw1xb1y+U7Q=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5IUQZf1BS4rNG2hjWUynbRDJw9mbsQQ4q+4caGIWz/EnX/jtM1CWw9cOJxzL/fe40acSTDNb62wsrq2vlHcLG1t7+zu6fsHbRnGglCbhDwUXRdLyllAbWDAaTcSFPsupx13cjX1Ow9USBYGLUgi6vh4FDCPEQxKGujlPtBHSO3m9UXrJrtPq/WTbKBXzJo5g7FMrJxUUI7mQP/qD0MS+zQAwrGUPcuMwEmxAEY4zUr9WNIIkwke0Z6iAfapdNLZ8ZlxrJSh4YVCVQDGTP09kWJfysR3VaePYSwXvan4n9eLwTt3UhZEMdCAzBd5MTcgNKZJGEMmKAGeKIKJYOpWg4yxwARUXiUVgrX48jJp12uWWbPuTiuNyzyOIjpER6iKLHSGGugWNZGNCErQM3pFb9qT9qK9ax/z1oKWz5TRH2ifP62LlB4=</latexit><latexit sha1_base64="WTMFe4P8foZCZqzMRyGK5TMxGxQ=">AAACIXicjVDLSsNAFJ34rPUV7dJNsAh1U5Ii6LK+wGWFpi20sUymk3bo5MHMjRhCvsWFG3/FjUh34s84bbPQ1oUHBg7nnMude9yIMwmm+amtrK6tb2wWtorbO7t7+/rBYUuGsSDUJiEPRcfFknIWUBsYcNqJBMW+y2nbHV9P/fYjFZKFQROSiDo+HgbMYwSDkvp6qQf0CVK7cXPZvM0e0krtNOvrZbNqzmAsEysnZZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNir1Y0giTMR7SrqIB9ql00tmFmXGilIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSi+p0a/HQZdKqVS2zat2fletXeWcFdISOUQVZ6BzV0R1qIBsRlKBn9IretRftTfvQJvPoipbPlNAvaF/fAkyblw==</latexit><latexit sha1_base64="WTMFe4P8foZCZqzMRyGK5TMxGxQ=">AAACIXicjVDLSsNAFJ34rPUV7dJNsAh1U5Ii6LK+wGWFpi20sUymk3bo5MHMjRhCvsWFG3/FjUh34s84bbPQ1oUHBg7nnMude9yIMwmm+amtrK6tb2wWtorbO7t7+/rBYUuGsSDUJiEPRcfFknIWUBsYcNqJBMW+y2nbHV9P/fYjFZKFQROSiDo+HgbMYwSDkvp6qQf0CVK7cXPZvM0e0krtNOvrZbNqzmAsEysnZZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNir1Y0giTMR7SrqIB9ql00tmFmXGilIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSi+p0a/HQZdKqVS2zat2fletXeWcFdISOUQVZ6BzV0R1qIBsRlKBn9IretRftTfvQJvPoipbPlNAvaF/fAkyblw==</latexit><latexit sha1_base64="WTMFe4P8foZCZqzMRyGK5TMxGxQ=">AAACIXicjVDLSsNAFJ34rPUV7dJNsAh1U5Ii6LK+wGWFpi20sUymk3bo5MHMjRhCvsWFG3/FjUh34s84bbPQ1oUHBg7nnMude9yIMwmm+amtrK6tb2wWtorbO7t7+/rBYUuGsSDUJiEPRcfFknIWUBsYcNqJBMW+y2nbHV9P/fYjFZKFQROSiDo+HgbMYwSDkvp6qQf0CVK7cXPZvM0e0krtNOvrZbNqzmAsEysnZZTjf/G+PukNQhL7NADCsZRdy4zASbEARjjNir1Y0giTMR7SrqIB9ql00tmFmXGilIHhhUK9AIyZ+nMixb6Uie+qpI9hJBe9qfiX143Bu3BSFkQx0IDMF3kxNyA0pnUZAyYoAZ4ogolg6q8GGWGBCahSi+p0a/HQZdKqVS2zat2fletXeWcFdISOUQVZ6BzV0R1qIBsRlKBn9IretRftTfvQJvPoipbPlNAvaF/fAkyblw==</latexit>

AGGREGATE(2)
<latexit sha1_base64="E3BzpIhIPXWOQFmSCRHOmINkjdI=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRahbkpSBF22SqnLKn1BG8tkOmmHTh7M3IglZuGvuHGhiFt/w51/47TNQlsPXDiccy/33uOEnEkwzW9taXlldW09s5Hd3Nre2dX39psyiAShDRLwQLQdLClnPm0AA07boaDYczhtOaOrid+6p0KywK/DOKS2hwc+cxnBoKSeftgF+gBxuVq9rVTL9UpyF+eLp0lPz5kFcwpjkVgpyaEUtZ7+1e0HJPKoD4RjKTuWGYIdYwGMcJpku5GkISYjPKAdRX3sUWnH0/sT40QpfcMNhCofjKn6eyLGnpRjz1GdHoahnPcm4n9eJwL3wo6ZH0ZAfTJb5EbcgMCYhGH0maAE+FgRTARTtxpkiAUmoCLLqhCs+ZcXSbNYsMyCdXOWK12mcWTQETpGeWShc1RC16iGGoigR/SMXtGb9qS9aO/ax6x1SUtnDtAfaJ8/WNWVAA==</latexit><latexit sha1_base64="gDCX/6nEz3sAG7TIJO63gXKDbAA=">AAACJHicjVDLSsNAFJ34rPUVFdy4CRahbkpSBF22SqlLlb6gjWUynbRDJw9mbsQS8zMu3PgrblRcuPFbnLZZaOvCAwOHc87lzj1OyJkE0/zUFhaXlldWM2vZ9Y3NrW19Z7chg0gQWicBD0TLwZJy5tM6MOC0FQqKPYfTpjO8GPvNOyokC/wajEJqe7jvM5cRDErq6vsdoPcQl6vVm0q1XKskt3G+eJx09ZxZMCcw5omVkhxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TbKdSNIQkyHu07aiPvaotOPJkYlxpJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2q063ZQ+dJo1iwzIJ1fZIrnaedZdABOkR5ZKFTVEKX6ArVEUEP6BE9o1ftSXvR3rWPaXRBS2f20C9oX9/KSpx5</latexit><latexit sha1_base64="gDCX/6nEz3sAG7TIJO63gXKDbAA=">AAACJHicjVDLSsNAFJ34rPUVFdy4CRahbkpSBF22SqlLlb6gjWUynbRDJw9mbsQS8zMu3PgrblRcuPFbnLZZaOvCAwOHc87lzj1OyJkE0/zUFhaXlldWM2vZ9Y3NrW19Z7chg0gQWicBD0TLwZJy5tM6MOC0FQqKPYfTpjO8GPvNOyokC/wajEJqe7jvM5cRDErq6vsdoPcQl6vVm0q1XKskt3G+eJx09ZxZMCcw5omVkhxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TbKdSNIQkyHu07aiPvaotOPJkYlxpJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2q063ZQ+dJo1iwzIJ1fZIrnaedZdABOkR5ZKFTVEKX6ArVEUEP6BE9o1ftSXvR3rWPaXRBS2f20C9oX9/KSpx5</latexit><latexit sha1_base64="gDCX/6nEz3sAG7TIJO63gXKDbAA=">AAACJHicjVDLSsNAFJ34rPUVFdy4CRahbkpSBF22SqlLlb6gjWUynbRDJw9mbsQS8zMu3PgrblRcuPFbnLZZaOvCAwOHc87lzj1OyJkE0/zUFhaXlldWM2vZ9Y3NrW19Z7chg0gQWicBD0TLwZJy5tM6MOC0FQqKPYfTpjO8GPvNOyokC/wajEJqe7jvM5cRDErq6vsdoPcQl6vVm0q1XKskt3G+eJx09ZxZMCcw5omVkhxK8b94V3/r9AISedQHwrGUbcsMwY6xAEY4TbKdSNIQkyHu07aiPvaotOPJkYlxpJSe4QZCPR+MifpzIsaelCPPUUkPw0DOemPxL68dgXtmx8wPI6A+mS5yI25AYIwbM3pMUAJ8pAgmgqm/GmSABSages2q063ZQ+dJo1iwzIJ1fZIrnaedZdABOkR5ZKFTVEKX6ArVEUEP6BE9o1ftSXvR3rWPaXRBS2f20C9oX9/KSpx5</latexit>

• Like an MLP, but nodes are vectors rather than
scalars, edges are potentially complex functions
(e.g., an edge can be an MLP)

• Each iteration of GNN message passing is a layer

• AGGREGATE is akin to a linear layer

• UPDATE is akin to a pointwise layer
23

A view from the graph perspective

Transformers may be viewed as Graph Neural Networks over fully-connected graphs

24

New idea #2: attention

25

25.4. TOKEN NETS 329

25.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

25.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A
and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A
f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (25.16)

Zout = AZin (25.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

W is free parameters.

A is a function of some input data. The data tells us which tokens to
attend to (assign high weight in weighted sum)

i
i

i
i

i
i

i
i

6 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

Figure 1.5: Neural
nets vs token nets. The

arrows here represent
any functional depen-

dency between the
nodes (note that different
arrows represent different

types of functions).

Neural net

linear comb. of neurons .

neuronwise nonlinearity .

linear comb. of neurons .

Token net

linear comb. of tokens .

tokenwise nonlinearity .

linear comb. of tokens .

to the network. In addition, A typically only contains non-negative values, consistent with
thinking of it as a matrix that allocates how much (non-negative) attention we pay to each
input token. In the diagram below (figure 1.6), we indicate the data-dependency with the
function labeled f , and we color the attention matrix red to indicate that it is constructed
from transformed data rather than being free parameters (for which we use the color blue):

Here, we describe
attention as fc layers with

data-dependent weights.
We could have instead

described attention as a
kind of dynamic pooling:

it is mean pooling but
with a weighted average

where the weights are
dynamically decided

based on the input data.

Figure 1.6: Fully-
connected layers

versus attention layers.

Tin

tout

W

fc layer

A
f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
subsequently):

A = f (…) / attention (1.9)

Tout = ATin (1.10)

The key question, of course, is what exactly is f ? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much attention to apply to each token in
Tin; because this layer is just a weighted combination of tokens, f is simply determining
the weights in this combination. The f can depend on any number of input signals that tell
the net what to pay attention to.

As a concrete example, consider that we want to be able to ask questions about differ-
ent objects in our safari example image, such as how many animals are in the photo. Then

25.4. TOKEN NETS 329

25.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons.

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed di↵erently – it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Neural net

linear comb of neurons .

neuron-wise nonlinearity .

linear comb of neurons .

Token net

linear comb of tokens .

token-wise nonlinearity .

linear comb of tokens .

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent di↵erent types of functions).

25.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
di↵erent matrix, which we call the attention matrix A. The important di↵erence between A
and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f , and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue): Here we make the

connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling :
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

tin

tout

W

fc layer

A
f

attn layer

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

A = f(. . .) / attention (25.16)

Zout = AZin (25.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f ’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

26

330 CHAPTER 25. TRANSFORMERS

in tin; since this layer is just a weighted combination of tokens f is simply determining the
weights in this combination. f can depend on any number of input signals that tell the net
what to pay attention to.

As a concrete example, consider that we want to be able to ask questions about di↵erent
objects in an image, such as “what color is the bird’s head?” Then we can use attention to
direct the model to focus on just the object in question – the bird’s head in this example. f
would take as input the text query, and would produce as output weights A that are high
for the tin tokens that correspond to any bird head’s and are low for all other tin tokens. If
we train such as system to answer questions about color, then the token codes might end up
representing the color of the object in their receptive field; after all, this would be a solution
that would solve our problem (it would minimize the loss as correctly answering the question,
i.e. classify the color of the object). Other solutions might be possible, but we will focus on
this intuitive solution.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to di↵erent input questions; asking di↵erent questions results in
di↵erent answers:

What
color is
the bird’s

head

What
color is

the
vegetation

tin

tout

attention

sum

Figure 25.1: How attention can be allocated across di↵erent regions (tokens) in an image.
The token codes are indicated as the colored rectangles within each token. tout is a weighted
sum over tokens in tin, weighted by attention. Only the tokens that contribute most to
this sum are visualized here. On the left the token’s corresponding to the brids’ heads are
attended to whereas on the right tokens in the background are attended to.

Keeping this intuitive picture in mind, we will now turn to the equations that define f .
We will focus on the particular version of f that appears in transformers, which is called
query-key-value attention.

25.5.1 Query-Key-Value attention

Transformers use a particular kind of attention based on the idea of keys, queries, and values.

The idea of keys, queries,
values comes from
databases, where a

database cell holds a
value, which is retrieved

when a query matches
the cell’s key. Tokens are

like database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token is associated with a query vector, a key vector, and
a value vector. Just like the token’s code vector, we can think of these vectors as additional
members of the structure t. We define these vectors as linear transformations of the token’s

How many
animals are

in the photo?

27

330 CHAPTER 25. TRANSFORMERS

in tin; since this layer is just a weighted combination of tokens f is simply determining the
weights in this combination. f can depend on any number of input signals that tell the net
what to pay attention to.

As a concrete example, consider that we want to be able to ask questions about di↵erent
objects in an image, such as “what color is the bird’s head?” Then we can use attention to
direct the model to focus on just the object in question – the bird’s head in this example. f
would take as input the text query, and would produce as output weights A that are high
for the tin tokens that correspond to any bird head’s and are low for all other tin tokens. If
we train such as system to answer questions about color, then the token codes might end up
representing the color of the object in their receptive field; after all, this would be a solution
that would solve our problem (it would minimize the loss as correctly answering the question,
i.e. classify the color of the object). Other solutions might be possible, but we will focus on
this intuitive solution.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to di↵erent input questions; asking di↵erent questions results in
di↵erent answers:

What
color is
the bird’s

head

What
color is

the
vegetation

tin

tout

attention

sum

Figure 25.1: How attention can be allocated across di↵erent regions (tokens) in an image.
The token codes are indicated as the colored rectangles within each token. tout is a weighted
sum over tokens in tin, weighted by attention. Only the tokens that contribute most to
this sum are visualized here. On the left the token’s corresponding to the brids’ heads are
attended to whereas on the right tokens in the background are attended to.

Keeping this intuitive picture in mind, we will now turn to the equations that define f .
We will focus on the particular version of f that appears in transformers, which is called
query-key-value attention.

25.5.1 Query-Key-Value attention

Transformers use a particular kind of attention based on the idea of keys, queries, and values.

The idea of keys, queries,
values comes from
databases, where a

database cell holds a
value, which is retrieved

when a query matches
the cell’s key. Tokens are

like database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token is associated with a query vector, a key vector, and
a value vector. Just like the token’s code vector, we can think of these vectors as additional
members of the structure t. We define these vectors as linear transformations of the token’s

How many
animals are

in the photo?

What is the
color of the

impala?

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

i
i

i
i

i
i

i
i

Transformers 373

one strategy would be to attend to each token that represents an animal’s head, and then
just count them up. The f would take as input the text query, and would produce as output
weights A that are high for the Tin tokens that correspond to any animal’s head and are low
for all other Tin tokens. If we train such a system to answer questions about counting ani-
mals, then the token code vectors might naturally end up encoding a feature that represents
the number of animal heads in their receptive field; after all, this would be a solution that
would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution, which we
illustrate in figure 26.7.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers, as is visualized below in figure 26.7.

How many
animals

are in the
photo?

What is
the color
of the
impala?

1

1

1 1

4

Tin

tout

attention

sum

Figure 26.7: How atten-
tion can be allocated
across different regions
(tokens) in an image. The
token code vectors consist
of multiple dimensions
and each can encode a
different attribute of the
token. To the left we show
a dimension that encodes
number of animal heads.
To the right we show a
different dimension that
encodes color (or this
could be three dimen-
sions, coding RGB). The
output token is a weighted
sum over all the tokens
attended to.

Let’s walk through the logic of figure 26.7. Here we are imagining a token representation
that can answer two different kinds of questions, one about number and the other about
color. The representation we have come up with (which learning could have arrived at)
is to encode in one dimension of the token vector a constant of value 1, which will be
used for counting up the number of attended tokens. In another set of dimensions we have
the average RGB color of the patch the token represents. Note that tokens only directly
represent image patches at the input to the network, right after the tokenization step; at
deeper layers of the network, the tokens may be more abstract in what they represent. Each
text query elicits a different allocation of attention, and we will get to exactly how that
process works later. For now just consider that the text query assigns a scalar weight to each

28

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

key
<latexit sha1_base64="8XQk23dAeD+FllMkD4nYRoqwJVI=">AAACUHicbZBLS8NAFIVv6ju+dekmWAQXEhIt6lJ041LBqtCUMpnc1KGTBzM3Ygn5G271N7nzn7jTSVvBqhdmcjj3DDl8YS6FJs97txozs3PzC4tL9vLK6tr6xubWrc4KxbHNM5mp+5BplCLFNgmSeJ8rZEko8S4cXNT7u0dUWmTpDQ1z7Casn4pYcEbGCgLCJyIqBzisehtNz/VG4/wV/kQ0YTJXvU3LDaKMFwmmxCXTuuN7OXVLpkhwiZUdFBpzxgesjx0jU5ag7paj0pWzZ5zIiTNlTkrOyP35omSJ1sMkNMmE0YP+vavN/3adguLTbinSvCBM+fhHcSEdypyagBMJhZzk0AjGlTBdHf7AFONkONl2EGFsYI76lLnxk964can6YVV67uGBoXJ8UBOpptMRIzYVNpE63Kqvo9OasP+b519xe+j6nutft5pn5xPWi7ADu7APPpzAGVzCFbSBQw7P8AKv1pv1YX02rHH0+wvbMDUN+wsIo7EH</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit>

query
<latexit sha1_base64="FOx7xLfuugp6mOVEb6sPYDsgGgQ=">AAACUnicbZLLTsJAFIaneEPEC7p000hMXJCmVaMsiW5cYiKXBJBMp6cwYXpx5tRImr6HW30mN76KK6fAQsCTzOTPf/6TOfkybiy4Qtv+Ngobm1vbO8Xd0l55/+DwqHLcVlEiGbRYJCLZdakCwUNoIUcB3VgCDVwBHXdyn/c7ryAVj8InnMYwCOgo5D5nFLX13Ed4Q8T0JQE5zYZHVduyZ2WuC2chqmRRzWHFsPpexJIAQmSCKtVz7BgHKZXImYCs1E8UxJRN6Ah6WoY0ADVIZ2tn5rl2PNOPpD4hmjP370RKA6WmgauTAcWxWu3l5n+9XoJ+fZDyME4QQjZ/yE+EiZGZMzA9LoGhmGpBmeR6V5ONqaQMNalSqe+Br3HO9klj7QfD+capHLlZaluXNU3lppYTyZbTHkW6FNaRPHydX1f1nLCzynNdtC8tx7acx+tq427BukhOyRm5IA65JQ3yQJqkRRiR5J18kE/jy/gp6F8yjxaMxcwJWapC+Rf47LEJ</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

value
<latexit sha1_base64="byjZaYZLt07/mv2vhvwGRRofFJo=">AAACUnicbZJNS8NAEIY39bt+tXr0EiyCBwmJFu2x6MWjgtVCW8tkM6mLmw92J8US8j+86m/y4l/x5KbtwaoDu7y88w47PKyfSqHJdT+tytLyyura+kZ1c2t7Z7dW37vXSaY4dngiE9X1QaMUMXZIkMRuqhAiX+KD/3xV9h/GqLRI4juapDiIYBSLUHAgYz32CV+IKB+DzLAY1hqu407L/iu8uWiwed0M65bTDxKeRRgTl6B1z3NTGuSgSHCJRbWfaUyBP8MIe0bGEKEe5NO1C/vIOIEdJsqcmOyp+3Mih0jrSeSbZAT0pH/3SvO/Xi+jsDXIRZxmhDGfPRRm0qbELhnYgVDISU6MAK6E2dXmT6CAkyFVrfYDDA3O6T55avxoONs4VyO/yF3n9MRQOT8piRSL6QAIFsImUoab5XXWKgl7v3n+Ffenjuc63m2z0b6cs15nB+yQHTOPXbA2u2Y3rMM4U+yVvbF368P6qphfMotWrPnMPluoytY3ycOw8A==</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

(

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What color
is the

impala’s head

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>1 0.2 0.9 0.1

0.1 0.2 1 0.1

query-key-value
attention

1.5. THE ATTENTION LAYER 7

code vector. Question to think about:
could you use other
di↵erentiable functions
for query(), key(), and
value()? Would that be
useful?

For a token with code vector z, we have:

q = t.query() = Wqz / query (1.18)

k = t.key() = Wkz / key (1.19)

v = t.value() = Wvz / value (1.20)

The queries, keys, and values of tin can compactly be written as matrices:

Qin =

0

B@
q
T
1
...

q
T
N

1

CA Kin =

0

B@
k
T
1
...

k
T
N

1

CA Vin =

0

B@
v
T
1
...

v
T
N

1

CA (1.21)

In transformers, all inputs to the net are tokenized, so the textual question “What color is
the bird’s head” will also be represented as a token.

We do not cover them in
this book but methods
from natural language
processing can be used to
transform text into a
token, or a sequence of
tokens.

This token will submit its query vector,
qquestion to be matched against the keys of the tokens that represent di↵erent patches in
the image; the similarity between the query and the key determines the amount of attention
weight that query will apply to the token with that key. The most common measure of
similarity between a query q and a key v is the dot product q

T
v. Querying each token in tin

in this way gives us a vector of similarities. We then normalize this vector using the softmax
function to give us our attention weights A, and finally, rather than applying A over token
codes directly (i.e. taking a weighted sum over tokens), we take a weighted sum over token
values to obtain Zout:

s = [qT
questionk1, . . . ,q

T
questionkN] (1.22)

A = softmax(s) (1.23)

Zout = AVin (1.24)

Figure 1.2 visualizes these steps:

We use the following
color scheme here and
later in this chapter:

query key value

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What color
is the
bird’s
head

1 0.2 0.9 0.1

1 0.2 0.9 0.1

tin

tout

} value()

o
key()

o
query()

Figure 1.2: Mechanics of an attention layer. Queries from the question match keys from the
tokens representing bird heads; value vectors of these two tokens then contribute the most
to the sum that yields tout’s code vector. (Softmax omitted in this example.)

i
i

i
i

i
i

i
i

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

token depending on how well that token’s content matches the query’s content. The output
token, tout, is the sum of all the tokens weighted by the attention scalars. This scheme will
arrive at a reasonable answer to the questions if the text query “How many animals are in
this photo” gives attention weight 1 to just the tokens representing animal heads and the
text query “What is the color of the impala” gives weight 1

3 just to the impala tokens. Then
the output vector in the former case contains the correct answer 4 in the dimension that
represents number of attended tokens, and contains the RGB colors for brownish in the
dimensions that represent average patch color.

Keeping this intuitive picture in mind, we will now turn to the equations that define the
attention allocation function f . We will focus on the particular version of f that appears in
transformers, which is called query-key-value attention.

1.6.1 Query-Key-Value Attention

Transformers use a particular kind of attention based on the idea of queries, keys, and
values.

The idea of queries, keys,
and values comes from

databases, where a
database cell holds a

value, which is retrieved
when a query matches the
cell’s key. Tokens are like

database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token may be associated with a query vector, a
key vector, and a value vector.

We define these vectors as linear transformations of the token’s code vector, projecting
to query/key/value vectors of length m.

Here is a question to think
about: Could you use

other differentiable
functions to compute the

query, value, and key?
Would that be useful?

For a token t, we have:

q = Wqt / query (1.11)

k = Wkt / key (1.12)

v = Wvt / value (1.13)

In transformers, all inputs to the net are tokenized, so the textual question “How many
animals are in the photo?” will also be represented as a token.

We do not cover them in
this book, but methods
from natural language

processing can be used to
transform text into a

token, or into a sequence
of tokens.

This token will submit its
query vector, qquestion to be matched against the keys of the tokens that represent different
patches in the image; the similarity between the query and the key determines the amount of
attention weight the query will apply to the token with that key. The most common measure
of similarity between a query q and a key k is the dot product qTk. Querying each token in
Tin in this way gives us a vector of similarities:

s = [s1, …, sN]T = [qT
questionk1, …, qT

questionkN]T (1.14)

We then normalize the vector s using the softmax function to give us our attention
weights a2RN⇥1, and finally, rather than applying a over token codes directly (i.e., taking
a weighted sum over tokens), we take a weighted sum over token value vectors, to obtain
Tout:

a = softmax(s) (1.15)

Tout =

2

64
a1vT

1
...

aNvT
N

3

75 (1.16)v1 is the value vector for
t1 =Tin[0, :], and so

forth.

Figure 1.8 visualizes these steps.

i
i

i
i

i
i

i
i

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

token depending on how well that token’s content matches the query’s content. The output
token, tout, is the sum of all the tokens weighted by the attention scalars. This scheme will
arrive at a reasonable answer to the questions if the text query “How many animals are in
this photo” gives attention weight 1 to just the tokens representing animal heads and the
text query “What is the color of the impala” gives weight 1

3 just to the impala tokens. Then
the output vector in the former case contains the correct answer 4 in the dimension that
represents number of attended tokens, and contains the RGB colors for brownish in the
dimensions that represent average patch color.

Keeping this intuitive picture in mind, we will now turn to the equations that define the
attention allocation function f . We will focus on the particular version of f that appears in
transformers, which is called query-key-value attention.

1.6.1 Query-Key-Value Attention

Transformers use a particular kind of attention based on the idea of queries, keys, and
values.

The idea of queries, keys,
and values comes from

databases, where a
database cell holds a

value, which is retrieved
when a query matches the
cell’s key. Tokens are like

database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token may be associated with a query vector, a
key vector, and a value vector.

We define these vectors as linear transformations of the token’s code vector, projecting
to query/key/value vectors of length m.

Here is a question to think
about: Could you use

other differentiable
functions to compute the

query, value, and key?
Would that be useful?

For a token t, we have:

q = Wqt / query (1.11)

k = Wkt / key (1.12)

v = Wvt / value (1.13)

In transformers, all inputs to the net are tokenized, so the textual question “How many
animals are in the photo?” will also be represented as a token.

We do not cover them in
this book, but methods
from natural language

processing can be used to
transform text into a

token, or into a sequence
of tokens.

This token will submit its
query vector, qquestion to be matched against the keys of the tokens that represent different
patches in the image; the similarity between the query and the key determines the amount of
attention weight the query will apply to the token with that key. The most common measure
of similarity between a query q and a key k is the dot product qTk. Querying each token in
Tin in this way gives us a vector of similarities:

s = [s1, …, sN]T = [qT
questionk1, …, qT

questionkN]T (1.14)

We then normalize the vector s using the softmax function to give us our attention
weights a2RN⇥1, and finally, rather than applying a over token codes directly (i.e., taking
a weighted sum over tokens), we take a weighted sum over token value vectors, to obtain
Tout:

a = softmax(s) (1.15)

Tout =

2

64
a1vT

1
...

aNvT
N

3

75 (1.16)v1 is the value vector for
t1 =Tin[0, :], and so

forth.

Figure 1.8 visualizes these steps.

i
i

i
i

i
i

i
i

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

token depending on how well that token’s content matches the query’s content. The output
token, tout, is the sum of all the tokens weighted by the attention scalars. This scheme will
arrive at a reasonable answer to the questions if the text query “How many animals are in
this photo” gives attention weight 1 to just the tokens representing animal heads and the
text query “What is the color of the impala” gives weight 1

3 just to the impala tokens. Then
the output vector in the former case contains the correct answer 4 in the dimension that
represents number of attended tokens, and contains the RGB colors for brownish in the
dimensions that represent average patch color.

Keeping this intuitive picture in mind, we will now turn to the equations that define the
attention allocation function f . We will focus on the particular version of f that appears in
transformers, which is called query-key-value attention.

1.6.1 Query-Key-Value Attention

Transformers use a particular kind of attention based on the idea of queries, keys, and
values.

The idea of queries, keys,
and values comes from

databases, where a
database cell holds a

value, which is retrieved
when a query matches the
cell’s key. Tokens are like

database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token may be associated with a query vector, a
key vector, and a value vector.

We define these vectors as linear transformations of the token’s code vector, projecting
to query/key/value vectors of length m.

Here is a question to think
about: Could you use

other differentiable
functions to compute the

query, value, and key?
Would that be useful?

For a token t, we have:

q = Wqt / query (1.11)

k = Wkt / key (1.12)

v = Wvt / value (1.13)

In transformers, all inputs to the net are tokenized, so the textual question “How many
animals are in the photo?” will also be represented as a token.

We do not cover them in
this book, but methods
from natural language

processing can be used to
transform text into a

token, or into a sequence
of tokens.

This token will submit its
query vector, qquestion to be matched against the keys of the tokens that represent different
patches in the image; the similarity between the query and the key determines the amount of
attention weight the query will apply to the token with that key. The most common measure
of similarity between a query q and a key k is the dot product qTk. Querying each token in
Tin in this way gives us a vector of similarities:

s = [s1, …, sN]T = [qT
questionk1, …, qT

questionkN]T (1.14)

We then normalize the vector s using the softmax function to give us our attention
weights a2RN⇥1, and finally, rather than applying a over token codes directly (i.e., taking
a weighted sum over tokens), we take a weighted sum over token value vectors, to obtain
Tout:

a = softmax(s) (1.15)

Tout =

2

64
a1vT

1
...

aNvT
N

3

75 (1.16)v1 is the value vector for
t1 =Tin[0, :], and so

forth.

Figure 1.8 visualizes these steps.

1.5. THE ATTENTION LAYER 7

code vector. Question to think about:
could you use other
di↵erentiable functions
for query(), key(), and
value()? Would that be
useful?

For a token with code vector z, we have:

q = t.query() = Wqz / query (1.18)

k = t.key() = Wkz / key (1.19)

v = t.value() = Wvz / value (1.20)

The queries, keys, and values of tin can compactly be written as matrices:

Qin =

0

B@
q
T
1
...

q
T
N

1

CA Kin =

0

B@
k
T
1
...

k
T
N

1

CA Vin =

0

B@
v
T
1
...

v
T
N

1

CA (1.21)

In transformers, all inputs to the net are tokenized, so the textual question “What color
is the bird’s head” will also be represented as a token.

We do not cover them in
this book but methods
from natural language
processing can be used to
transform text into a
token, or a sequence of
tokens.

This token will submit its query
vector, qtext to be matched against the keys of the tokens that represent di↵erent patches in
the image; the similarity between the query and the key determines the amount of attention
weight that query will apply to the token with that key. The most common measure of
similarity between a query q and a key v is the dot product q

T
v. Querying each token in tin

in this way gives us a vector of similarities. We then normalize this vector using the softmax
function to give us our attention weights A, and finally, rather than applying A over token
codes directly (i.e. taking a weighted sum over tokens), we take a weighted sum over token
values to obtain Zout:

s = [qT
textk1, . . . ,q

T
textkN] (1.22)

A = softmax(s) (1.23)

Zout = AVin (1.24)

Figure 1.2 visualizes these steps:

We use the following
color scheme here and
later in this chapter:

query key value

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What color
is the
bird’s
head

1 0.2 0.9 0.1

1 0.2 0.9 0.1

tin

tout

} value()

o
key()

o
query()

Figure 1.2: Mechanics of an attention layer. Queries from the question match keys from the
tokens representing bird heads; value vectors of these two tokens then contribute the most
to the sum that yields tout’s code vector. (Softmax omitted in this example.)

i
i

i
i

i
i

i
i

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

token depending on how well that token’s content matches the query’s content. The output
token, tout, is the sum of all the tokens weighted by the attention scalars. This scheme will
arrive at a reasonable answer to the questions if the text query “How many animals are in
this photo” gives attention weight 1 to just the tokens representing animal heads and the
text query “What is the color of the impala” gives weight 1

3 just to the impala tokens. Then
the output vector in the former case contains the correct answer 4 in the dimension that
represents number of attended tokens, and contains the RGB colors for brownish in the
dimensions that represent average patch color.

Keeping this intuitive picture in mind, we will now turn to the equations that define the
attention allocation function f . We will focus on the particular version of f that appears in
transformers, which is called query-key-value attention.

1.6.1 Query-Key-Value Attention

Transformers use a particular kind of attention based on the idea of queries, keys, and
values.

The idea of queries, keys,
and values comes from

databases, where a
database cell holds a

value, which is retrieved
when a query matches the
cell’s key. Tokens are like

database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token may be associated with a query vector, a
key vector, and a value vector.

We define these vectors as linear transformations of the token’s code vector, projecting
to query/key/value vectors of length m.

Here is a question to think
about: Could you use

other differentiable
functions to compute the

query, value, and key?
Would that be useful?

For a token t, we have:

q = Wqt / query (1.11)

k = Wkt / key (1.12)

v = Wvt / value (1.13)

In transformers, all inputs to the net are tokenized, so the textual question “How many
animals are in the photo?” will also be represented as a token.

We do not cover them in
this book, but methods
from natural language

processing can be used to
transform text into a

token, or into a sequence
of tokens.

This token will submit its
query vector, qquestion to be matched against the keys of the tokens that represent different
patches in the image; the similarity between the query and the key determines the amount of
attention weight the query will apply to the token with that key. The most common measure
of similarity between a query q and a key k is the dot product qTk. Querying each token in
Tin in this way gives us a vector of similarities:

s = [s1, …, sN]T = [qT
questionk1, …, qT

questionkN]T (1.14)

We then normalize the vector s using the softmax function to give us our attention
weights a2RN⇥1, and finally, rather than applying a over token codes directly (i.e., taking
a weighted sum over tokens), we take a weighted sum over token value vectors, to obtain
Tout:

a = softmax(s) (1.15)

Tout =

2

64
a1vT

1
...

aNvT
N

3

75 (1.16)v1 is the value vector for
t1 =Tin[0, :], and so

forth.

Figure 1.8 visualizes these steps.

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 9

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

key
<latexit sha1_base64="8XQk23dAeD+FllMkD4nYRoqwJVI=">AAACUHicbZBLS8NAFIVv6ju+dekmWAQXEhIt6lJ041LBqtCUMpnc1KGTBzM3Ygn5G271N7nzn7jTSVvBqhdmcjj3DDl8YS6FJs97txozs3PzC4tL9vLK6tr6xubWrc4KxbHNM5mp+5BplCLFNgmSeJ8rZEko8S4cXNT7u0dUWmTpDQ1z7Casn4pYcEbGCgLCJyIqBzisehtNz/VG4/wV/kQ0YTJXvU3LDaKMFwmmxCXTuuN7OXVLpkhwiZUdFBpzxgesjx0jU5ag7paj0pWzZ5zIiTNlTkrOyP35omSJ1sMkNMmE0YP+vavN/3adguLTbinSvCBM+fhHcSEdypyagBMJhZzk0AjGlTBdHf7AFONkONl2EGFsYI76lLnxk964can6YVV67uGBoXJ8UBOpptMRIzYVNpE63Kqvo9OasP+b519xe+j6nutft5pn5xPWi7ADu7APPpzAGVzCFbSBQw7P8AKv1pv1YX02rHH0+wvbMDUN+wsIo7EH</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit>

value
<latexit sha1_base64="byjZaYZLt07/mv2vhvwGRRofFJo=">AAACUnicbZJNS8NAEIY39bt+tXr0EiyCBwmJFu2x6MWjgtVCW8tkM6mLmw92J8US8j+86m/y4l/x5KbtwaoDu7y88w47PKyfSqHJdT+tytLyyura+kZ1c2t7Z7dW37vXSaY4dngiE9X1QaMUMXZIkMRuqhAiX+KD/3xV9h/GqLRI4juapDiIYBSLUHAgYz32CV+IKB+DzLAY1hqu407L/iu8uWiwed0M65bTDxKeRRgTl6B1z3NTGuSgSHCJRbWfaUyBP8MIe0bGEKEe5NO1C/vIOIEdJsqcmOyp+3Mih0jrSeSbZAT0pH/3SvO/Xi+jsDXIRZxmhDGfPRRm0qbELhnYgVDISU6MAK6E2dXmT6CAkyFVrfYDDA3O6T55avxoONs4VyO/yF3n9MRQOT8piRSL6QAIFsImUoab5XXWKgl7v3n+Ffenjuc63m2z0b6cs15nB+yQHTOPXbA2u2Y3rMM4U+yVvbF368P6qphfMotWrPnMPluoytY3ycOw8A==</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit>

query
<latexit sha1_base64="FOx7xLfuugp6mOVEb6sPYDsgGgQ=">AAACUnicbZLLTsJAFIaneEPEC7p000hMXJCmVaMsiW5cYiKXBJBMp6cwYXpx5tRImr6HW30mN76KK6fAQsCTzOTPf/6TOfkybiy4Qtv+Ngobm1vbO8Xd0l55/+DwqHLcVlEiGbRYJCLZdakCwUNoIUcB3VgCDVwBHXdyn/c7ryAVj8InnMYwCOgo5D5nFLX13Ed4Q8T0JQE5zYZHVduyZ2WuC2chqmRRzWHFsPpexJIAQmSCKtVz7BgHKZXImYCs1E8UxJRN6Ah6WoY0ADVIZ2tn5rl2PNOPpD4hmjP370RKA6WmgauTAcWxWu3l5n+9XoJ+fZDyME4QQjZ/yE+EiZGZMzA9LoGhmGpBmeR6V5ONqaQMNalSqe+Br3HO9klj7QfD+capHLlZaluXNU3lppYTyZbTHkW6FNaRPHydX1f1nLCzynNdtC8tx7acx+tq427BukhOyRm5IA65JQ3yQJqkRRiR5J18kE/jy/gp6F8yjxaMxcwJWapC+Rf47LEJ</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

�

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What is
the color
of the
impala?

0.1 0.2 1 0.1

0.1 0.2 1 0.1

Tin

tout

} value()

o
key()

o
query()

Figure 1.8: Mechan-
ics of an attention layer.
Queries from the ques-
tion match keys from the
tokens representing bird
heads; value vectors of
these two tokens then
contribute the most to the
sum that yields tout’s code
vector. (Softmax omitted
in this example.)

1.6.2 Self-Attention

We use the following
color scheme here and
later in this chapter:

query key value

As we have now seen, attention is a general-purpose way of dynamically pooling informa-
tion in one set of tokens based on queries from a different set of tokens. The next question
we will consider is which tokens should be doing the querying and which should we be
matching against? In the example from the last section, the answer was intuitive because
we had a textual question that was asking about content in a visual image, so naturally
the text gives the query and we match against tokens that represent the image. But can we
come up with a more generic architecture where we don’t have to hand design which tokens
interact in which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If Tin is a set of N input tokens, then we have N queries, N weighted sums,
and N output tokens to form Tout. This is visualized below in figure 1.9.

A

o f

self attn layer

Tin

Tout

Figure 1.9: A self-
attention layer.

i
i

i
i

i
i

i
i

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

token depending on how well that token’s content matches the query’s content. The output
token, tout, is the sum of all the tokens weighted by the attention scalars. This scheme will
arrive at a reasonable answer to the questions if the text query “How many animals are in
this photo” gives attention weight 1 to just the tokens representing animal heads and the
text query “What is the color of the impala” gives weight 1

3 just to the impala tokens. Then
the output vector in the former case contains the correct answer 4 in the dimension that
represents number of attended tokens, and contains the RGB colors for brownish in the
dimensions that represent average patch color.

Keeping this intuitive picture in mind, we will now turn to the equations that define the
attention allocation function f . We will focus on the particular version of f that appears in
transformers, which is called query-key-value attention.

1.6.1 Query-Key-Value Attention

Transformers use a particular kind of attention based on the idea of queries, keys, and
values.

The idea of queries, keys,
and values comes from

databases, where a
database cell holds a

value, which is retrieved
when a query matches the
cell’s key. Tokens are like

database cells and
attention is like retrieving

information from the
database of tokens.

In query-key-value attention, each token may be associated with a query vector, a
key vector, and a value vector.

We define these vectors as linear transformations of the token’s code vector, projecting
to query/key/value vectors of length m.

Here is a question to think
about: Could you use

other differentiable
functions to compute the

query, value, and key?
Would that be useful?

For a token t, we have:

q = Wqt / query (1.11)

k = Wkt / key (1.12)

v = Wvt / value (1.13)

In transformers, all inputs to the net are tokenized, so the textual question “How many
animals are in the photo?” will also be represented as a token.

We do not cover them in
this book, but methods
from natural language

processing can be used to
transform text into a

token, or into a sequence
of tokens.

This token will submit its
query vector, qquestion to be matched against the keys of the tokens that represent different
patches in the image; the similarity between the query and the key determines the amount of
attention weight the query will apply to the token with that key. The most common measure
of similarity between a query q and a key k is the dot product qTk. Querying each token in
Tin in this way gives us a vector of similarities:

s = [s1, …, sN]T = [qT
questionk1, …, qT

questionkN]T (1.14)

We then normalize the vector s using the softmax function to give us our attention
weights a2RN⇥1, and finally, rather than applying a over token codes directly (i.e., taking
a weighted sum over tokens), we take a weighted sum over token value vectors, to obtain
Tout:

a = softmax(s) (1.15)

Tout =

2

64
a1vT

1
...

aNvT
N

3

75 (1.16)v1 is the value vector for
t1 =Tin[0, :], and so

forth.

Figure 1.8 visualizes these steps.

29

Self-attention

i
i

i
i

i
i

i
i

Transformers 377

t2, that represents the patch of pixels around the torso of the impala. We wish to update this
token via one layer of self-attention. Since the goal of the network is to classify patches, it
would make sense to update t2 to get a better semantic representation of what’s going on in
that patch. One way to do this would be to attend to the tokens representing other patches
of the impala, and use them to refine t2 into a more abstracted token vector, capturing the
label impala. The intuition is that it’s easier to recognize a patch given the context of other
relevant patches around it. The refinement operation is just to sum over the token code
vectors, which has the effect of reducing noise that is not shared between the three attended
impala patches, which amplifies the commonality between them – the label impala. More
sophisticated refinements could be achieved via multiple layers of self-attention. Further,
the impala patch query could also retrieve information from the giraffe and zebra patches,
as those patches provide additional context that could be informative (the animal in the
query is more likely to be an impala if it is found near giraffes and zebras, since all those
animals tend to congregate together in the same biome).

t2

t2

t2

t1t3

attention

sum

Figure 26.11: One way
self-attention could be
used to aggregate infor-
mation across all patches
containing the same
object, and thereby arrive
at a better representation
of the object in t2, the
query patch.

This is just one way self-attention could be used by the network. How it is actually used
will be determined by the training data and task. What really happens might deviate from
our intuitive story: tokens on hidden layers do not necessarily represent spatially localized
patches of pixels. While the initial tokenization layer creates tokens out of local image
patches, after this point attention layers can mix information across spatially distant tokens;

30

Attention maps in a trained transformer

[“DINO”, Caron et all. 2021]

© AI at Meta. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

31

8 CHAPTER 1. TRANSFORMERS

1.5.2 Self-attention

As we have now seen, attention is a general-purpose way of dynamically pooling information
in one set of tokens based on queries from a di↵erent set of tokens. The next question we will
consider is: “which tokens should be doing the querying and which should we be matching
against?” In the example from the last section, the answer was intuitive because we had a
textual question that was asking about content in a visual image, so naturally the text gives
the query and we match against tokens that represent the image. But can we come up with
a more generic architecture where we don’t have to hand design which tokens interact in
which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If tin is length N then we have N queries, N weighted sums, and N output
tokens to form tout:

W

o f

fc layer

tin

tout

The equations for self-attention can be written in an especially compact form:

Qin = ZinWq / query matrix (1.25)

Kin = ZinWk / key matrix (1.26)

Vin = ZinWv / value matrix (1.27)

A = f(tin) = softmax(
QinK

T
inp

d
) / attention matrix (1.28)

Zout = AVin (1.29)

d is dimensionality of the query/key vector (since we take a dot product between query and
key their dimensionalities much match). In expanded detail, here are the full mechanics of
an attention layer:

The nodes outlined in
blue correspond to each

other; they represent one
query being matched

against one key to result
a scalar similarity value,
in the gray box, which
acts as a weight in the

weighted sum computed
by A.

A A

N

N = N

M N

M

attn layer (expanded)

Zin

Zout

Qin,Kin,Vin

This fully defines a self-attention layer, which is the kind of attention layer used in
transformers. Before we move on though, let’s think through the intuition of what self-
attention might be doing.

Consider that we are processing the Guineafowl image and our task is semantic segmen-
tation (label each patch with an object class). First, we tokenize the image so that each

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 9

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

key
<latexit sha1_base64="8XQk23dAeD+FllMkD4nYRoqwJVI=">AAACUHicbZBLS8NAFIVv6ju+dekmWAQXEhIt6lJ041LBqtCUMpnc1KGTBzM3Ygn5G271N7nzn7jTSVvBqhdmcjj3DDl8YS6FJs97txozs3PzC4tL9vLK6tr6xubWrc4KxbHNM5mp+5BplCLFNgmSeJ8rZEko8S4cXNT7u0dUWmTpDQ1z7Casn4pYcEbGCgLCJyIqBzisehtNz/VG4/wV/kQ0YTJXvU3LDaKMFwmmxCXTuuN7OXVLpkhwiZUdFBpzxgesjx0jU5ag7paj0pWzZ5zIiTNlTkrOyP35omSJ1sMkNMmE0YP+vavN/3adguLTbinSvCBM+fhHcSEdypyagBMJhZzk0AjGlTBdHf7AFONkONl2EGFsYI76lLnxk964can6YVV67uGBoXJ8UBOpptMRIzYVNpE63Kqvo9OasP+b519xe+j6nutft5pn5xPWi7ADu7APPpzAGVzCFbSBQw7P8AKv1pv1YX02rHH0+wvbMDUN+wsIo7EH</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit>

value
<latexit sha1_base64="byjZaYZLt07/mv2vhvwGRRofFJo=">AAACUnicbZJNS8NAEIY39bt+tXr0EiyCBwmJFu2x6MWjgtVCW8tkM6mLmw92J8US8j+86m/y4l/x5KbtwaoDu7y88w47PKyfSqHJdT+tytLyyura+kZ1c2t7Z7dW37vXSaY4dngiE9X1QaMUMXZIkMRuqhAiX+KD/3xV9h/GqLRI4juapDiIYBSLUHAgYz32CV+IKB+DzLAY1hqu407L/iu8uWiwed0M65bTDxKeRRgTl6B1z3NTGuSgSHCJRbWfaUyBP8MIe0bGEKEe5NO1C/vIOIEdJsqcmOyp+3Mih0jrSeSbZAT0pH/3SvO/Xi+jsDXIRZxmhDGfPRRm0qbELhnYgVDISU6MAK6E2dXmT6CAkyFVrfYDDA3O6T55avxoONs4VyO/yF3n9MRQOT8piRSL6QAIFsImUoab5XXWKgl7v3n+Ffenjuc63m2z0b6cs15nB+yQHTOPXbA2u2Y3rMM4U+yVvbF368P6qphfMotWrPnMPluoytY3ycOw8A==</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit>

query
<latexit sha1_base64="FOx7xLfuugp6mOVEb6sPYDsgGgQ=">AAACUnicbZLLTsJAFIaneEPEC7p000hMXJCmVaMsiW5cYiKXBJBMp6cwYXpx5tRImr6HW30mN76KK6fAQsCTzOTPf/6TOfkybiy4Qtv+Ngobm1vbO8Xd0l55/+DwqHLcVlEiGbRYJCLZdakCwUNoIUcB3VgCDVwBHXdyn/c7ryAVj8InnMYwCOgo5D5nFLX13Ed4Q8T0JQE5zYZHVduyZ2WuC2chqmRRzWHFsPpexJIAQmSCKtVz7BgHKZXImYCs1E8UxJRN6Ah6WoY0ADVIZ2tn5rl2PNOPpD4hmjP370RKA6WmgauTAcWxWu3l5n+9XoJ+fZDyME4QQjZ/yE+EiZGZMzA9LoGhmGpBmeR6V5ONqaQMNalSqe+Br3HO9klj7QfD+capHLlZaluXNU3lppYTyZbTHkW6FNaRPHydX1f1nLCzynNdtC8tx7acx+tq427BukhOyRm5IA65JQ3yQJqkRRiR5J18kE/jy/gp6F8yjxaMxcwJWapC+Rf47LEJ</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What is
the color
of the
impala?

0.1 0.2 1 0.1

0.1 0.2 1 0.1

Tin

tout

} value()

o
key()

o
query()

Figure 1.8: Mechan-
ics of an attention layer.
Queries from the ques-
tion match keys from the
tokens representing bird
heads; value vectors of
these two tokens then
contribute the most to the
sum that yields tout’s code
vector. (Softmax omitted
in this example.)

1.6.2 Self-Attention

We use the following
color scheme here and
later in this chapter:

query key value

As we have now seen, attention is a general-purpose way of dynamically pooling informa-
tion in one set of tokens based on queries from a different set of tokens. The next question
we will consider is which tokens should be doing the querying and which should we be
matching against? In the example from the last section, the answer was intuitive because
we had a textual question that was asking about content in a visual image, so naturally
the text gives the query and we match against tokens that represent the image. But can we
come up with a more generic architecture where we don’t have to hand design which tokens
interact in which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If Tin is a set of N input tokens, then we have N queries, N weighted sums,
and N output tokens to form Tout. This is visualized below in figure 1.9.

A

o f

self attn layer

Tin

Tout

Figure 1.9: A self-
attention layer.

32

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 9

=<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit> =<latexit sha1_base64="N4K8kxcvgxRX8JeLT3KXzE08Y80=">AAACRXicbVDLSsNAFJ3UV42vVpdugkVwUUJSi3YjFN24bME+oA1lMrlph04ezEyEEvIFbvWb/AY/wp241UnbhW29MMPhnHOZM8eNGRXSsj60wtb2zu5ecV8/ODw6PimVT7siSjiBDolYxPsuFsBoCB1JJYN+zAEHLoOeO33I9d4zcEGj8EnOYnACPA6pTwmWimrfjUoVy7TmY2wCewkqaDmtUVkzh15EkgBCSRgWYmBbsXRSzCUlDDJ9mAiIMZniMQwUDHEAwknnSTPjUjGe4UdcnVAac/bvRooDIWaBq5wBlhOxruXkf9ogkX7DSWkYJxJCsnjIT5ghIyP/tuFRDkSymQKYcKqyGmSCOSZSlaPrQw981eA8TxorPhgtEqd87GapZdaqqpWbat5Itur2sMQrZmXJzfX8um5kqmF7vc9N0K2ZtmXa7Xqleb/suojO0QW6Qja6RU30iFqogwgC9IJe0Zv2rn1qX9r3wlrQljtnaGW0n1/1xK2K</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit><latexit sha1_base64="9RMRNFKMpF7w7s+/6cZMfLEqs8c=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlY0J041ISuSTQkOn0FCZML5mZmpCmT+DWp/FNfAcfwimwEHDhSWby5z/fZM7848aMCmlZX5q+s7u3f1A4LB4dn5yelcqVnogSTqBLIhbxgYsFMBpCV1LJYBBzwIHLoO/OnvJ+/w24oFH4KucxOAGehNSnBEtldR7GpZplWosytoW9EjW0qv/h47JmjryIJAGEkjAsxNC2YumkmEtKGGTFUSIgxmSGJzBUMsQBCCddPCczrpXjGX7E1QqlsXB/n0hxIMQ8cBUZYDkVm73c/Ks3TKTfclIaxomEkCwv8hNmyMjIszE8yoFINlcCE07VrAaZYo6JVAkWiyMPfBXzYp40Vn4wXk6c8ombpZbZqKss7up5Dtk67WGJ12CF5HAz325bmcrV3kxxW/Qapm2ZdqdZaz+uPqSAqugS3SAb3aM2ekYvqIsIAvSOPtCn9q1X9Au9ukR1bXXmHK2VfvUDUOSxBw==</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

key
<latexit sha1_base64="8XQk23dAeD+FllMkD4nYRoqwJVI=">AAACUHicbZBLS8NAFIVv6ju+dekmWAQXEhIt6lJ041LBqtCUMpnc1KGTBzM3Ygn5G271N7nzn7jTSVvBqhdmcjj3DDl8YS6FJs97txozs3PzC4tL9vLK6tr6xubWrc4KxbHNM5mp+5BplCLFNgmSeJ8rZEko8S4cXNT7u0dUWmTpDQ1z7Casn4pYcEbGCgLCJyIqBzisehtNz/VG4/wV/kQ0YTJXvU3LDaKMFwmmxCXTuuN7OXVLpkhwiZUdFBpzxgesjx0jU5ag7paj0pWzZ5zIiTNlTkrOyP35omSJ1sMkNMmE0YP+vavN/3adguLTbinSvCBM+fhHcSEdypyagBMJhZzk0AjGlTBdHf7AFONkONl2EGFsYI76lLnxk964can6YVV67uGBoXJ8UBOpptMRIzYVNpE63Kqvo9OasP+b519xe+j6nutft5pn5xPWi7ADu7APPpzAGVzCFbSBQw7P8AKv1pv1YX02rHH0+wvbMDUN+wsIo7EH</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit><latexit sha1_base64="jXSiZoaJv3KfjzSpmy3EqJwCR1Q=">AAACdXicjVHLSsNAFJ3EV63P6lKEYFVcSEyqaJdFNy4VrApNKZPJTR06eTBzI4aQ33Dr1/gRfolbJ20XVl14YYbDOecyd871U8EVOs6HYc7NLywu1ZbrK6tr6xubja17lWSSQZclIpGPPlUgeAxd5CjgMZVAI1/Agz+6qvSHZ5CKJ/Ed5in0IzqMecgZRU15HsILIhYjyMvBZtOxnXFZv4E7BU0yrf/ZBw3D9oKEZRHEyARVquc6KfYLKpEzAWXdyxSklI3oEHoaxjQC1S/GPyutA80EVphIfWK0xuz3joJGSuWRr50RxSf1U6vIv7RehmG7X/A4zRBiNnkozISFiVXFZAVcAkORa0CZ5HpWiz1RSRnqMOt1L4BQJz6ep0g1Hw0mExdy6JeFY7eOdRbnx1UO5aw7oEhnzNpSmc+q67RdrcH9meJvcN+yXcd2b8+ancvpQmpkh+yRI+KSC9Ih1+SGdAkjKXklb+Td+DR3zX3zcGI1jWnPNpkp8+QLQhe2gg==</latexit>

value
<latexit sha1_base64="byjZaYZLt07/mv2vhvwGRRofFJo=">AAACUnicbZJNS8NAEIY39bt+tXr0EiyCBwmJFu2x6MWjgtVCW8tkM6mLmw92J8US8j+86m/y4l/x5KbtwaoDu7y88w47PKyfSqHJdT+tytLyyura+kZ1c2t7Z7dW37vXSaY4dngiE9X1QaMUMXZIkMRuqhAiX+KD/3xV9h/GqLRI4juapDiIYBSLUHAgYz32CV+IKB+DzLAY1hqu407L/iu8uWiwed0M65bTDxKeRRgTl6B1z3NTGuSgSHCJRbWfaUyBP8MIe0bGEKEe5NO1C/vIOIEdJsqcmOyp+3Mih0jrSeSbZAT0pH/3SvO/Xi+jsDXIRZxmhDGfPRRm0qbELhnYgVDISU6MAK6E2dXmT6CAkyFVrfYDDA3O6T55avxoONs4VyO/yF3n9MRQOT8piRSL6QAIFsImUoab5XXWKgl7v3n+Ffenjuc63m2z0b6cs15nB+yQHTOPXbA2u2Y3rMM4U+yVvbF368P6qphfMotWrPnMPluoytY3ycOw8A==</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit><latexit sha1_base64="hER0VDvfuIe5wqR+zKSUO30FuIQ=">AAACd3icjVHLTsMwEHTDu7wKHDkQUYE4oCgpCDgiuHAEidJKbak2zqZYdR6yN4gqyn9w5Wv4Bj6FG07bAwUOrGRrNDMrr2f9VApNrvtRsebmFxaXlleqq2vrG5u1re0HnWSKY5MnMlFtHzRKEWOTBElspwoh8iW2/OF1qbeeUWmRxPc0SrEXwSAWoeBAhnrsEr4QUf4MMsOiX6u7jjsu+zfwpqDOpvU/e3+r4nSDhGcRxsQlaN3x3JR6OSgSXGJR7WYaU+BDGGDHwBgi1L18/LfCPjBMYIeJMicme8x+78gh0noU+cYZAT3pn1pJ/qV1MgovermI04ww5pOHwkzalNhlUHYgFHKSIwOAK2FmtfkTKOBk4qxWuwGGJvPxPHlq+Kg/mThXA7/IXadxbLI4Oy5zKGbdARDMmI2lNJ+W18lFuQbvZ4q/wUPD8VzHuzutX15NF7LMdtk+O2IeO2eX7IbdsibjTLFX9sbeK5/WnnVoHU2sVmXas8NmyvK+AEUQt2o=</latexit>

query
<latexit sha1_base64="FOx7xLfuugp6mOVEb6sPYDsgGgQ=">AAACUnicbZLLTsJAFIaneEPEC7p000hMXJCmVaMsiW5cYiKXBJBMp6cwYXpx5tRImr6HW30mN76KK6fAQsCTzOTPf/6TOfkybiy4Qtv+Ngobm1vbO8Xd0l55/+DwqHLcVlEiGbRYJCLZdakCwUNoIUcB3VgCDVwBHXdyn/c7ryAVj8InnMYwCOgo5D5nFLX13Ed4Q8T0JQE5zYZHVduyZ2WuC2chqmRRzWHFsPpexJIAQmSCKtVz7BgHKZXImYCs1E8UxJRN6Ah6WoY0ADVIZ2tn5rl2PNOPpD4hmjP370RKA6WmgauTAcWxWu3l5n+9XoJ+fZDyME4QQjZ/yE+EiZGZMzA9LoGhmGpBmeR6V5ONqaQMNalSqe+Br3HO9klj7QfD+capHLlZaluXNU3lppYTyZbTHkW6FNaRPHydX1f1nLCzynNdtC8tx7acx+tq427BukhOyRm5IA65JQ3yQJqkRRiR5J18kE/jy/gp6F8yjxaMxcwJWapC+Rf47LEJ</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit><latexit sha1_base64="j7Mn2eOwtEWZasgBUe/cPYWpA/s=">AAACd3icjVHLTsMwEHTDu7zhyIGICtRDFSUFAUcEF44g0YfUlMpxNq1V54G9QURR/oMrX8M38CnccNoeKHBgJVujmVl5Peslgiu07Y+KsbC4tLyyulZd39jc2t7Z3WurOJUMWiwWsex6VIHgEbSQo4BuIoGGnoCON74p9c4zSMXj6AGzBPohHUY84Iyiph5dhBdEzJ9SkFkx2KnZlj0p8zdwZqBGZvU/+2C3Yrl+zNIQImSCKtVz7AT7OZXImYCi6qYKEsrGdAg9DSMagurnk78V5rFmfDOIpT4RmhP2e0dOQ6Wy0NPOkOJI/dRK8i+tl2Jw2c95lKQIEZs+FKTCxNgsgzJ9LoGhyDSgTHI9q8lGVFKGOs5q1fUh0JlP5skTzYeD6cS5HHpFblvNhs7ivFHmUMy7fYp0zqwtpfmsvE4vyzU4P1P8DdpNy7Et5/6sdnU9W8gqOSBHpE4cckGuyC25Iy3CiCSv5I28Vz6NQ+PEqE+tRmXWs0/mynC+AHfWt4M=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

<latexit sha1_base64="1kCCmSXRiH1bZWzfFMe07cAl7QE=">AAACS3icbVDNSsNAGNxUq7X+tXr0slgEDyUkWrTHUi8eK9gfaELZbDbp0s0PuxuhhDyEV30mH8Dn8CYe3KQ52NYPdhlm5mNnx4kZFdIwPrXKzm51b792UD88Oj45bTTPRiJKOCZDHLGITxwkCKMhGUoqGZnEnKDAYWTsLB5yffxCuKBR+CyXMbED5IfUoxhJRY2tPvV9K501WoZuFAO3gVmCFihnMGtquuVGOAlIKDFDQkxNI5Z2irikmJGsbiWCxAgvkE+mCoYoIMJOi7wZvFKMC72IqxNKWLB/N1IUCLEMHOUMkJyLTS0n/9OmifS6dkrDOJEkxKuHvIRBGcH889ClnGDJlgogzKnKCvEccYSlqqhet1ziqR6LPGms+GC2Spxy38lSQ79pq1bu2nkj2brbRRKtmZUlN3fy67abqYbNzT63wehGNw3dfOq0ev2y6xq4AJfgGpjgHvTAIxiAIcBgAV7BG3jXPrQv7Vv7WVkrWrlzDtamUv0FbsivNg==</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit><latexit sha1_base64="x/pexqeQx+dL33hd9TTAv8VGlYc=">AAACcHicjZHdSsMwGIbT+jfr36YnggdWhyAipZ1DdzjmiYcK7gfWMtI07cLSH5JUGKUX4alX4214G16BadcDt3ngBwkv7/eEfHnjJpRwYZpfirqxubW9U9vV9vYPDo/qjeMBj1OGcB/FNGYjF3JMSYT7ggiKRwnDMHQpHrqzx6I/fMOMkzh6FfMEOyEMIuITBIW0hnaPBIGdTepN0zDL0teFVYkmqOp/+KShGLYXozTEkUAUcj62zEQ4GWSCIIpzzU45TiCawQCPpYxgiLmTlY/K9SvpeLofM7kioZfu7xMZDDmfh64kQyimfLVXmH/1xqnwO05GoiQVOEKLi/yU6iLWi4R0jzCMBJ1LAREjclYdTSGDSMgcNc32sC/DLufJEumHk8XEGQvcPDON1q3M4v62yCFfpj0o4BIskQJuF9tdJ5e5WqsprotBy7BMw3ppN7u96kNq4AxcgmtggQfQBU/gGfQBAjPwDj7Ap/Ktnqrn6sUCVZXqzAlYKvXmByXPs7I=</latexit>

X
<latexit sha1_base64="dzHQa/6+0YmYEfNYk9kk8qb676k=">AAACSHicbVDNSsNAGNzEvxr/Wj16CRbBQwmJFu2x6MVjBfsDTSibzaZdupuE3Y1QQl7Bqz6Tb+BbeBNvbtIcbOsHuwwz87Gz4yeUCGnbn5q+tb2zu1fbNw4Oj45P6o3TgYhTjnAfxTTmIx8KTEmE+5JIikcJx5D5FA/9+UOhD18wFySOnuUiwR6D04iEBEFZUK5I2aTetC27HHMTOBVogmp6k4ZmuUGMUoYjiSgUYuzYifQyyCVBFOeGmwqcQDSHUzxWMIIMCy8rw+bmpWICM4y5OpE0S/bvRgaZEAvmKyeDcibWtYL8TxunMux4GYmSVOIILR8KU2rK2Cx+bgaEYyTpQgGIOFFZTTSDHCKp+jEMN8ChKrHMkyWKZ5Nl4oxP/TyzreuWauW2VTSSr7oDKOGKWVkKc7u4bjq5athZ73MTDK4tx7acp3aze191XQPn4AJcAQfcgS54BD3QBwjMwCt4A+/ah/alfWs/S6uuVTtnYGV0/RciLq4d</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit><latexit sha1_base64="INX0UV0Vj2ucsCjVvr6eVVm7OIc=">AAACbXicjZHdSsMwGIbT+jfn36Z4pEhxiB6M0s6hOxx64qGC+4G1jDRNt7CkLUkqjNJb8NSr8UK8Cm/BtOuB2zzwg4SX93tCvrzxYkqEtKwvTd/Y3NreqexW9/YPDo9q9eO+iBKOcA9FNOJDDwpMSYh7kkiKhzHHkHkUD7zZY94fvGEuSBS+ynmMXQYnIQkIgjK3HJGwca1hmVZRxrqwS9EAZf0PH9c10/EjlDAcSkShECPbiqWbQi4JojirOonAMUQzOMEjJUPIsHDT4kWZcaUc3wgirlYojcL9fSKFTIg58xTJoJyK1V5u/tUbJTLouCkJ40TiEC0uChJqyMjI4zF8wjGSdK4ERJyoWQ00hRwiqUKsVh0fByrpYp40Vj4bLyZO+cTLUstsNVUWd808h2yZ9qGES7BCcridb7edTOVqr6a4Lvot07ZM+6Xd6D6UH1IBZ+AS3AAb3IMueALPoAcQmIJ38AE+tW/9VD/XLxaorpVnTsBS6dc/tHCymQ==</latexit>

What is
the color
of the
impala?

0.1 0.2 1 0.1

0.1 0.2 1 0.1

Tin

tout

} value()

o
key()

o
query()

Figure 1.8: Mechan-
ics of an attention layer.
Queries from the ques-
tion match keys from the
tokens representing bird
heads; value vectors of
these two tokens then
contribute the most to the
sum that yields tout’s code
vector. (Softmax omitted
in this example.)

1.6.2 Self-Attention

We use the following
color scheme here and
later in this chapter:

query key value

As we have now seen, attention is a general-purpose way of dynamically pooling informa-
tion in one set of tokens based on queries from a different set of tokens. The next question
we will consider is which tokens should be doing the querying and which should we be
matching against? In the example from the last section, the answer was intuitive because
we had a textual question that was asking about content in a visual image, so naturally
the text gives the query and we match against tokens that represent the image. But can we
come up with a more generic architecture where we don’t have to hand design which tokens
interact in which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If Tin is a set of N input tokens, then we have N queries, N weighted sums,
and N output tokens to form Tout. This is visualized below in figure 1.9.

A

o f

self attn layer

Tin

Tout

Figure 1.9: A self-
attention layer.

33

8 CHAPTER 1. TRANSFORMERS

1.5.2 Self-attention

As we have now seen, attention is a general-purpose way of dynamically pooling information
in one set of tokens based on queries from a di↵erent set of tokens. The next question we will
consider is: “which tokens should be doing the querying and which should we be matching
against?” In the example from the last section, the answer was intuitive because we had a
textual question that was asking about content in a visual image, so naturally the text gives
the query and we match against tokens that represent the image. But can we come up with
a more generic architecture where we don’t have to hand design which tokens interact in
which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If tin is length N then we have N queries, N weighted sums, and N output
tokens to form tout:

A

o f

self attn layer

tin

tout

The equations for self-attention can be written in an especially compact form:

Qin = ZinWq / query matrix (1.25)

Kin = ZinWk / key matrix (1.26)

Vin = ZinWv / value matrix (1.27)

A = f(tin) = softmax(
QinK

T
inp

d
) / attention matrix (1.28)

Zout = AVin (1.29)

d is dimensionality of the query/key vector (since we take a dot product between query and
key their dimensionalities much match). In expanded detail, here are the full mechanics of
an attention layer:

The nodes outlined in
blue correspond to each

other; they represent one
query being matched

against one key to result
a scalar similarity value,

in the gray box, which
acts as a weight in the

weighted sum computed
by A.

A A

N

N = N

M N

M

self attn layer (expanded)

Zin

Zout

Qin,Kin,Vin

This fully defines a self-attention layer, which is the kind of attention layer used in
transformers. Before we move on though, let’s think through the intuition of what self-
attention might be doing.

Consider that we are processing the Guineafowl image and our task is semantic segmen-
tation (label each patch with an object class). First, we tokenize the image so that each

i
i

i
i

i
i

i
i

10 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

To compute the query, key, and value for a set of input tokens, Tin, we apply the same
linear transformations to each token in the set, resulting in matrices Qin, Kin 2RN⇥m and
Vin 2RN⇥d, where each row is the query/key/value for each token:

Note that the query and
key vectors must have the

same dimensionality, m,
because we take a dot

product between them.
Conversely, the value

vectors must match the
dimensionality of the

token code vectors
because these are summed

up to produce the new
token code vectors)

Qin =

2

64
qT

1
...

qT
N

3

75 =

2

64
(Wqt1)T

...
(WqtN)T

3

75 = TinW
T
q / query matrix (1.17)

Kin =

2

64
kT

1
...

kT
N

3

75 =

2

64
(Wkt1)T

...
(WktN)T

3

75 = TinW
T
k / key matrix (1.18)

Vin =

2

64
vT

1
...

vT
N

3

75 =

2

64
(Wvt1)T

...
(WvtN)T

3

75 = TinW
T
v / value matrix (1.19)

Finally, we have the attention equation:

A = f (Tin) = softmax
⇣QinKT

inp
m

⌘
/ attention matrix (1.20)

Tout = AVin (1.21)

where the softmax is taken within each row (i.e., over the vector of matches for each sep-
arate query vector, like in equation (1.14)). In expanded detail, here are the full mechanics
of an attention layer (figure 1.10):

Figure 1.10: Self-
attention layer expanded.

The nodes with the dashed
outline correspond to

each other; they repre-
sent one query being
matched against one

key to result in a scalar
similarity value, in the

gray box, which acts as
a weight in the weighted

sum computed by A.

A A

N

N = N

M N

M

self attn layer (expanded)

Tin

Tout

Qin, Kin, Vin

This fully defines a self-attention layer, which is the kind of attention layer used in trans-
formers. Before we move on though, let’s think through the intuition of what self-attention
might be doing.

Consider that we are processing the safari image, and our task is semantic segmentation
(label each patch with an object class). We start by tokenizing the image so that each patch
is represented by a token. Now we have a token, t2, that represents the patch of pixels

i
i

i
i

i
i

i
i

10 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

To compute the query, key, and value for a set of input tokens, Tin, we apply the same
linear transformations to each token in the set, resulting in matrices Qin, Kin 2RN⇥m and
Vin 2RN⇥d, where each row is the query/key/value for each token:

Note that the query and
key vectors must have the

same dimensionality, m,
because we take a dot

product between them.
Conversely, the value

vectors must match the
dimensionality of the

token code vectors
because these are summed

up to produce the new
token code vectors)

Qin =

2

64
qT

1
...

qT
N

3

75 =

2

64
(Wqt1)T

...
(WqtN)T

3

75 = TinW
T
q / query matrix (1.17)

Kin =

2

64
kT

1
...

kT
N

3

75 =

2

64
(Wkt1)T

...
(WktN)T

3

75 = TinW
T
k / key matrix (1.18)

Vin =

2

64
vT

1
...

vT
N

3

75 =

2

64
(Wvt1)T

...
(WvtN)T

3

75 = TinW
T
v / value matrix (1.19)

Finally, we have the attention equation:

A = f (Tin) = softmax
⇣QinKT

inp
m

⌘
/ attention matrix (1.20)

Tout = AVin (1.21)

where the softmax is taken within each row (i.e., over the vector of matches for each sep-
arate query vector, like in equation (1.14)). In expanded detail, here are the full mechanics
of an attention layer (figure 1.10):

Figure 1.10: Self-
attention layer expanded.

The nodes with the dashed
outline correspond to

each other; they repre-
sent one query being
matched against one

key to result in a scalar
similarity value, in the

gray box, which acts as
a weight in the weighted

sum computed by A.

A A

N

N = N

M N

M

self attn layer (expanded)

Tin

Tout

Qin, Kin, Vin

This fully defines a self-attention layer, which is the kind of attention layer used in trans-
formers. Before we move on though, let’s think through the intuition of what self-attention
might be doing.

Consider that we are processing the safari image, and our task is semantic segmentation
(label each patch with an object class). We start by tokenizing the image so that each patch
is represented by a token. Now we have a token, t2, that represents the patch of pixels

i
i

i
i

i
i

i
i

10 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

To compute the query, key, and value for a set of input tokens, Tin, we apply the same
linear transformations to each token in the set, resulting in matrices Qin, Kin 2RN⇥m and
Vin 2RN⇥d, where each row is the query/key/value for each token:

Note that the query and
key vectors must have the

same dimensionality, m,
because we take a dot

product between them.
Conversely, the value

vectors must match the
dimensionality of the

token code vectors
because these are summed

up to produce the new
token code vectors)

Qin =

2

64
qT

1
...

qT
N

3

75 =

2

64
(Wqt1)T

...
(WqtN)T

3

75 = TinW
T
q / query matrix (1.17)

Kin =

2

64
kT

1
...

kT
N

3

75 =

2

64
(Wkt1)T

...
(WktN)T

3

75 = TinW
T
k / key matrix (1.18)

Vin =

2

64
vT

1
...

vT
N

3

75 =

2

64
(Wvt1)T

...
(WvtN)T

3

75 = TinW
T
v / value matrix (1.19)

Finally, we have the attention equation:

A = f (Tin) = softmax
⇣QinKT

inp
m

⌘
/ attention matrix (1.20)

Tout = AVin (1.21)

where the softmax is taken within each row (i.e., over the vector of matches for each sep-
arate query vector, like in equation (1.14)). In expanded detail, here are the full mechanics
of an attention layer (figure 1.10):

Figure 1.10: Self-
attention layer expanded.

The nodes with the dashed
outline correspond to

each other; they repre-
sent one query being
matched against one

key to result in a scalar
similarity value, in the

gray box, which acts as
a weight in the weighted

sum computed by A.

A A

N

N = N

M N

M

self attn layer (expanded)

Tin

Tout

Qin, Kin, Vin

This fully defines a self-attention layer, which is the kind of attention layer used in trans-
formers. Before we move on though, let’s think through the intuition of what self-attention
might be doing.

Consider that we are processing the safari image, and our task is semantic segmentation
(label each patch with an object class). We start by tokenizing the image so that each patch
is represented by a token. Now we have a token, t2, that represents the patch of pixels

i
i

i
i

i
i

i
i

10 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

To compute the query, key, and value for a set of input tokens, Tin, we apply the same
linear transformations to each token in the set, resulting in matrices Qin, Kin 2RN⇥m and
Vin 2RN⇥d, where each row is the query/key/value for each token:

Note that the query and
key vectors must have the

same dimensionality, m,
because we take a dot

product between them.
Conversely, the value

vectors must match the
dimensionality of the

token code vectors
because these are summed

up to produce the new
token code vectors)

Qin =

2

64
qT

1
...

qT
N

3

75 =

2

64
(Wqt1)T

...
(WqtN)T

3

75 = TinW
T
q / query matrix (1.17)

Kin =

2

64
kT

1
...

kT
N

3

75 =

2

64
(Wkt1)T

...
(WktN)T

3

75 = TinW
T
k / key matrix (1.18)

Vin =

2

64
vT

1
...

vT
N

3

75 =

2

64
(Wvt1)T

...
(WvtN)T

3

75 = TinW
T
v / value matrix (1.19)

Finally, we have the attention equation:

A = f (Tin) = softmax
⇣QinKT

inp
m

⌘
/ attention matrix (1.20)

Tout = AVin (1.21)

where the softmax is taken within each row (i.e., over the vector of matches for each sep-
arate query vector, like in equation (1.14)). In expanded detail, here are the full mechanics
of an attention layer (figure 1.10):

Figure 1.10: Self-
attention layer expanded.

The nodes with the dashed
outline correspond to

each other; they repre-
sent one query being
matched against one

key to result in a scalar
similarity value, in the

gray box, which acts as
a weight in the weighted

sum computed by A.

A A

N

N = N

M N

M

self attn layer (expanded)

Tin

Tout

Qin, Kin, Vin

This fully defines a self-attention layer, which is the kind of attention layer used in trans-
formers. Before we move on though, let’s think through the intuition of what self-attention
might be doing.

Consider that we are processing the safari image, and our task is semantic segmentation
(label each patch with an object class). We start by tokenizing the image so that each patch
is represented by a token. Now we have a token, t2, that represents the patch of pixels

34

A family of linear layers
Wiring graph Matrix

1
<latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit>

1
<latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit>

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

co
nv

<latexit sha1_base64="uyfuIT0ffZDf1mm9+H1oq0MzRu4=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF+wFtKJvtpl262Y27k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbITFMcMkayFGwdqIZiUPBWuHodua3xkwbruQDThIWxGQgecQpQSsFXWRPiJhRJcfTXrniVb053FXi56QCOeq98le3r2gaM4lUEGM6vpdgkBGNnAo2LXVTwxJCR2TAOpZKEjMTZPOjp+6ZVfpupLQtie5c/T2RkdiYSRzazpjg0Cx7M/E/r5NidB1kXCYpMkkXi6JUuKjcWQJun2tGUUwsIVRze6tLh0QTijankg3BX355lTQvqr5X9e8vK7WbPI4inMApnIMPV1CDO6hDAyg8wjO8wpszdl6cd+dj0Vpw8plj+APn8we3C5Kz</latexit><latexit sha1_base64="oQ7cZyVgu5u8Gyz/faKm0DGvntY=">AAACGXicjVC7SgNBFL3rM8ZX1NJmMQhWYVcELYM2lgrmAckSZiezyZDZmXXmbjAs+Q4LG3/FRsRSK//GSbKFJhYeGDiccy537gkTwQ163peztLyyurZe2Chubm3v7Jb29utGpZqyGlVC6WZIDBNcshpyFKyZaEbiULBGOLia+I0h04YreYejhAUx6UkecUrQSkEb2QMiZlTJ4bhTKnsVbwp3kfg5KUOO/8U7pY92V9E0ZhKpIMa0fC/BICMaORVsXGynhiWEDkiPtSyVJGYmyKaXjd1jq3TdSGn7JLpT9edERmJjRnFokzHBvpn3JuJfXivF6CLIuExSZJLOFkWpcFG5k5rcLteMohhZQqjm9q8u7RNNKNoyi/Z0f/7QRVI/rfhexb89K1cv884KcAhHcAI+nEMVruEGakDhHh7hGV6dJ+fFeXPeZ9ElJ585gF9wPr8B4a6aLA==</latexit><latexit sha1_base64="oQ7cZyVgu5u8Gyz/faKm0DGvntY=">AAACGXicjVC7SgNBFL3rM8ZX1NJmMQhWYVcELYM2lgrmAckSZiezyZDZmXXmbjAs+Q4LG3/FRsRSK//GSbKFJhYeGDiccy537gkTwQ163peztLyyurZe2Chubm3v7Jb29utGpZqyGlVC6WZIDBNcshpyFKyZaEbiULBGOLia+I0h04YreYejhAUx6UkecUrQSkEb2QMiZlTJ4bhTKnsVbwp3kfg5KUOO/8U7pY92V9E0ZhKpIMa0fC/BICMaORVsXGynhiWEDkiPtSyVJGYmyKaXjd1jq3TdSGn7JLpT9edERmJjRnFokzHBvpn3JuJfXivF6CLIuExSZJLOFkWpcFG5k5rcLteMohhZQqjm9q8u7RNNKNoyi/Z0f/7QRVI/rfhexb89K1cv884KcAhHcAI+nEMVruEGakDhHh7hGV6dJ+fFeXPeZ9ElJ585gF9wPr8B4a6aLA==</latexit><latexit sha1_base64="oQ7cZyVgu5u8Gyz/faKm0DGvntY=">AAACGXicjVC7SgNBFL3rM8ZX1NJmMQhWYVcELYM2lgrmAckSZiezyZDZmXXmbjAs+Q4LG3/FRsRSK//GSbKFJhYeGDiccy537gkTwQ163peztLyyurZe2Chubm3v7Jb29utGpZqyGlVC6WZIDBNcshpyFKyZaEbiULBGOLia+I0h04YreYejhAUx6UkecUrQSkEb2QMiZlTJ4bhTKnsVbwp3kfg5KUOO/8U7pY92V9E0ZhKpIMa0fC/BICMaORVsXGynhiWEDkiPtSyVJGYmyKaXjd1jq3TdSGn7JLpT9edERmJjRnFokzHBvpn3JuJfXivF6CLIuExSZJLOFkWpcFG5k5rcLteMohhZQqjm9q8u7RNNKNoyi/Z0f/7QRVI/rfhexb89K1cv884KcAhHcAI+nEMVruEGakDhHh7hGV6dJ+fFeXPeZ9ElJ585gF9wPr8B4a6aLA==</latexit>

at
tn

<latexit sha1_base64="FSPiQudDRPExL+2OmiLnWxMHfZM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdzvzWGLQRsXrASQJ+xAZKhIIztJLfRXhCxIwhqmmvXHGr7hx0lXg5qZAc9V75q9uPeRqBQi6ZMR3PTdDPmEbBJUxL3dRAwviIDaBjqWIRGD+bHz2lZ1bp0zDWthTSufp7ImORMZMosJ0Rw6FZ9mbif14nxfDaz4RKUgTFF4vCVFKM6SwB2hcaOMqJJYxrYW+lfMg042hzKtkQvOWXV0nzouq5Ve/+slK7yeMokhNySs6JR65IjdyROmkQTh7JM3klb87YeXHenY9Fa8HJZ47JHzifP7iakrQ=</latexit><latexit sha1_base64="7zd+7OjFyKwc97v3XNtSuejVHLU=">AAACGXicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD0iWMDuZTYbMzq4zd8Ww5DssbPwVGxFLrfwbJ8kWmlh4YOBwzrncuSdIpDDoul9OYWl5ZXWtuF7a2Nza3inv7jVMnGrG6yyWsW4F1HApFK+jQMlbieY0CiRvBsPLid+859qIWN3iKOF+RPtKhIJRtJLfQf6AiBlFVONuueJW3SnIIvFyUoEc/4t3yx+dXszSiCtkkhrT9twE/YxqFEzycamTGp5QNqR93rZU0YgbP5teNiZHVumRMNb2KSRT9edERiNjRlFgkxHFgZn3JuJfXjvF8NzPhEpS5IrNFoWpJBiTSU2kJzRnKEeWUKaF/SthA6opQ1tmyZ7uzR+6SBonVc+tejenldpF3lkRDuAQjsGDM6jBFVxDHRjcwSM8w6vz5Lw4b877LFpw8pl9+AXn8xvjYpot</latexit><latexit sha1_base64="7zd+7OjFyKwc97v3XNtSuejVHLU=">AAACGXicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD0iWMDuZTYbMzq4zd8Ww5DssbPwVGxFLrfwbJ8kWmlh4YOBwzrncuSdIpDDoul9OYWl5ZXWtuF7a2Nza3inv7jVMnGrG6yyWsW4F1HApFK+jQMlbieY0CiRvBsPLid+859qIWN3iKOF+RPtKhIJRtJLfQf6AiBlFVONuueJW3SnIIvFyUoEc/4t3yx+dXszSiCtkkhrT9twE/YxqFEzycamTGp5QNqR93rZU0YgbP5teNiZHVumRMNb2KSRT9edERiNjRlFgkxHFgZn3JuJfXjvF8NzPhEpS5IrNFoWpJBiTSU2kJzRnKEeWUKaF/SthA6opQ1tmyZ7uzR+6SBonVc+tejenldpF3lkRDuAQjsGDM6jBFVxDHRjcwSM8w6vz5Lw4b877LFpw8pl9+AXn8xvjYpot</latexit><latexit sha1_base64="7zd+7OjFyKwc97v3XNtSuejVHLU=">AAACGXicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD0iWMDuZTYbMzq4zd8Ww5DssbPwVGxFLrfwbJ8kWmlh4YOBwzrncuSdIpDDoul9OYWl5ZXWtuF7a2Nza3inv7jVMnGrG6yyWsW4F1HApFK+jQMlbieY0CiRvBsPLid+859qIWN3iKOF+RPtKhIJRtJLfQf6AiBlFVONuueJW3SnIIvFyUoEc/4t3yx+dXszSiCtkkhrT9twE/YxqFEzycamTGp5QNqR93rZU0YgbP5teNiZHVumRMNb2KSRT9edERiNjRlFgkxHFgZn3JuJfXjvF8NzPhEpS5IrNFoWpJBiTSU2kJzRnKEeWUKaF/SthA6opQ1tmyZ7uzR+6SBonVc+tejenldpF3lkRDuAQjsGDM6jBFVxDHRjcwSM8w6vz5Lw4b877LFpw8pl9+AXn8xvjYpot</latexit>

fc<latexit sha1_base64="LnXcFLJ64V7hUuYXfzQQfaJv++0=">AAACT3icbZBLS8NAFIUn8dXGty7dBIvgooRERV0W3bhUsA9oS5lMbtrByYOZG7GE/Ay3+ptc+kvciZOahW29MMPh3DPM4fNTwRW67qdhrqyurW/U6tbm1vbO7t7+QUclmWTQZolIZM+nCgSPoY0cBfRSCTTyBXT9p9ty330GqXgSP+I0hWFExzEPOaOorf4A4QUR85AVo72G67izsZeFV4kGqeZ+tG84gyBhWQQxMkGV6ntuisOcSuRMQGENMgUpZU90DH0tYxqBGuazzoV9op3ADhOpT4z2zP37IqeRUtPI18mI4kQt7krzv10/w/B6mPM4zRBi9vtRmAkbE7sEYAdcAkMx1YIyyXVXm02opAw1JssaBBBqlrM+ear9aPTbOJdjv8hd56ypqVw2SyLFfDqgSOfCOlKGL8rr/Lok7C3yXBadM8dzHe/hotG6qVjXyBE5JqfEI1ekRe7IPWkTRhLySt7Iu/FhfBnfZhU1jUockrkx6z/t17B9</latexit><latexit sha1_base64="ctCEAp8sTHsm45VX1qcS9BF6hmc=">AAACdHicjVHLTsJAFB3qC/EFutRFIyFxQZoWibIkunGpiTwSIGQ6vYUJ00dmbo2k6We49Wv8CX/EtVNgIeLCm8zk5JxzM3fOdWPBFdr2Z8HY2t7Z3Svulw4Oj45PypXTrooSyaDDIhHJvksVCB5CBzkK6McSaOAK6Lmz+1zvvYBUPAqfcR7DKKCTkPucUdTUYIjwioipz7JxuWpb9qLMTeCsQJWs6n/2caVgDb2IJQGEyARVauDYMY5SKpEzAVlpmCiIKZvRCQw0DGkAapQuPpaZNc14ph9JfUI0F+zPjpQGSs0DVzsDilP1W8vJv7RBgn5rlPIwThBCtnzIT4SJkZmnZHpcAkMx14AyyfWsJptSSRnqLEuloQe+DnwxTxprPhgvJ07lxM1S22rUdRY39TyHbN3tUaRrZm3Jzc38um7la3B+p7gJug3LsS3nqVlt360WUiTn5JJcEYfckjZ5II+kQxiJyBt5Jx+FL+PCqBq1pdUorHrOyFoZ1jcUtbX4</latexit><latexit sha1_base64="ctCEAp8sTHsm45VX1qcS9BF6hmc=">AAACdHicjVHLTsJAFB3qC/EFutRFIyFxQZoWibIkunGpiTwSIGQ6vYUJ00dmbo2k6We49Wv8CX/EtVNgIeLCm8zk5JxzM3fOdWPBFdr2Z8HY2t7Z3Svulw4Oj45PypXTrooSyaDDIhHJvksVCB5CBzkK6McSaOAK6Lmz+1zvvYBUPAqfcR7DKKCTkPucUdTUYIjwioipz7JxuWpb9qLMTeCsQJWs6n/2caVgDb2IJQGEyARVauDYMY5SKpEzAVlpmCiIKZvRCQw0DGkAapQuPpaZNc14ph9JfUI0F+zPjpQGSs0DVzsDilP1W8vJv7RBgn5rlPIwThBCtnzIT4SJkZmnZHpcAkMx14AyyfWsJptSSRnqLEuloQe+DnwxTxprPhgvJ07lxM1S22rUdRY39TyHbN3tUaRrZm3Jzc38um7la3B+p7gJug3LsS3nqVlt360WUiTn5JJcEYfckjZ5II+kQxiJyBt5Jx+FL+PCqBq1pdUorHrOyFoZ1jcUtbX4</latexit><latexit sha1_base64="ctCEAp8sTHsm45VX1qcS9BF6hmc=">AAACdHicjVHLTsJAFB3qC/EFutRFIyFxQZoWibIkunGpiTwSIGQ6vYUJ00dmbo2k6We49Wv8CX/EtVNgIeLCm8zk5JxzM3fOdWPBFdr2Z8HY2t7Z3Svulw4Oj45PypXTrooSyaDDIhHJvksVCB5CBzkK6McSaOAK6Lmz+1zvvYBUPAqfcR7DKKCTkPucUdTUYIjwioipz7JxuWpb9qLMTeCsQJWs6n/2caVgDb2IJQGEyARVauDYMY5SKpEzAVlpmCiIKZvRCQw0DGkAapQuPpaZNc14ph9JfUI0F+zPjpQGSs0DVzsDilP1W8vJv7RBgn5rlPIwThBCtnzIT4SJkZmnZHpcAkMx14AyyfWsJptSSRnqLEuloQe+DnwxTxprPhgvJ07lxM1S22rUdRY39TyHbN3tUaRrZm3Jzc38um7la3B+p7gJug3LsS3nqVlt360WUiTn5JJcEYfckjZ5II+kQxiJyBt5Jx+FL+PCqBq1pdUorHrOyFoZ1jcUtbX4</latexit>

Properties

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

1
<latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit>

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

1
<latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit><latexit sha1_base64="pmA/HjHGmdiSmfGZsk6vLuvv37s=">AAACO3icfZDLSgMxFIYz9VbrrdWlm8EqiEiZEUGXRV24EVuwF+iUciY9bUMzmSHJiGXoE7jVx/FBXLsTt+5NL4K24oHAx3/+JOf8fsSZ0o7zaqUWFpeWV9KrmbX1jc2tbG67qsJYUqzQkIey7oNCzgRWNNMc65FECHyONb9/OerX7lEqFoo7PYiwGUBXsA6joI1UdlvZvFNwxmXPgzuFPJlWqZWz9r12SOMAhaYclGq4TqSbCUjNKMdhxosVRkD70MWGQQEBqmYynnRoHxilbXdCaY7Q9lj9eSOBQKlB4BtnALqnZnsj8a9eI9ad82bCRBRrFHTyUSfmtg7t0dp2m0mkmg8MAJXMzGrTHkig2oSTyXhXaJaReGMevo1Qgg7lUeKB7AbwMDTLdb3jEf1nZOLbaMjk6s6mOA/Vk4LrFNzyab54MU04TXbJHjkkLjkjRXJNSqRCKEHySJ7Is/VivVnv1sfEmrKmd3bIr7I+vwAZpq14</latexit>

Fixed input dimensionality

learnable parametersN2
<latexit sha1_base64="HHd9nc+C4HVXDgAramQScWXfWiA=">AAACR3icbVC9TsMwGHTKXwl/LYwsERUSQxUlpYKOFSxMqAj6I7Whchynteo4ke0gVVEegRWeiUfgKdgQI06agbZ8kq3T3X3y+dyIEiEt61MrbWxube+Ud/W9/YPDo0r1uCfCmCPcRSEN+cCFAlPCcFcSSfEg4hgGLsV9d3ab6f0XzAUJ2ZOcR9gJ4IQRnyAoFfV4/9wYV2qWaeVjrAO7ADVQTGdc1cyRF6I4wEwiCoUY2lYknQRySRDFqT6KBY4gmsEJHirIYICFk+RZU+NcMZ7hh1wdJo2c/buRwECIeeAqZwDlVKxqGfmfNoyl33ISwqJYYoYWD/kxNWRoZB83PMIxknSuAEScqKwGmkIOkVT16PrIw77qMM+TRIoPxovECZ+4aWKZjbpq5aqeNZIuuz0o4ZJZWTJzM7suW6lq2F7tcx30GqZtmfZDs9a+Kboug1NwBi6ADa5BG9yBDugCBCbgFbyBd+1D+9K+tZ+FtaQVOydgaUraL27jrUA=</latexit><latexit sha1_base64="XqZpFYuFc2e4Wlbxr6WfQTZGD+U=">AAACbHicjZHdSsMwGIbT+jfr36aeDaE4FA+ktHPoDoeeeCSK7ge2OtI07cLSH5JUGKWX4KlX4414E16DadcDt3ngBwkv7/eEfHnjxJRwYZpfirq2vrG5VdnWdnb39g+qtcMejxKGcBdFNGIDB3JMSYi7ggiKBzHDMHAo7jvTu7zff8OMkyh8EbMY2wH0Q+IRBIW0nh9em+NqwzTMovRVYZWiAcr6Hz6uKcbIjVAS4FAgCjkfWmYs7BQyQRDFmTZKOI4hmkIfD6UMYYC5nRYPyvQz6bi6FzG5QqEX7u8TKQw4nwWOJAMoJny5l5t/9YaJ8Np2SsI4EThE84u8hOoi0vN0dJcwjASdSQERI3JWHU0gg0jIDDVt5GJPBl3Mk8bSD8bziVPmO1lqGs1LmcX1ZZ5Dtki7UMAFWCI53Mq3q3Ymc7WWU1wVvaZhmYb11Gp0bssPqYA6OAUXwAI3oAPuwSPoAgR88A4+wKfyrR6rdfVkjqpKeeYILJR6/gPigbG8</latexit><latexit sha1_base64="XqZpFYuFc2e4Wlbxr6WfQTZGD+U=">AAACbHicjZHdSsMwGIbT+jfr36aeDaE4FA+ktHPoDoeeeCSK7ge2OtI07cLSH5JUGKWX4KlX4414E16DadcDt3ngBwkv7/eEfHnjxJRwYZpfirq2vrG5VdnWdnb39g+qtcMejxKGcBdFNGIDB3JMSYi7ggiKBzHDMHAo7jvTu7zff8OMkyh8EbMY2wH0Q+IRBIW0nh9em+NqwzTMovRVYZWiAcr6Hz6uKcbIjVAS4FAgCjkfWmYs7BQyQRDFmTZKOI4hmkIfD6UMYYC5nRYPyvQz6bi6FzG5QqEX7u8TKQw4nwWOJAMoJny5l5t/9YaJ8Np2SsI4EThE84u8hOoi0vN0dJcwjASdSQERI3JWHU0gg0jIDDVt5GJPBl3Mk8bSD8bziVPmO1lqGs1LmcX1ZZ5Dtki7UMAFWCI53Mq3q3Ymc7WWU1wVvaZhmYb11Gp0bssPqYA6OAUXwAI3oAPuwSPoAgR88A4+wKfyrR6rdfVkjqpKeeYILJR6/gPigbG8</latexit><latexit sha1_base64="XqZpFYuFc2e4Wlbxr6WfQTZGD+U=">AAACbHicjZHdSsMwGIbT+jfr36aeDaE4FA+ktHPoDoeeeCSK7ge2OtI07cLSH5JUGKWX4KlX4414E16DadcDt3ngBwkv7/eEfHnjxJRwYZpfirq2vrG5VdnWdnb39g+qtcMejxKGcBdFNGIDB3JMSYi7ggiKBzHDMHAo7jvTu7zff8OMkyh8EbMY2wH0Q+IRBIW0nh9em+NqwzTMovRVYZWiAcr6Hz6uKcbIjVAS4FAgCjkfWmYs7BQyQRDFmTZKOI4hmkIfD6UMYYC5nRYPyvQz6bi6FzG5QqEX7u8TKQw4nwWOJAMoJny5l5t/9YaJ8Np2SsI4EThE84u8hOoi0vN0dJcwjASdSQERI3JWHU0gg0jIDDVt5GJPBl3Mk8bSD8bziVPmO1lqGs1LmcX1ZZ5Dtki7UMAFWCI53Mq3q3Ymc7WWU1wVvaZhmYb11Gp0bssPqYA6OAUXwAI3oAPuwSPoAgR88A4+wKfyrR6rdfVkjqpKeeYILJR6/gPigbG8</latexit>

Variable input dimensionality

+1 learnable parameters (= kernel size)k
<latexit sha1_base64="bYsrvwDbb7nymLioAKLE6hkbtYw=">AAACRXicbVDLSsNAFJ34rPHV6tJNsAguSkhq0S6Lbly2YB/QhjKZ3LRDJw9mJkIJ+QK3+k1+gx/hTtzqpM3Ctl6Y4XDOucyZ48aMCmlZH9rW9s7u3n7pQD88Oj45LVfOeiJKOIEuiVjEBy4WwGgIXUklg0HMAQcug747e8j1/jNwQaPwSc5jcAI8CalPCZaK6szG5aplWosxNoFdgCoqpj2uaObIi0gSQCgJw0IMbSuWToq5pIRBpo8SATEmMzyBoYIhDkA46SJpZlwpxjP8iKsTSmPB/t1IcSDEPHCVM8ByKta1nPxPGybSbzopDeNEQkiWD/kJM2Rk5N82PMqBSDZXABNOVVaDTDHHRKpydH3kga8aXORJY8UH42XilE/cLLXMek21clvLG8lW3R6WeMWsLLm5kV83zUw1bK/3uQl6ddO2TLvTqLbui65L6AJdomtkozvUQo+ojbqIIEAv6BW9ae/ap/alfS+tW1qxc45WRvv5BUxBrbg=</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit>

k
<latexit sha1_base64="bYsrvwDbb7nymLioAKLE6hkbtYw=">AAACRXicbVDLSsNAFJ34rPHV6tJNsAguSkhq0S6Lbly2YB/QhjKZ3LRDJw9mJkIJ+QK3+k1+gx/hTtzqpM3Ctl6Y4XDOucyZ48aMCmlZH9rW9s7u3n7pQD88Oj45LVfOeiJKOIEuiVjEBy4WwGgIXUklg0HMAQcug747e8j1/jNwQaPwSc5jcAI8CalPCZaK6szG5aplWosxNoFdgCoqpj2uaObIi0gSQCgJw0IMbSuWToq5pIRBpo8SATEmMzyBoYIhDkA46SJpZlwpxjP8iKsTSmPB/t1IcSDEPHCVM8ByKta1nPxPGybSbzopDeNEQkiWD/kJM2Rk5N82PMqBSDZXABNOVVaDTDHHRKpydH3kga8aXORJY8UH42XilE/cLLXMek21clvLG8lW3R6WeMWsLLm5kV83zUw1bK/3uQl6ddO2TLvTqLbui65L6AJdomtkozvUQo+ojbqIIEAv6BW9ae/ap/alfS+tW1qxc45WRvv5BUxBrbg=</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit><latexit sha1_base64="+9xRIworHrxORy8NLDTZ/OrKPr4=">AAACanicjZHLTsJAFIan9YZ4A1wZNo1o4oI0LRJlSXTjUhK5JEDIdHqKE6aXzExNSNMncOvT+Ca+gw/htHQh4MKTzOTPf77JnPnHiRgV0rK+NH1nd2//oHRYPjo+OT2rVGsDEcacQJ+ELOQjBwtgNIC+pJLBKOKAfYfB0Fk8Zv3hG3BBw+BFLiOY+ngeUI8SLJXVW8wqDcu08jK2hV2IBirqf/isqpkTNySxD4EkDAsxtq1IThPMJSUM0vIkFhBhssBzGCsZYB/ENMmfkxrXynENL+RqBdLI3d8nEuwLsfQdRfpYvorNXmb+1RvH0utMExpEsYSArC7yYmbI0MiyMVzKgUi2VAITTtWsBnnFHBOpEiyXJy54KuZ8niRSvj9bTZzwuZMmltlqqizumlkO6TrtYonXYIVkcDvbbjupytXeTHFbDFqmbZl2r93oPhQfUkJ1dIlukI3uURc9oWfURwQBekcf6FP71mv6hV5fobpWnDlHa6Vf/QCt+LE1</latexit>

Variable input dimensionality

learnable parameters|Wq|+ |Wk|+ |Wv|
<latexit sha1_base64="u5/w2yraJ0Je4+MZ173V9iUgsXo=">AAACwnicfVFNj9MwEHXD1xK+unDkYlEhIUBVgpDguII9cEEs0rZdqY4qx52kpv7I2pOFKuSP8U+4cYVfgdMNEmzRjmTp+b0Ze+ZNXinpMUm+D6IrV69dv7F3M751+87de8P9+1NvaydgIqyy7iTnHpQ0MEGJCk4qB1znCmb5+m2nz87AeWnNMW4qyDQvjSyk4BioxfCYqSAjZZrjKi+aWbs4pcxtuWd0V1xfJp714mI4SsbJNuguSHswIn0cLfYHU7a0otZgUCju/TxNKswa7lAKBW3Mag8VF2tewjxAwzX4rNmO39LHgVnSwrpwDNIt+3dFw7X3G52HzK5Xf1HryP9p8xqL11kjTVUjGHH+UVEripZ2XtKldCBQbQLgwsnQKxUr7rjA4Hgcs0MIwzh4Hx7+UIHjaN3ThnFXav6lDcOV7HmHLkuU5k9iQDEz8FlYrblZNsxYp9t5mjVMQYFMTYPzo5Q5Wa6Que7WxmET6UXfd8H0xThNxunHl6ODN/1O9shD8og8ISl5RQ7IO3JEJkSQb+QH+Ul+RYfRp+g08uep0aCveUD+iejrb5Wu38I=</latexit><latexit sha1_base64="BoIYqTykmD0ykbkbpDu1Imrfl6E=">AAAC53icjVHLihNBFK20r7F9TEaXbgqDICqhWwRdDurCjagwSQZSTaiu3O4UqUdbdXs0NP0N7sStv+GfuHPrX1idaUEnMnih4NQ5px733LxS0mOSfB9EFy5eunxl72p87fqNm/vDg1tTb2snYCKssu445x6UNDBBiQqOKwdc5wpm+fpFp89OwHlpzRFuKsg0L40spOAYqMXwiKkgI2Wa4yovmlm7eE+Z23IP6a64Pk886cXFcJSMk23RXZD2YET6+j/74mAwZUsrag0GheLez9OkwqzhDqVQ0Mas9lBxseYlzAM0XIPPmm1GLb0XmCUtrAvLIN2yf55ouPZ+o/Pg7BryZ7WO/Jc2r7F4ljXSVDWCEacPFbWiaGkXOF1KBwLVJgAunAx/pWLFHRcYxhLH7CWEZhy8Dhe/qcBxtO5Bw7grNf/YhuZK9qhD5xml+W0MKGYGPgirNTfLhhnrdDtPs4YpKJCpaRjPKGVOlitkrtu1ccg/PZv2Lpg+HqfJOH33ZHT4vB/cHrlD7pL7JCVPySF5Rd6SCRHkG/lBfg72Ixl9ij5HX06t0aA/c5v8VdHXX9Rq5jw=</latexit><latexit sha1_base64="BoIYqTykmD0ykbkbpDu1Imrfl6E=">AAAC53icjVHLihNBFK20r7F9TEaXbgqDICqhWwRdDurCjagwSQZSTaiu3O4UqUdbdXs0NP0N7sStv+GfuHPrX1idaUEnMnih4NQ5px733LxS0mOSfB9EFy5eunxl72p87fqNm/vDg1tTb2snYCKssu445x6UNDBBiQqOKwdc5wpm+fpFp89OwHlpzRFuKsg0L40spOAYqMXwiKkgI2Wa4yovmlm7eE+Z23IP6a64Pk886cXFcJSMk23RXZD2YET6+j/74mAwZUsrag0GheLez9OkwqzhDqVQ0Mas9lBxseYlzAM0XIPPmm1GLb0XmCUtrAvLIN2yf55ouPZ+o/Pg7BryZ7WO/Jc2r7F4ljXSVDWCEacPFbWiaGkXOF1KBwLVJgAunAx/pWLFHRcYxhLH7CWEZhy8Dhe/qcBxtO5Bw7grNf/YhuZK9qhD5xml+W0MKGYGPgirNTfLhhnrdDtPs4YpKJCpaRjPKGVOlitkrtu1ccg/PZv2Lpg+HqfJOH33ZHT4vB/cHrlD7pL7JCVPySF5Rd6SCRHkG/lBfg72Ixl9ij5HX06t0aA/c5v8VdHXX9Rq5jw=</latexit><latexit sha1_base64="BoIYqTykmD0ykbkbpDu1Imrfl6E=">AAAC53icjVHLihNBFK20r7F9TEaXbgqDICqhWwRdDurCjagwSQZSTaiu3O4UqUdbdXs0NP0N7sStv+GfuHPrX1idaUEnMnih4NQ5px733LxS0mOSfB9EFy5eunxl72p87fqNm/vDg1tTb2snYCKssu445x6UNDBBiQqOKwdc5wpm+fpFp89OwHlpzRFuKsg0L40spOAYqMXwiKkgI2Wa4yovmlm7eE+Z23IP6a64Pk886cXFcJSMk23RXZD2YET6+j/74mAwZUsrag0GheLez9OkwqzhDqVQ0Mas9lBxseYlzAM0XIPPmm1GLb0XmCUtrAvLIN2yf55ouPZ+o/Pg7BryZ7WO/Jc2r7F4ljXSVDWCEacPFbWiaGkXOF1KBwLVJgAunAx/pWLFHRcYxhLH7CWEZhy8Dhe/qcBxtO5Bw7grNf/YhuZK9qhD5xml+W0MKGYGPgirNTfLhhnrdDtPs4YpKJCpaRjPKGVOlitkrtu1ccg/PZv2Lpg+HqfJOH33ZHT4vB/cHrlD7pL7JCVPySF5Rd6SCRHkG/lBfg72Ixl9ij5HX06t0aA/c5v8VdHXX9Rq5jw=</latexit>

attn(permute(T)) = permute(attn(T))
<latexit sha1_base64="qe9Yi9i3Ckommon0kJ5ykG7vREM=">AAACx3icfVHbahRBEO0dL4njbaOPvjQuQiKyzIhgXoSgPuiDGCG7iWwPS09vzWyTvgzdNXGXYR78Mr/DD/BVf8GezQaSrFjQcOrUqe6q03mlpMck+dmLbty8dXtr+0589979Bw/7O4/G3tZOwEhYZd1Jzj0oaWCEEhWcVA64zhUc56fvuvrxGTgvrTnCZQWZ5qWRhRQcAzXtf2UIC0RsOKJpdy+yCpyuEQKhOc7zojlq9/boG7pZv9p+ST3tD5Jhsgq6CdI1GJB1HE53emM2s6LWYFAo7v0kTSrMGu5QCgVtzGoPFRenvIRJgIZr8Fmz8qClzwIzo4V14RikK/ZyR8O190udB2U3pL9e68h/1SY1FvtZI00V9jXi/KGiVhQt7QylM+lAoFoGwIWTYVYq5txxgcH2OGbvISzj4FO4+HOwjaN1zxvGXan5og3LlexFh/4nlOZCGFDMDHwTVmtuZg0z1ul2kmYNU1AgU2NwOEiZk+UcmeuyNg4/kV73fROMXw7TZJh+eTU4eLv+k23yhDwluyQlr8kB+UAOyYgI8oP8Ir/Jn+hjZKOzaHEujXrrnsfkSkTf/wIbguO7</latexit><latexit sha1_base64="cUqdB8/tw/S6oc5iV1yMAbhZav4=">AAAC7HicjVHNahRBEO4do8bxJxv15qVxERKRZUYEvQhBPXgRDWQ3ke1h6emtmW3SP0N3jWYZ5i28iVdfw+fwAbz6DPZsNpBkRSxo+Oqrr7q7vsorJT0myc9edGXj6rXrmzfim7du39nqb98de1s7ASNhlXVHOfegpIERSlRwVDngOldwmB+/7uqHn8B5ac0BLirINC+NLKTgGKhp/yNDOEHEhiOaducsq8DpGiEQmuM8L5qDdneXvqTr9Yvt59TT/iAZJsug6yBdgQFZxf/Jp9u9MZtZUWswKBT3fpImFWYNdyiFgjZmtYeKi2NewiRAwzX4rFka1dJHgZnRwrpwDNIle76j4dr7hc6DspvEX6515N9qkxqLF1kjTRVMMeL0oaJWFC3tXKcz6UCgWgTAhZPhr1TMueMCw27imL2BMIyDd+Hi98FbjtY9bhh3peYnbRiuZE869C+hNGfCgGJm4LOwWnMza5ixTreTNGuYggKZGoPDQcqcLOfIXJe1cfA/vez2Ohg/HabJMN1/Nth7tVrcJnlAHpIdkpLnZI+8JR/IiAjyg/wiv3v3IxN9ib5G306lUW/Vc49ciOj7H+a66jU=</latexit><latexit sha1_base64="cUqdB8/tw/S6oc5iV1yMAbhZav4=">AAAC7HicjVHNahRBEO4do8bxJxv15qVxERKRZUYEvQhBPXgRDWQ3ke1h6emtmW3SP0N3jWYZ5i28iVdfw+fwAbz6DPZsNpBkRSxo+Oqrr7q7vsorJT0myc9edGXj6rXrmzfim7du39nqb98de1s7ASNhlXVHOfegpIERSlRwVDngOldwmB+/7uqHn8B5ac0BLirINC+NLKTgGKhp/yNDOEHEhiOaducsq8DpGiEQmuM8L5qDdneXvqTr9Yvt59TT/iAZJsug6yBdgQFZxf/Jp9u9MZtZUWswKBT3fpImFWYNdyiFgjZmtYeKi2NewiRAwzX4rFka1dJHgZnRwrpwDNIle76j4dr7hc6DspvEX6515N9qkxqLF1kjTRVMMeL0oaJWFC3tXKcz6UCgWgTAhZPhr1TMueMCw27imL2BMIyDd+Hi98FbjtY9bhh3peYnbRiuZE869C+hNGfCgGJm4LOwWnMza5ixTreTNGuYggKZGoPDQcqcLOfIXJe1cfA/vez2Ohg/HabJMN1/Nth7tVrcJnlAHpIdkpLnZI+8JR/IiAjyg/wiv3v3IxN9ib5G306lUW/Vc49ciOj7H+a66jU=</latexit><latexit sha1_base64="cUqdB8/tw/S6oc5iV1yMAbhZav4=">AAAC7HicjVHNahRBEO4do8bxJxv15qVxERKRZUYEvQhBPXgRDWQ3ke1h6emtmW3SP0N3jWYZ5i28iVdfw+fwAbz6DPZsNpBkRSxo+Oqrr7q7vsorJT0myc9edGXj6rXrmzfim7du39nqb98de1s7ASNhlXVHOfegpIERSlRwVDngOldwmB+/7uqHn8B5ac0BLirINC+NLKTgGKhp/yNDOEHEhiOaducsq8DpGiEQmuM8L5qDdneXvqTr9Yvt59TT/iAZJsug6yBdgQFZxf/Jp9u9MZtZUWswKBT3fpImFWYNdyiFgjZmtYeKi2NewiRAwzX4rFka1dJHgZnRwrpwDNIle76j4dr7hc6DspvEX6515N9qkxqLF1kjTRVMMeL0oaJWFC3tXKcz6UCgWgTAhZPhr1TMueMCw27imL2BMIyDd+Hi98FbjtY9bhh3peYnbRiuZE869C+hNGfCgGJm4LOwWnMza5ixTreTNGuYggKZGoPDQcqcLOfIXJe1cfA/vez2Ohg/HabJMN1/Nth7tVrcJnlAHpIdkpLnZI+8JR/IiAjyg/wiv3v3IxN9ib5G306lUW/Vc49ciOj7H+a66jU=</latexit>

conv(translate(x)) = translate(conv(x))
<latexit sha1_base64="Lw3se/ebocveTY7lHi/9h+6VCeY=">AAACRnicbVBNSwMxEJ2t3/Wr6tFLsAh6Kbsi6EUQvXhUsFVol5JNZzWYzS7JrFiW/jovnr35E7x4UMSraa1QWwcCL++9mUxelClpyfdfvNLU9Mzs3PxCeXFpeWW1srbesGluBNZFqlJzHXGLSmqskySF15lBnkQKr6K7075+dY/GylRfUjfDMOE3WsZScHJUuxK2CB+IqBCpvu/t/N7IcG0VJ3RUwuk2iouH3u4uO2L/Of6OGPG3K1W/5g+KTYJgCKowrPN25bnVSUWeoCahuLXNwM8oLLghKRT2yq3cYsbFHb/BpoOaJ2jDYhBDj207psPi1LijiQ3Y0Y6CJ9Z2k8g5+zvaca1P/qc1c4oPw0LqLCfU4uehOFeMUtbPlHWkQUGq6wAXRrpdmbjlhgtyyZddCMH4lydBY68W+LXgYr96fDKMYx42YQt2IIADOIYzOIc6CHiEV3iHD+/Je/M+va8fa8kb9mzAnyrBN2c8tJc=</latexit><latexit sha1_base64="k3VlBYLMQzc7U/5Dq/fUkjrR2AU=">AAACa3icjVHLSgMxFE3HV62vajeiLoKloJsyI4JuhKIblwr2Ae1QMukdDc1khuROaRn6df6BOz/BhRu/wPQhqHXhgcDJOecmuTdBIoVB133NOUvLK6tr+fXCxubW9k5xd69h4lRzqPNYxroVMANSKKijQAmtRAOLAgnNoH8z8ZsD0EbE6gFHCfgRe1QiFJyhlbpFv4MwRMSMx2owPvnaoWbKSIZgpYjhUxBmw/HpKb2ifyV+HvEt3y2W3ao7BV0k3pyUyRz/i3eLL51ezNMIFHLJjGl7boJ+xjQKLmFc6KQGEsb77BHalioWgfGz6azGtGKVHg1jbZdCOlW/V2QsMmYUBTY5acT89ibiX147xfDSz4RKUgTFZxeFqaQY08ngaU9o4ChHljCuhX0r5U9MM472ewq2de93o4ukcVb13Kp3f16uXc9nlieH5JicEI9ckBq5JXekTjh5Jm/kI7efe3dKzoFzNIs6uXlNifyAU/kEoNa4FA==</latexit><latexit sha1_base64="k3VlBYLMQzc7U/5Dq/fUkjrR2AU=">AAACa3icjVHLSgMxFE3HV62vajeiLoKloJsyI4JuhKIblwr2Ae1QMukdDc1khuROaRn6df6BOz/BhRu/wPQhqHXhgcDJOecmuTdBIoVB133NOUvLK6tr+fXCxubW9k5xd69h4lRzqPNYxroVMANSKKijQAmtRAOLAgnNoH8z8ZsD0EbE6gFHCfgRe1QiFJyhlbpFv4MwRMSMx2owPvnaoWbKSIZgpYjhUxBmw/HpKb2ifyV+HvEt3y2W3ao7BV0k3pyUyRz/i3eLL51ezNMIFHLJjGl7boJ+xjQKLmFc6KQGEsb77BHalioWgfGz6azGtGKVHg1jbZdCOlW/V2QsMmYUBTY5acT89ibiX147xfDSz4RKUgTFZxeFqaQY08ngaU9o4ChHljCuhX0r5U9MM472ewq2de93o4ukcVb13Kp3f16uXc9nlieH5JicEI9ckBq5JXekTjh5Jm/kI7efe3dKzoFzNIs6uXlNifyAU/kEoNa4FA==</latexit><latexit sha1_base64="k3VlBYLMQzc7U/5Dq/fUkjrR2AU=">AAACa3icjVHLSgMxFE3HV62vajeiLoKloJsyI4JuhKIblwr2Ae1QMukdDc1khuROaRn6df6BOz/BhRu/wPQhqHXhgcDJOecmuTdBIoVB133NOUvLK6tr+fXCxubW9k5xd69h4lRzqPNYxroVMANSKKijQAmtRAOLAgnNoH8z8ZsD0EbE6gFHCfgRe1QiFJyhlbpFv4MwRMSMx2owPvnaoWbKSIZgpYjhUxBmw/HpKb2ifyV+HvEt3y2W3ao7BV0k3pyUyRz/i3eLL51ezNMIFHLJjGl7boJ+xjQKLmFc6KQGEsb77BHalioWgfGz6azGtGKVHg1jbZdCOlW/V2QsMmYUBTY5acT89ibiX147xfDSz4RKUgTFZxeFqaQY08ngaU9o4ChHljCuhX0r5U9MM472ewq2de93o4ukcVb13Kp3f16uXc9nlieH5JicEI9ckBq5JXekTjh5Jm/kI7efe3dKzoFzNIs6uXlNifyAU/kEoNa4FA==</latexit>

t1
<latexit sha1_base64="OySVOKSs0GadSxTNMbBS0fNHL/Q=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC00oWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYnuhdRwKRTvoEDJe6nmNA4lfwwnt4X/+MS1EYl6wGnKg5iOlIgEo2gl348pjsMox9nAG9QbbtOdg6wSryQNKNEe1L/8YcKymCtkkhrT99wUg5xqFEzyWc3PDE8pm9AR71uqaMxNkM8zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vn2F0HeRCpRlyxRaHokwSTEhRABkKzRnKqSWUaWGzEjammjK0NdVsCd7yl1dJ96LpuU3v/rLRuinrqMIJnMI5eHAFLbiDNnSAQQrP8ApvTua8OO/Ox2K04pQ7x/AHzucPJESRvA==</latexit><latexit sha1_base64="jPrIVScsQwqSPg+2SjJi9nWx8eA=">AAACGHicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD8iGMDuZTYbMzi4zd4Ww5DcsbPwVGxHbdP6Ns8kWmlh4YOBwzr3cOSdIpDDoul9OaW19Y3OrvF3Z2d3bP6geHrVMnGrGmyyWse4E1HApFG+iQMk7ieY0CiRvB+Pb3G8/cW1ErB5xkvBeRIdKhIJRtJLvRxRHQZjhtO/1qzW37s5BVolXkBoU+N94vzrzBzFLI66QSWpM13MT7GVUo2CSTyt+anhC2ZgOeddSRSNuetk82JScWWVAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i4rNrq3HHSVtC7qnlv3Hi5rjZuiszKcwCmcgwdX0IA7uIcmMEjgGV7h3Xlx3pwP53MxWnKKnWP4BWf2DSyBmTU=</latexit><latexit sha1_base64="jPrIVScsQwqSPg+2SjJi9nWx8eA=">AAACGHicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD8iGMDuZTYbMzi4zd4Ww5DcsbPwVGxHbdP6Ns8kWmlh4YOBwzr3cOSdIpDDoul9OaW19Y3OrvF3Z2d3bP6geHrVMnGrGmyyWse4E1HApFG+iQMk7ieY0CiRvB+Pb3G8/cW1ErB5xkvBeRIdKhIJRtJLvRxRHQZjhtO/1qzW37s5BVolXkBoU+N94vzrzBzFLI66QSWpM13MT7GVUo2CSTyt+anhC2ZgOeddSRSNuetk82JScWWVAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i4rNrq3HHSVtC7qnlv3Hi5rjZuiszKcwCmcgwdX0IA7uIcmMEjgGV7h3Xlx3pwP53MxWnKKnWP4BWf2DSyBmTU=</latexit><latexit sha1_base64="jPrIVScsQwqSPg+2SjJi9nWx8eA=">AAACGHicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQwD8iGMDuZTYbMzi4zd4Ww5DcsbPwVGxHbdP6Ns8kWmlh4YOBwzr3cOSdIpDDoul9OaW19Y3OrvF3Z2d3bP6geHrVMnGrGmyyWse4E1HApFG+iQMk7ieY0CiRvB+Pb3G8/cW1ErB5xkvBeRIdKhIJRtJLvRxRHQZjhtO/1qzW37s5BVolXkBoU+N94vzrzBzFLI66QSWpM13MT7GVUo2CSTyt+anhC2ZgOeddSRSNuetk82JScWWVAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i4rNrq3HHSVtC7qnlv3Hi5rjZuiszKcwCmcgwdX0IA7uIcmMEjgGV7h3Xlx3pwP53MxWnKKnWP4BWf2DSyBmTU=</latexit>

(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>

t2
<latexit sha1_base64="G03BqnUvKOhuxN4vhvoBBVdvm84=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRF0GXRjcsK9gFNKZPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhg4iOlQgFo2gl348oToIww/mwMazW3Lq7AFknXkFqUKA1rH75o5ilEVfIJDWm77kJDjKqUTDJ5xU/NTyhbErHvG+pohE3g2yReU4urDIiYaztU0gW6u+NjEbGzKLATuYZzaqXi/95/RTDm0EmVJIiV2x5KEwlwZjkBZCR0JyhnFlCmRY2K2ETqilDW1PFluCtfnmddBp1z617D1e15m1RRxnO4BwuwYNraMI9tKANDBJ4hld4c1LnxXl3PpajJafYOYU/cD5/ACXIkb0=</latexit><latexit sha1_base64="tJzA7S1MTIGNRVReunVc/qdjZog=">AAACGHicjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXMA7IhzE5mkyGzs8vMXSEs+Q0LG3/FRsQ2nX/jbLKFJhYeGDiccy93zgkSKQy67peztr6xubVd2inv7u0fHFaOjlsmTjXjTRbLWHcCargUijdRoOSdRHMaBZK3g/Ft7refuDYiVo84SXgvokMlQsEoWsn3I4qjIMxw2q/3K1W35s5BVolXkCoU+N94vzLzBzFLI66QSWpM13MT7GVUo2CST8t+anhC2ZgOeddSRSNuetk82JScW2VAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i7LNrq3HHSVtOo1z615D5fVxk3RWQlO4QwuwIMraMAd3EMTGCTwDK/w7rw4b86H87kYXXOKnRP4BWf2DS4qmTY=</latexit><latexit sha1_base64="tJzA7S1MTIGNRVReunVc/qdjZog=">AAACGHicjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXMA7IhzE5mkyGzs8vMXSEs+Q0LG3/FRsQ2nX/jbLKFJhYeGDiccy93zgkSKQy67peztr6xubVd2inv7u0fHFaOjlsmTjXjTRbLWHcCargUijdRoOSdRHMaBZK3g/Ft7refuDYiVo84SXgvokMlQsEoWsn3I4qjIMxw2q/3K1W35s5BVolXkCoU+N94vzLzBzFLI66QSWpM13MT7GVUo2CST8t+anhC2ZgOeddSRSNuetk82JScW2VAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i7LNrq3HHSVtOo1z615D5fVxk3RWQlO4QwuwIMraMAd3EMTGCTwDK/w7rw4b86H87kYXXOKnRP4BWf2DS4qmTY=</latexit><latexit sha1_base64="tJzA7S1MTIGNRVReunVc/qdjZog=">AAACGHicjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXMA7IhzE5mkyGzs8vMXSEs+Q0LG3/FRsQ2nX/jbLKFJhYeGDiccy93zgkSKQy67peztr6xubVd2inv7u0fHFaOjlsmTjXjTRbLWHcCargUijdRoOSdRHMaBZK3g/Ft7refuDYiVo84SXgvokMlQsEoWsn3I4qjIMxw2q/3K1W35s5BVolXkCoU+N94vzLzBzFLI66QSWpM13MT7GVUo2CST8t+anhC2ZgOeddSRSNuetk82JScW2VAwljbp5DM1Z8bGY2MmUSBncyDmGUvF//yuimG171MqCRFrtjiUJhKgjHJWyIDoTlDObGEMi3sXwkbUU0Z2i7LNrq3HHSVtOo1z615D5fVxk3RWQlO4QwuwIMraMAd3EMTGCTwDK/w7rw4b86H87kYXXOKnRP4BWf2DS4qmTY=</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit><latexit sha1_base64="khcJitMbJzGy/0rO4JI0KDKcS2s=">AAACD3icjVC7SgNBFL0bXzG+opY2g0GwCrsiaBm0sVQ0D0iWMDu5mwyZnV1mZsWw5BMsbPwVGxFbWzv/xkmyhSYWHhg4nHMud+4JEsG1cd0vp7C0vLK6VlwvbWxube+Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTvzmPSrNY3lnRgn6Ee1LHnJGjZVuH7pet1xxq+4UZJF4OalAjv/Fu+XPTi9maYTSMEG1bntuYvyMKsOZwHGpk2pMKBvSPrYtlTRC7WfTe8bkyCo9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshSV7ujd/6CJpnFQ9t+rdnFZqF3lnRTiAQzgGD86gBldwDXVg0IdHeIZX58l5cd6c91m04OQz+/ALzsc3h4eVGQ==</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit><latexit sha1_base64="NDMIz+oEcMYrffWEYkVoD4bPTxw=">AAACD3icjVC7SgNBFL3rM8ZX1NJmMAhWYTcIWgZtLBXNA5IlzE7uJkNmZ5eZWTEs+QQLG3/FRsTW1s6/cZJsoYmFBwYO55zLnXuCRHBtXPfLWVpeWV1bL2wUN7e2d3ZLe/sNHaeKYZ3FIlatgGoUXGLdcCOwlSikUSCwGQwvJ37zHpXmsbwzowT9iPYlDzmjxkq3D91qt1R2K+4UZJF4OSlDjv/Fu6XPTi9maYTSMEG1bntuYvyMKsOZwHGxk2pMKBvSPrYtlTRC7WfTe8bk2Co9EsbKPmnIVP05kdFI61EU2GREzUDPexPxL6+dmvDcz7hMUoOSzRaFqSAmJpNySI8rZEaMLKFMcftXwgZUUWZshUV7ujd/6CJpVCueW/FuTsu1i7yzAhzCEZyAB2dQgyu4hjow6MMjPMOr8+S8OG/O+yy65OQzB/ALzsc3iTCVGg==</latexit>

35

10 CHAPTER 1. TRANSFORMERS

A generally good strategy is to select layers that reflect the symmetries in your data
domain or task: in object detection, translation equivariance makes sense because, roughly,
a bird is a bird no matter where it appears in an image. Permutation equivariance might
also make sense, for that same reason, but only to an extent: if you break up an image into
small patches and scramble them then this could disrupt spatial layout that is important
for recognition. We will see in Section 1.7 how transformers use something called positional
codes to re-insert useful information about spatial layout.

1.6 The full transformer architecture

A full transformer architecture is a stack of self-attention layers interleaved with token-wise
nonlinearities. These two steps are analogous to linear layers interleaved with neuron-wise
nonlinearities in an MLP:

MLP

linear

relu
(neuron-wise)

linear

o

o

f

f

Transformer (vanilla)

self attn

MLP
(token-wise)

self attn

Beyond this basic template, there are many variations that can be added, resulting in
di↵erent particular architectures within the transformer family. Some common additions are
normalization layers and residual connections.

1.6.1 Multihead self-attention

Additionally, it is common to use multihead self-attention, or MSH, which simply con-
sists of running k attention layers in parallel, applied to the same input tin, then concate-
nating all the outputs, and finally projecting back to the original dimensionality of tin:

Z =

0

B@
attn1(tin).zT

...
attnk(tin).zT

1

CA (1.31)

tout.z = WZ / W 2 RM2⇥kM1 (1.32)

W are learnable parameters of this layer (in addition to the query, key, and value projections
parameters for each of the k attention heads), M1 is the dimensionality of the value vectors
and M2 is the dimensionality of the code vectors of the output ([Dosovitskiy et al. 2021]
recommends setting kM1 = M2).

1.6.2 Input and output modules

The transformer also has an input and output module. The input module is the tokenization
layer that converts the input signal into a set of tokens. The output module converts the
transformed tokens into a target prediction or decision. The input and output modules are
specific to the type of input signal and the type of output task.

36

Multihead self-attention (MSA)

Rather than having just one way of attending, why not have k?

Each gets its own parameterized query(), key(), value() functions.

Run them all in parallel, then (weighted) sum the output token code vectors

i
i

i
i

i
i

i
i

Transformers 379

math below:

Ti
out = attni(Tin) for i 2 {1, …, k} (26.26)

T̄out =

2

64
T1

out[0, :] … Tk
out[0, :]

...
...

...
T1

out[N – 1, :] … Tk
out[N – 1, :]

3

75 / T̄out 2 RN⇥kv (26.27)

Tout = T̄outWMSA / WMSA 2 Rkv⇥d (26.28)

where v is the dimensionality of the value vectors and d is the dimensionality of the code
vectors of the output ([109] recommends setting kv = d). The matrix WMSA merges all the
heads; its values are learnable parameters. The other learnable parameters of MSA are the
query, key, and value projections for each of the k attention heads.

Notice that here, unlike in
the single-headed
self-attention layers
presented previously, the
value vectors need not
have the same
dimensionality as the
token code vectors, since
we are applying the
projection equation
(26.28).

The basic reasoning here is quite simple: if self-attention layers are a good thing, why
not just add more of them? We can add more sequential self-attention layers by building
deeper transformers, or we can add more parallel self-attention layers by using MSA.

26.7 The Full Transformer Architecture
A full transformer architecture is a stack of self-attention layers interleaved with tokenwise
nonlinearities. These two steps are analogous to linear layers interleaved with neuronwise
nonlinearities in an MLP, as shown below (figure 26.13):

MLP

linear

relu
(neuron-wise)

linear

o

o

f

f

Transformer (vanilla)

self attn

MLP
(token-wise)

self attn

Figure 26.13: The basic
transformer architecture
versus an MLP.

Beyond this basic template, there are many variations that can be added, resulting in
different particular architectures within the transformer family. Some common additions are
normalization layers and residual connections. In figure 26.14 we plot the ViT architecture
from [109], showing where these additional pieces enter the picture.

This architecture uses layer normalization (section 12.7.3) before each attention layer and
before each token-wise MLP layer. The normalization is done within each token (the token
code vector is treated as a akin to a layer; each dimension of this vector is standardized
by the mean and variance over all dimensions of this vector), so in figure 12.7.3 we refer

37

i
i

i
i

i
i

i
i

14 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

Figure 1.14: The ViT
transformer architec-

ture [2]. This set of layers
forms a computational
block, shaded in gray,
that can be repeated L

times for a depth L ViT.
To clarify where the

parameters live in this
architecture, we have
colored all the edges

with learnable parame-
ters in blue (note that the

MSA merge, equation
(1.28), is also learn-

able but not explicitly
shown in this diagram).

repeat ⇥L

o f
+

+

Transformer (ViT) [2]

token norm

MSA

token norm

MLP
(tokenwise)

norm is a tokenwise operation, just like our tokenwise MLP, but it performs a different kind
of transformation and does not have learnable parameters. Residual connections are added
around each group of layers.

Pseudocode for this a ViT (with single-headed attention) is given below:

x : input data (RGB image)

K : tokenization patch size

d : token/query/key/value dimensionality (setting these all as the same)

L : number of layers

W_q_T, W_k_T, W_v_T : transposed query/key/value projection matrices

mlp: tokenwise mlps

tokenize input image

T = tokenize(x,K) # 3 x H x W image --> N x d array of token code vectors

run tokens through all L layers

for l in range(L):

attention layer

Q, K, V = nn.matmul(nn.layernorm(T),[W_q_T[l], W_k_T[l], W_v_T[l]])
nn.matmul does matrix multiplication

A = nn.softmax(nn.matmul(Q,K.transpose()), dim=0)/sqrt(d)
T = nn.matmul(A,V) + T # note residual connection

tokenwise mlp

T = mlp[l](nn.layernorm(T)) + T # note residual connection

T now contains the output token representation computed by the transformer

i
i

i
i

i
i

i
i

14 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

Figure 1.14: The ViT
transformer architec-

ture [2]. This set of layers
forms a computational
block, shaded in gray,
that can be repeated L

times for a depth L ViT.
To clarify where the

parameters live in this
architecture, we have
colored all the edges

with learnable parame-
ters in blue (note that the

MSA merge, equation
(1.28), is also learn-

able but not explicitly
shown in this diagram).

repeat ⇥L

o f
+

+

Transformer (ViT) [2]

token norm

MSA

token norm

MLP
(tokenwise)

norm is a tokenwise operation, just like our tokenwise MLP, but it performs a different kind
of transformation and does not have learnable parameters. Residual connections are added
around each group of layers.

Pseudocode for this a ViT (with single-headed attention) is given below:

x : input data (RGB image)

K : tokenization patch size

d : token/query/key/value dimensionality (setting these all as the same)

L : number of layers

W_q_T, W_k_T, W_v_T : transposed query/key/value projection matrices

mlp: tokenwise mlps

tokenize input image

T = tokenize(x,K) # 3 x H x W image --> N x d array of token code vectors

run tokens through all L layers

for l in range(L):

attention layer

Q, K, V = nn.matmul(nn.layernorm(T),[W_q_T[l], W_k_T[l], W_v_T[l]])
nn.matmul does matrix multiplication

A = nn.softmax(nn.matmul(Q,K.transpose()), dim=0)/sqrt(d)
T = nn.matmul(A,V) + T # note residual connection

tokenwise mlp

T = mlp[l](nn.layernorm(T)) + T # note residual connection

T now contains the output token representation computed by the transformer

layernorm

xout[k] =
xin[k]� E[xin[k]]p

Var[xin[k]]
<latexit sha1_base64="QJwhOEomj+xf9A8VQsVuOeCDvKw=">AAACYnicbVFLSwMxGMyuVmt9tLVHPQSL4MWyK4JehKIIHivYB+wuJZtm29Dsw+RbaVn2T3rz5MUfYvpAatsPAsPMfCQz8RPBFVjWl2Hu7Bb29osHpcOj45NypXraUXEqKWvTWMSy5xPFBI9YGzgI1kskI6EvWNcfP8307geTisfRG0wT5oVkGPGAUwKa6lemk37mApsAQBankOfO2MMP2A0kodmKxqOFdI3dkMDI97Pn3NnUvTxz1buEP75D5HZf3q/UrYY1H7wJ7CWoo+W0+pVPdxDTNGQRUEGUcmwrAS8jEjgVLC+5qWIJoWMyZI6GEQmZ8rJ5RTm+1MwAB7HUJwI8Z1c3MhIqNQ197ZzlU+vajNymOSkE956OlaTAIrq4KEgFhhjP+sYDLhkFMdWAUMn1WzEdEd0u6F8p6RLs9ciboHPTsK2G/Xpbbz4u6yiiM3SBrpCN7lATvaAWaiOKvo2CcWKUjR+zZFbN2sJqGsudGvo35vkvCku8pg==</latexit><latexit sha1_base64="TCoqJPTsah9itO4d3NUXG2xGQpQ=">AAACh3icjVHLSsNAFJ1E66Nqrbp0M1gEN9ZEinYj+EBwqWAfkIQymU7aoZOHMzfSEvKT7lz5K07aItp24YGBwznncufe6yeCK7CsT8NcWy9tbG5tl3d29yr71YPDtopTSVmLxiKWXZ8oJnjEWsBBsG4iGQl9wTr+6KHwO+9MKh5HrzBJmBeSQcQDTgloqVedjHuZC2wMAFmcQp47Iw/fYDeQhGa/PB7NrHPshgSGvp895s6y7+WZq94k/OhtIlfn8l61ZtWtKfAyseekhub4X7xX/XD7MU1DFgEVRCnHthLwMiKBU8HyspsqlhA6IgPmaBqRkCkvm+4xx6da6eMglvpFgKfq74qMhEpNQl8niyWoRa8QV3lOCkHT07MnKbCIzhoFqcAQ4+IouM8loyAmmhAquf4rpkOiTwD6dGU9ur046DJpX9Ztq26/NGq39/OdbaFjdILOkI2u0S16Qs+ohSj6MkpGxWiY2+aFeWU2Z1HTmNccoT8w774BkXbDIA==</latexit><latexit sha1_base64="TCoqJPTsah9itO4d3NUXG2xGQpQ=">AAACh3icjVHLSsNAFJ1E66Nqrbp0M1gEN9ZEinYj+EBwqWAfkIQymU7aoZOHMzfSEvKT7lz5K07aItp24YGBwznncufe6yeCK7CsT8NcWy9tbG5tl3d29yr71YPDtopTSVmLxiKWXZ8oJnjEWsBBsG4iGQl9wTr+6KHwO+9MKh5HrzBJmBeSQcQDTgloqVedjHuZC2wMAFmcQp47Iw/fYDeQhGa/PB7NrHPshgSGvp895s6y7+WZq94k/OhtIlfn8l61ZtWtKfAyseekhub4X7xX/XD7MU1DFgEVRCnHthLwMiKBU8HyspsqlhA6IgPmaBqRkCkvm+4xx6da6eMglvpFgKfq74qMhEpNQl8niyWoRa8QV3lOCkHT07MnKbCIzhoFqcAQ4+IouM8loyAmmhAquf4rpkOiTwD6dGU9ur046DJpX9Ztq26/NGq39/OdbaFjdILOkI2u0S16Qs+ohSj6MkpGxWiY2+aFeWU2Z1HTmNccoT8w774BkXbDIA==</latexit><latexit sha1_base64="TCoqJPTsah9itO4d3NUXG2xGQpQ=">AAACh3icjVHLSsNAFJ1E66Nqrbp0M1gEN9ZEinYj+EBwqWAfkIQymU7aoZOHMzfSEvKT7lz5K07aItp24YGBwznncufe6yeCK7CsT8NcWy9tbG5tl3d29yr71YPDtopTSVmLxiKWXZ8oJnjEWsBBsG4iGQl9wTr+6KHwO+9MKh5HrzBJmBeSQcQDTgloqVedjHuZC2wMAFmcQp47Iw/fYDeQhGa/PB7NrHPshgSGvp895s6y7+WZq94k/OhtIlfn8l61ZtWtKfAyseekhub4X7xX/XD7MU1DFgEVRCnHthLwMiKBU8HyspsqlhA6IgPmaBqRkCkvm+4xx6da6eMglvpFgKfq74qMhEpNQl8niyWoRa8QV3lOCkHT07MnKbCIzhoFqcAQ4+IouM8loyAmmhAquf4rpkOiTwD6dGU9ur046DJpX9Ztq26/NGq39/OdbaFjdILOkI2u0S16Qs+ohSj6MkpGxWiY2+aFeWU2Z1HTmNccoT8w774BkXbDIA==</latexit>

==

38

i
i

i
i

i
i

i
i

380 Chapter 26

Figure 26.14: The ViT
transformer architec-

ture [109]. This set of
layers forms a computa-

tional block, shaded in
gray, that can be repeated

L times for a depth L
ViT. To clarify where

the parameters live in this
architecture, we have
colored all the edges

with learnable parame-
ters in blue (note that the

MSA merge, equation
(26.28), is also learn-
able but not explicitly

shown in this diagram).

repeat ⇥L

o f
+

+

Transformer (ViT) [109]

token norm

MSA

token norm

MLP
(tokenwise)

to this layer as token norm. Notice that token norm is a tokenwise operation, just like
our tokenwise MLP, but it performs a different kind of transformation and does not have
learnable parameters. Residual connections are added around each group of layers.

Pseudocode for this a ViT (with single-headed attention) is given below:

x : input data (RGB image)

K : tokenization patch size

d : token/query/key/value dimensionality (setting these all as the same)

L : number of layers

W_q_T, W_k_T, W_v_T : transposed query/key/value projection matrices

mlp: tokenwise mlps

tokenize input image

T = tokenize(x,K) # 3 x H x W image --> N x d array of token code vectors

run tokens through all L layers

for l in range(L):

attention layer

Q, K, V = nn.matmul(nn.layernorm(T),[W_q_T[l], W_k_T[l], W_v_T[l]])
nn.matmul does matrix multiplication

A = nn.softmax(nn.matmul(Q,K.transpose()), dim=0)/sqrt(d)
T = nn.matmul(A,V) + T # note residual connection

tokenwise mlp

T = mlp[l](nn.layernorm(T)) + T # note residual connection

T now contains the output token representation computed by the transformer

39

New idea #3: positional encoding

40

Permutation equivariance

Set2Set

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 15

The output of a transformer, as we have so far defined it, is a set of tokens Tout. Often
we want an output of a different format, such as a single vector of logits for image classifi-
cation (section ??), or in the format of an image for image-to-image tasks (section ??). To
handle these cases, we typically define a task-specific output layer that takes Tout as input
and produces the desired format as output. For example, to produce a vector of logit pre-
dictions we could first sum all the token code vectors in Tout and then, using a single linear
layer, project the resulting d-dimensional vector into a K-dimensional vector (for K-way
classification).

1.8 Permutation Equivariance

An important property of transformers is that they are equivariant to permutations of the
input token sequence. This follows from the fact that both tokenwise layers, F✓, and
attention layers, attn, are permutation equivariant:

F✓(permute(Tin)) = permute(F✓(Tin)) (1.29)

attn(permute(Tin)) = permute(attn(Tin)) (1.30)

where permute is a permutation of the order of tokens in Tin (i.e., permutes the rows of
the matrix). This means that if you scramble (i.e. permute) the patches in the input image
then apply attention, the output will be unchanged up to a permutation of the original out-
put. Since the full transformer architecture is just composition of these two types of layers
(plus, potentially, residual connections and token normalization, which are also permuta-
tion equivariant), and because composing two permutation equivariant functions results in
a permutation equivariant operation, we have:

transformer(permute(Tin)) = permute(transformer(Tin)) (1.31)

This property is visualized in figure 1.15.

t1

t1

t1

t2

t2

t2

t3

t3

t3

permute t2

t2

t2

t3

t3

t3

t1

t1

t1
Figure 1.15: Trans-
formers are permutation
equivariant. For nota-
tional simplicity, we omit
layer indices on the token
variables here.

It is often useful to understand layers in terms of their invariances and equivariances.
Convolutational layers are translation equivariant but not necessarily permutation equivari-
ant whereas attention layers are both translation equivariant and permutation equivariant
(since translation is a special kind of permutation, any permutation equivariant layer is also
translation equivariant). Other layers can be catalogued similarly: global average pooling
layers are permutation invariant, relu layers are permutation equivariant, per-token MLP

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 15

The output of a transformer, as we have so far defined it, is a set of tokens Tout. Often
we want an output of a different format, such as a single vector of logits for image classifi-
cation (section ??), or in the format of an image for image-to-image tasks (section ??). To
handle these cases, we typically define a task-specific output layer that takes Tout as input
and produces the desired format as output. For example, to produce a vector of logit pre-
dictions we could first sum all the token code vectors in Tout and then, using a single linear
layer, project the resulting d-dimensional vector into a K-dimensional vector (for K-way
classification).

1.8 Permutation Equivariance

An important property of transformers is that they are equivariant to permutations of the
input token sequence. This follows from the fact that both tokenwise layers, F✓, and
attention layers, attn, are permutation equivariant:

F✓(permute(Tin)) = permute(F✓(Tin)) (1.29)

attn(permute(Tin)) = permute(attn(Tin)) (1.30)

where permute is a permutation of the order of tokens in Tin (i.e., permutes the rows of
the matrix). This means that if you scramble (i.e. permute) the patches in the input image
then apply attention, the output will be unchanged up to a permutation of the original out-
put. Since the full transformer architecture is just composition of these two types of layers
(plus, potentially, residual connections and token normalization, which are also permuta-
tion equivariant), and because composing two permutation equivariant functions results in
a permutation equivariant operation, we have:

transformer(permute(Tin)) = permute(transformer(Tin)) (1.31)

This property is visualized in figure 1.15.

t1

t1

t1

t2

t2

t2

t3

t3

t3

permute t2

t2

t2

t3

t3

t3

t1

t1

t1
Figure 1.15: Trans-
formers are permutation
equivariant. For nota-
tional simplicity, we omit
layer indices on the token
variables here.

It is often useful to understand layers in terms of their invariances and equivariances.
Convolutational layers are translation equivariant but not necessarily permutation equivari-
ant whereas attention layers are both translation equivariant and permutation equivariant
(since translation is a special kind of permutation, any permutation equivariant layer is also
translation equivariant). Other layers can be catalogued similarly: global average pooling
layers are permutation invariant, relu layers are permutation equivariant, per-token MLP

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 15

The output of a transformer, as we have so far defined it, is a set of tokens Tout. Often
we want an output of a different format, such as a single vector of logits for image classifi-
cation (section ??), or in the format of an image for image-to-image tasks (section ??). To
handle these cases, we typically define a task-specific output layer that takes Tout as input
and produces the desired format as output. For example, to produce a vector of logit pre-
dictions we could first sum all the token code vectors in Tout and then, using a single linear
layer, project the resulting d-dimensional vector into a K-dimensional vector (for K-way
classification).

1.8 Permutation Equivariance

An important property of transformers is that they are equivariant to permutations of the
input token sequence. This follows from the fact that both tokenwise layers, F✓, and
attention layers, attn, are permutation equivariant:

F✓(permute(Tin)) = permute(F✓(Tin)) (1.29)

attn(permute(Tin)) = permute(attn(Tin)) (1.30)

where permute is a permutation of the order of tokens in Tin (i.e., permutes the rows of
the matrix). This means that if you scramble (i.e. permute) the patches in the input image
then apply attention, the output will be unchanged up to a permutation of the original out-
put. Since the full transformer architecture is just composition of these two types of layers
(plus, potentially, residual connections and token normalization, which are also permuta-
tion equivariant), and because composing two permutation equivariant functions results in
a permutation equivariant operation, we have:

transformer(permute(Tin)) = permute(transformer(Tin)) (1.31)

This property is visualized in figure 1.15.

t1

t1

t1

t2

t2

t2

t3

t3

t3

permute t2

t2

t2

t3

t3

t3

t1

t1

t1
Figure 1.15: Trans-
formers are permutation
equivariant. For nota-
tional simplicity, we omit
layer indices on the token
variables here.

It is often useful to understand layers in terms of their invariances and equivariances.
Convolutational layers are translation equivariant but not necessarily permutation equivari-
ant whereas attention layers are both translation equivariant and permutation equivariant
(since translation is a special kind of permutation, any permutation equivariant layer is also
translation equivariant). Other layers can be catalogued similarly: global average pooling
layers are permutation invariant, relu layers are permutation equivariant, per-token MLP

41

w
<latexit sha1_base64="flGO7PvVKXBCQgR5lTxUTj9RLc4=">AAACRHicfZDNSsNAFIUn/tb6V3XpJlgFESmJCLoUdeFGrGBtsSnlZnrTDp1MwsxELaFv4VYfx3fwHdyJW3FSK2grXhj4OPfMzL3HjzlT2nFerInJqemZ2dxcfn5hcWm5sLJ6raJEUqzQiEey5oNCzgRWNNMca7FECH2OVb97kvWrtygVi8SV7sXYCKEtWMAoaCPdeCHojh+kd/1moeiUnEHZ4+AOoUiGVW6uWJteK6JJiEJTDkrVXSfWjRSkZpRjP+8lCmOgXWhj3aCAEFUjHYzct7eM0rKDSJojtD1Qf95IIVSqF/rGmY2oRnuZ+FevnujgsJEyEScaBf36KEi4rSM7299uMYlU854BoJKZWW3aAQlUm5Tyee8UzTISz83DFzFK0JHcST2Q7RDu+2a5treb0X9GJr6Nhkyu7miK43C9V3Kdknu5Xzw6HiacI+tkg2wTlxyQI3JGyqRCKBHkgTySJ+vZerXerPcv64Q1vLNGfpX18Qntm7He</latexit><latexit sha1_base64="flGO7PvVKXBCQgR5lTxUTj9RLc4=">AAACRHicfZDNSsNAFIUn/tb6V3XpJlgFESmJCLoUdeFGrGBtsSnlZnrTDp1MwsxELaFv4VYfx3fwHdyJW3FSK2grXhj4OPfMzL3HjzlT2nFerInJqemZ2dxcfn5hcWm5sLJ6raJEUqzQiEey5oNCzgRWNNMca7FECH2OVb97kvWrtygVi8SV7sXYCKEtWMAoaCPdeCHojh+kd/1moeiUnEHZ4+AOoUiGVW6uWJteK6JJiEJTDkrVXSfWjRSkZpRjP+8lCmOgXWhj3aCAEFUjHYzct7eM0rKDSJojtD1Qf95IIVSqF/rGmY2oRnuZ+FevnujgsJEyEScaBf36KEi4rSM7299uMYlU854BoJKZWW3aAQlUm5Tyee8UzTISz83DFzFK0JHcST2Q7RDu+2a5treb0X9GJr6Nhkyu7miK43C9V3Kdknu5Xzw6HiacI+tkg2wTlxyQI3JGyqRCKBHkgTySJ+vZerXerPcv64Q1vLNGfpX18Qntm7He</latexit><latexit sha1_base64="flGO7PvVKXBCQgR5lTxUTj9RLc4=">AAACRHicfZDNSsNAFIUn/tb6V3XpJlgFESmJCLoUdeFGrGBtsSnlZnrTDp1MwsxELaFv4VYfx3fwHdyJW3FSK2grXhj4OPfMzL3HjzlT2nFerInJqemZ2dxcfn5hcWm5sLJ6raJEUqzQiEey5oNCzgRWNNMca7FECH2OVb97kvWrtygVi8SV7sXYCKEtWMAoaCPdeCHojh+kd/1moeiUnEHZ4+AOoUiGVW6uWJteK6JJiEJTDkrVXSfWjRSkZpRjP+8lCmOgXWhj3aCAEFUjHYzct7eM0rKDSJojtD1Qf95IIVSqF/rGmY2oRnuZ+FevnujgsJEyEScaBf36KEi4rSM7299uMYlU854BoJKZWW3aAQlUm5Tyee8UzTISz83DFzFK0JHcST2Q7RDu+2a5treb0X9GJr6Nhkyu7miK43C9V3Kdknu5Xzw6HiacI+tkg2wTlxyQI3JGyqRCKBHkgTySJ+vZerXerPcv64Q1vLNGfpX18Qntm7He</latexit><latexit sha1_base64="flGO7PvVKXBCQgR5lTxUTj9RLc4=">AAACRHicfZDNSsNAFIUn/tb6V3XpJlgFESmJCLoUdeFGrGBtsSnlZnrTDp1MwsxELaFv4VYfx3fwHdyJW3FSK2grXhj4OPfMzL3HjzlT2nFerInJqemZ2dxcfn5hcWm5sLJ6raJEUqzQiEey5oNCzgRWNNMca7FECH2OVb97kvWrtygVi8SV7sXYCKEtWMAoaCPdeCHojh+kd/1moeiUnEHZ4+AOoUiGVW6uWJteK6JJiEJTDkrVXSfWjRSkZpRjP+8lCmOgXWhj3aCAEFUjHYzct7eM0rKDSJojtD1Qf95IIVSqF/rGmY2oRnuZ+FevnujgsJEyEScaBf36KEi4rSM7299uMYlU854BoJKZWW3aAQlUm5Tyee8UzTISz83DFzFK0JHcST2Q7RDu+2a5treb0X9GJr6Nhkyu7miK43C9V3Kdknu5Xzw6HiacI+tkg2wTlxyQI3JGyqRCKBHkgTySJ+vZerXerPcv64Q1vLNGfpX18Qntm7He</latexit>

What if you don’t want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this is
called positional encoding

signalpos

42

What if you don’t want to be permutation invariant?

1. Use an architecture that is not permutation invariant (e.g., MLP)

2. Add location information to the token code vectors — this is called
positional encoding

332 CHAPTER 25. TRANSFORMERS

25.5.2 Self-attention

As we have now seen, attention is a general-purpose way of dynamically pooling information
in one set of tokens based on queries from a di↵erent set of tokens. The next question we will
consider is: “which tokens should be doing the querying and which should we be matching
against?” In the example from the last section, the answer was intuitive because we had a
textual question that was asking about content in a visual image, so naturally the text gives
the query and we match against tokens that represent the image. But can we come up with
a more generic architecture where we don’t have to hand design which tokens interact in
which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If tin is length N then we have N queries, N weighted sums, and N output
tokens to form tout:

A

o f

attn layer

tin

tout

The equations for self-attention can be written in an especially compact form:

Qin = ZinWq / query matrix (25.25)

Kin = ZinWk / key matrix (25.26)

Vin = ZinWv / value matrix (25.27)

A = f(tin) = softmax(
QinKT

inp
d

) / attention matrix (25.28)

Zout = AVin (25.29)

d is dimensionality of the query/key vector (since we take a dot product between query and
key their dimensionalities much match). In expanded detail, here are the full mechanics of
an attention layer:

The nodes outlined in
blue correspond to each

other; they represent one
query being matched

against one key to result
a scalar similarity value,

in the gray box, which
acts as a weight in the

weighted sum computed
by A.

A A

N

N = N

M N

M

attn layer (expanded)

Zin

Zout

Qin,Kin,Vin

This fully defines a self-attention layer, which is the kind of attention layer used in
transformers. Before we move on though, let’s think through the intuition of what self-
attention might be doing.

Consider that we are processing the Guineafowl image and our task is semantic segmen-
tation (label each patch with an object class). First, we tokenize the image so that each

43

Fourier positional codes

Represent coordinates on Fourier basis

i
i

i
i

i
i

i
i

20 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

Notice that the output tokens on every layer l have the property that tl
n only depends

on T0
1:n–1, where T0 are the initial set of tokens input into the transformer. Also notice

that, after the first layer, all subsequent layers can use causal attention that is not shifted
in time, and the previous property is still maintained. Finally, notice that the subnetwork
that predicts each subsequent output token overlaps substantially with the subnetworks that
predict each previous token. That is, there is sharing of computation between all the pre-
diction problems. We will see a more concrete application of this strategy when we get to
autoregressive models in section ??.

1.11 Positional Encodings

Another idea associated with transformers is positional encoding. Operations over tokens
in a transformer are permutation equivariant, which means that we can shuffle the posi-
tions of the tokens and nothing substantial changes (the only change is that the outputs get
permuted). A consequence is that tokens do not naturally encode their position within the
representation of the signal.

Note that masked
attention layers are not

permutation invariant
because which tokens get
masked depends on their

ordering. Because of this,
masked attention models

do not necessarily need
positional encodings in

order to become sensitive
to position [3].

Sometimes we may wish to retain positional knowledge. For
example, knowing that a token is a representation of the top region of an image can help
us identify that the token is likely to represent sky. Positional encoding concatenates a code
representing position within the signal onto each token. If the signal is an image, then the
positional code should represent the x- and y-coordinates. However, it need not represent
these coordinates as scalars; more commonly we use a periodic representation of position,
where the coordinates are encoded as the vector of values a set of sinusoidal waves take on
at each position:

px = [sin(x), sin(x/B), sin(x/B2), …, sin(x/BP)]T (1.38)

py = [sin(y), sin(y/B), sin(y/B2), …, sin(y/BP)]T (1.39)

p =

px

py

�
(1.40)

where x and y are the coordinates of the token. This representation is visualized in
figure 1.20:

Figure 1.20:

Positional codes.
�

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>�

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>

input sin(x) sin(x/B) sin(x/B2) sin(x/B3) sin(x/B4)

sin(y) sin(y/B) sin(y/B2) sin(y/B3) sin(y/B4)

p

44

Other positional encodings

ScaleMAE uses ground sample distance positional encoding to train an
MAE across spatial scales of remote sensing data

https://arxiv.org/abs/2212.14532

concatenated and added to the embedded patches, which
are then fed into a ViT encoder. After the encoder, the
removed m patches are then placed back into their original
location in the sequence of patches where a learned mask

token represents the masked patches that were not encoded.
Another positional encoding vector is added to all patches
and a sequence of transformer blocks decodes these patches
to form the original input image, which is used as the learning
target.

Input Scale-MAE performs a super resolution reconstruc-
tion, where the input image I is downsampled from a higher
resolution image Ihr at the ground truth GSD. Instead of
targeting the input image, Scale-MAE targets high frequency
and low frequency components of Ihr, which is common in
Laplacian pyramid super resolution models [64], where the
high frequency component is at the same resolution as the
ground truth image Ihr and the low frequency component
is at the same resolution as the input image I , as shown in
Figure 2. Following many works in super resolution [64], the
low frequency target image is obtained by interpolating Ihr
to a much lower resolution, rlow and then interpolating to the
same resolution as the input image I . The high frequency tar-
get image is obtained by downsampling Ihr to another lower
resolution rhigh-low, and then upsampling to the same resolu-
tion as the ground truth image Ihr and subtracting this image
Ihf = Ihr Ihigh-low. The supplementary material provide
more information on the upsampling/downsampling method-
ology. The key components for Scale-MAE are described
next.

GSD Positional Encoding Images from scale-dependent
domains have a metric which defines the absolute scale for
the image. This metric has different names across domains
and is referred to as the Ground Sample Distance (GSD) in
remote sensing. The GSD is critical to understanding, con-
ceptually, the kinds of features that will be available in an
image. An image with finer GSD (lower number) will have
higher frequency details than an image with coarser GSD
(high number). Models are generally unaware of absolute
scale when learning over a set of data. Specifically, even if
they implicitly learn that all images in a dataset share a vary-
ing resolution from input-space augmentations, then these
models do not explicitly condition on the GSDs encountered
in unseen data.

We extend the positional encoding from Equation (2) to
include GSD by scaling the positional encoding relative to
the land area covered in an image as depicted in Figure 3
and mathematically:

vgsd,x(pos, 2i) = sin
g

G

pos

10000
2i
D

(3)

vgsd,y(pos, 2i+ 1) = cos
g

G

pos

10000
2i
D

(4)

Figure 3. Ground Sample Distance Positional Encoding (GS-

DPE). (Left) Input images at the same pixel resolution but different
GSDs are shown. The image on the bottom is a subset of the image
on the top. (Center) This overlap in location, albeit at a different
resolution, is reflected in the GSDPE. The finer image with smaller
spatial extent is represented by a corresponding subsection of the
overall sine wave on the bottom. (Right) A standard positional
encoding is strictly dependent on the image resolution and uses the
same embedding for both. The colors behind the sine waves show
the intensity and quantization of the encoding.

where g is the GSD of the image and G is a reference GSD,
nominally set to 1m. Intuitively, an object imaged at a finer
resolution has more pixels representing it. When imaging the
same object at a coarser resolution, those pixels must map to
fewer pixels. In Equation (4), we interpolate the positional
encoding by a factor of G

g
to account for the ordering of the

coarser set of pixels. This simple idea underpins the GSD
Positional Encoding, visualized in Figure 3.

Scale-MAE decoder The standard MAE learns represen-
tations by tasking a network with reconstructing an image
after masking out most of its pixels. While the standard
MAE decoder reconstructs the input image at the same scale
as its input, the objective of Scale-MAE is to learn multi-
scale representations. We draw on works from progressive
super-resolution such as [56], that learn a high resolution,
high frequency image and a lower resolution low frequency
image, that when combined together, yield the input image
at a higher resolution.

The Scale-MAE introduces a novel decoder which de-

© Reed, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

45

Other positional encodings

Geographic location encoding with spherical harmonics and sinusoidal
representation networks

https://arxiv.org/abs/2310.06743

ArXiv preprint v1 compiled October 11, 2023

0-1-2m = 1 2

l = 0

l = 1

l = 2

SPHERICAL HARMONICS

Y
m

l

LINEAR “Neural Network”
w

m

l

output

P

(a) A visual decomposition of the LINEAR(SH(�,�)) lo-
cation encoder, as weighted sum in eq. (3).

L = 5 L = 10 L = 20

Si
re

n(
SH

)
Li

ne
ar

(S
H

)
(b) Left to right: increasing the number of Legendre poly-
nomials L increases the resolveable resolution by adding
additional high frequency orders m and degrees l. Using
a more complex neural network, e.g., a 2-layer SIRENNET
(bottom row), further increases the model’s ability to re-
solve fine-grained detail.

Figure 2: SPHERICAL HARMONICS are orthogonal basis functions defined on spheres. Spherical functions
can be naturally defined as sum of parameter-weighting basis functions, as done in a linear layer (panel (a)).
In this work, we propose a location encoder NN(PE(�,�)) with a spherical harmonic positional embedding
(PE) function with the SIRENNET neural network (NN), i.e., SIREN(SH), to learn complex functions defined
on the globe, as illustrated in the example of land-ocean classification in the right panel.

which is broadly used for learning implicit neural representa-
tions of images (Mildenhall et al., 2021) but has not been tested in this context of location encoding.

DFS-based embeddings. In their foundational study, Mac Aodha et al. (2019) use a simple WRAP positional
encoding PE(�,�) = [cos�, sin�, cos�, sin�], which removed the discontinuity at the dateline (� = ⇡). The
original wrap positional encoding has since been identified as a special case of Double Fourier Sphere (DFS)
(Orszag, 1974) coefficients by Mai et al. (2023b):

DFS(�,�) =
S 1[

n=0

[sin�n, cos�n] [
S 1[

m=0

[sin�m, cos�m][

S 1[

n=0

S 1[

m=0

[cos�n cos�m, cos�n sin�m, sin�n cos�m, sin�m sin�m]

(2)

where the coordinates �,� are introduced across multiple frequencies �s = �

↵s
and �s = �

↵s
by a scale-

dependent factor ↵s = rmin ·(rmax
rmin

)
s

S 1 that allows users to specify the minimum and maximum radii rmin, rmax
that can be resolved at multiple scales up to S.

The full DFS embedding was found to be computationally impractical and quantitatively less accurate than
the special cases SPHEREM and SPHEREC identified by Mai et al. (2023b). Based on experimental results,
they proposed SPHEREM+ and SPHEREC+, which is a combination with the GRID embedding function of
Mai et al. (2020b). In the same paper, Mai et al. (2020b) proposed to use hexagonal basis functions rather
than rectangular grid cells, which is the THEORY embedding function that we will compare to in the results
section. Adapted from (Mai et al., 2023b), we show a visual representation of these eq. (2)-based embeddings
in fig. 1c.

Baseline embeddings. DIRECT, i.e., using the identity function to encode (�,�), or CARTESIAN3D, which
correponds to encoding (�,�) into (x, y, z) coordinates, are also common baselines still used in recent work
(Tseng et al., 2022).

Our Approach. We depart from DFS and instead propose to use SPHERICAL HARMONIC (SH) basis func-
tions (detailed in section 2.2), which have a long tradition in the Earth sciences for representing the gravity
field (Pail et al., 2011) or the magnetosphere of planets (Smith et al., 1980). The SH basis functions can be
multiplied with learnable coefficient weights. Examples of SH basis functions and their corresponding learn-
able triangle weight matrix is shown in fig. 2a. The weight matrix can be expressed as a linear layer, i.e., a
very simple “neural network” following the location encoding terminology of eq. (1). It can also be combined
with more complex neural networks; we propose to use Sinusoidal Representation Networks (SIRENNET)

3

ArXiv preprint v1 compiled October 11, 2023

0-1-2m = 1 2

l = 0

l = 1

l = 2

SPHERICAL HARMONICS

Y
m

l

LINEAR “Neural Network”
w

m

l

output

P

(a) A visual decomposition of the LINEAR(SH(�,�)) lo-
cation encoder, as weighted sum in eq. (3).

L = 5 L = 10 L = 20
Si

re
n(

SH
)

Li
ne

ar
(S

H
)

(b) Left to right: increasing the number of Legendre poly-
nomials L increases the resolveable resolution by adding
additional high frequency orders m and degrees l. Using
a more complex neural network, e.g., a 2-layer SIRENNET
(bottom row), further increases the model’s ability to re-
solve fine-grained detail.

Figure 2: SPHERICAL HARMONICS are orthogonal basis functions defined on spheres. Spherical functions
can be naturally defined as sum of parameter-weighting basis functions, as done in a linear layer (panel (a)).
In this work, we propose a location encoder NN(PE(�,�)) with a spherical harmonic positional embedding
(PE) function with the SIRENNET neural network (NN), i.e., SIREN(SH), to learn complex functions defined
on the globe, as illustrated in the example of land-ocean classification in the right panel.

which is broadly used for learning implicit neural representa-
tions of images (Mildenhall et al., 2021) but has not been tested in this context of location encoding.

DFS-based embeddings. In their foundational study, Mac Aodha et al. (2019) use a simple WRAP positional
encoding PE(�,�) = [cos�, sin�, cos�, sin�], which removed the discontinuity at the dateline (� = ⇡). The
original wrap positional encoding has since been identified as a special case of Double Fourier Sphere (DFS)
(Orszag, 1974) coefficients by Mai et al. (2023b):

DFS(�,�) =
S 1[

n=0

[sin�n, cos�n] [
S 1[

m=0

[sin�m, cos�m][

S 1[

n=0

S 1[

m=0

[cos�n cos�m, cos�n sin�m, sin�n cos�m, sin�m sin�m]

(2)

where the coordinates �,� are introduced across multiple frequencies �s = �

↵s
and �s = �

↵s
by a scale-

dependent factor ↵s = rmin ·(rmax
rmin

)
s

S 1 that allows users to specify the minimum and maximum radii rmin, rmax
that can be resolved at multiple scales up to S.

The full DFS embedding was found to be computationally impractical and quantitatively less accurate than
the special cases SPHEREM and SPHEREC identified by Mai et al. (2023b). Based on experimental results,
they proposed SPHEREM+ and SPHEREC+, which is a combination with the GRID embedding function of
Mai et al. (2020b). In the same paper, Mai et al. (2020b) proposed to use hexagonal basis functions rather
than rectangular grid cells, which is the THEORY embedding function that we will compare to in the results
section. Adapted from (Mai et al., 2023b), we show a visual representation of these eq. (2)-based embeddings
in fig. 1c.

Baseline embeddings. DIRECT, i.e., using the identity function to encode (�,�), or CARTESIAN3D, which
correponds to encoding (�,�) into (x, y, z) coordinates, are also common baselines still used in recent work
(Tseng et al., 2022).

Our Approach. We depart from DFS and instead propose to use SPHERICAL HARMONIC (SH) basis func-
tions (detailed in section 2.2), which have a long tradition in the Earth sciences for representing the gravity
field (Pail et al., 2011) or the magnetosphere of planets (Smith et al., 1980). The SH basis functions can be
multiplied with learnable coefficient weights. Examples of SH basis functions and their corresponding learn-
able triangle weight matrix is shown in fig. 2a. The weight matrix can be expressed as a linear layer, i.e., a
very simple “neural network” following the location encoding terminology of eq. (1). It can also be combined
with more complex neural networks; we propose to use Sinusoidal Representation Networks (SIRENNET)

3

Courtesy of Rußwurm, et al. Used under CC BY.

46

Other positional encodings

Laplacian positional encodings to encode node positions in a graph

https://arxiv.org/abs/2106.03893

Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors i viewed as vectors
positionned on the axis of frequencies (eigenvalues).

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [16]
and the heat diffusion [6].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [9], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the Laplacian G and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, î and î are
the i-th eigenvectors and eigenvalues of the symmetric Laplacian D

1
2 LD

1
2 , and D is the degree

matrix, and ˆ
i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

1
2

j2

X

i>0

(ˆi,j1 ˆi,j2)
2

ˆ
i

(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [6, 10]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [28]. Here we use the eigenfunctions of the regular Laplacian L.

d2
D
(j1, j2) =

X

k>0

e 2t i(i,j1 i,j2)
2 , d2

B
(j1, j2) =

X

i>0

(i,j1 i,j2)
2

2
i

(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing
eigenvectors and their corresponding eigenvalues when supplying information about relative positions
in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic
interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,
there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily
weighted when determining distances between nodes.

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [23], with the same questions also applying to geometric objects [12] and 3D
molecules [33]. Various success was found with the eigenfunctions being used for partial functional
correspondence [32], algorithmic understanding geometries [26], and style correspondence [12].
Examples of eigenvectors for molecular graphs are presented in Figure 3.

Figure 3: Examples of eigenvalues i and eigenvectors i for molecular graphs. The low-frequency
eigenvectors 1, 2 are spread accross the graph, while higher frequencies, such as 14, 15 for the
left molecule or 10, 11 for the right molecule, often resonate in local structures.

4

Courtesy of Kreuzer, et al. Used under CC BY-NC-SA.

47

Autoregressive models

Once upon a___ time

Once ___ a time Predictor
<latexit sha1_base64="+R+U7dKldTVrW+2u01d5L703cDY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKezmosegF48RzEOSJczOziZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaJsornQvwoZyJmnbMstpL9UUi4jTbjS5nfvdJ6oNU/LBTlMaCjySLGEEWyc9tjSNGbFKD6s1v+4vgNZJUJAaFGgNq1+DWJFMUGkJx8b0Az+1YY61ZYTTWWWQGZpiMsEj2ndUYkFNmC8OnqELp8QoUdqVtGih/p7IsTBmKiLXKbAdm1VvLv7n9TObXIc5k2lmqSTLRUnGkVVo/j2KmabE8qkjmGjmbkVkjDUm1mVUcSEEqy+vk06jHvj14L5Ra94UcZThDM7hEgK4gibcQQvaQEDAM7zCm6e9F+/d+1i2lrxi5hT+wPv8AfYvkH4=</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit>

Upon

Predictor
<latexit sha1_base64="+R+U7dKldTVrW+2u01d5L703cDY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKezmosegF48RzEOSJczOziZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaJsornQvwoZyJmnbMstpL9UUi4jTbjS5nfvdJ6oNU/LBTlMaCjySLGEEWyc9tjSNGbFKD6s1v+4vgNZJUJAaFGgNq1+DWJFMUGkJx8b0Az+1YY61ZYTTWWWQGZpiMsEj2ndUYkFNmC8OnqELp8QoUdqVtGih/p7IsTBmKiLXKbAdm1VvLv7n9TObXIc5k2lmqSTLRUnGkVVo/j2KmabE8qkjmGjmbkVkjDUm1mVUcSEEqy+vk06jHvj14L5Ra94UcZThDM7hEgK4gibcQQvaQEDAM7zCm6e9F+/d+1i2lrxi5hT+wPv8AfYvkH4=</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit>

48

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>

(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>

,
,
,
,

Learner
<latexit sha1_base64="EHTz7C4fqz2wFVyEFTn6ZACLM4k=">AAAB7nicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TJoY2ERwXxAcoS9zVyyZG/v2N0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpgKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskUwxbLBGJ6oZUo+ASW4Ybgd1UIY1DgZ1wcjv3O0+oNE/ko5mmGMR0JHnEGTVW6twjVRLVwK16NW8Bsk78glShQHPgfvWHCctilIYJqnXP91IT5FQZzgTOKv1MY0rZhI6wZ6mkMeogX5w7IxdWGZIoUbakIQv190ROY62ncWg7Y2rGetWbi/95vcxE10HOZZoZlGy5KMoEMQmZ/06GXCEzYmoJZYrbWwkbU0WZsQlVbAj+6svrpF2v+V7Nf6hXGzdFHGU4g3O4BB+uoAF30IQWMJjAM7zCm5M6L86787FsLTnFzCn8gfP5A036j4c=</latexit><latexit sha1_base64="EHTz7C4fqz2wFVyEFTn6ZACLM4k=">AAAB7nicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TJoY2ERwXxAcoS9zVyyZG/v2N0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpgKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskUwxbLBGJ6oZUo+ASW4Ybgd1UIY1DgZ1wcjv3O0+oNE/ko5mmGMR0JHnEGTVW6twjVRLVwK16NW8Bsk78glShQHPgfvWHCctilIYJqnXP91IT5FQZzgTOKv1MY0rZhI6wZ6mkMeogX5w7IxdWGZIoUbakIQv190ROY62ncWg7Y2rGetWbi/95vcxE10HOZZoZlGy5KMoEMQmZ/06GXCEzYmoJZYrbWwkbU0WZsQlVbAj+6svrpF2v+V7Nf6hXGzdFHGU4g3O4BB+uoAF30IQWMJjAM7zCm5M6L86787FsLTnFzCn8gfP5A036j4c=</latexit><latexit sha1_base64="EHTz7C4fqz2wFVyEFTn6ZACLM4k=">AAAB7nicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TJoY2ERwXxAcoS9zVyyZG/v2N0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpgKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskUwxbLBGJ6oZUo+ASW4Ybgd1UIY1DgZ1wcjv3O0+oNE/ko5mmGMR0JHnEGTVW6twjVRLVwK16NW8Bsk78glShQHPgfvWHCctilIYJqnXP91IT5FQZzgTOKv1MY0rZhI6wZ6mkMeogX5w7IxdWGZIoUbakIQv190ROY62ncWg7Y2rGetWbi/95vcxE10HOZZoZlGy5KMoEMQmZ/06GXCEzYmoJZYrbWwkbU0WZsQlVbAj+6svrpF2v+V7Nf6hXGzdFHGU4g3O4BB+uoAF30IQWMJjAM7zCm5M6L86787FsLTnFzCn8gfP5A036j4c=</latexit><latexit sha1_base64="EHTz7C4fqz2wFVyEFTn6ZACLM4k=">AAAB7nicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TJoY2ERwXxAcoS9zVyyZG/v2N0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpgKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskUwxbLBGJ6oZUo+ASW4Ybgd1UIY1DgZ1wcjv3O0+oNE/ko5mmGMR0JHnEGTVW6twjVRLVwK16NW8Bsk78glShQHPgfvWHCctilIYJqnXP91IT5FQZzgTOKv1MY0rZhI6wZ6mkMeogX5w7IxdWGZIoUbakIQv190ROY62ncWg7Y2rGetWbi/95vcxE10HOZZoZlGy5KMoEMQmZ/06GXCEzYmoJZYrbWwkbU0WZsQlVbAj+6svrpF2v+V7Nf6hXGzdFHGU4g3O4BB+uoAF30IQWMJjAM7zCm5M6L86787FsLTnFzCn8gfP5A036j4c=</latexit>

T
ra
in
in
g

<latexit sha1_base64="TRc/X31uf+rkNQ2GCCLPpvHdBuU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SmDJoYxkhX5AcYW+zlyzZ2zt354Rw5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXJFIYdN1vp7C1vbO7V9wvHRweHZ+UT886Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Pp3cLvPnFtRKxaOEu4H9GxEqFgFK3Ua2kqlFDjYbniVt0lyCbxclKBHM1h+WswilkacYVMUmP6npugn1GNgkk+Lw1SwxPKpnTM+5YqGnHjZ8t75+TKKiMSxtqWQrJUf09kNDJmFgW2M6I4MeveQvzP66cY1v1MqCRFrthqUZhKgjFZPE9GQnOGcmYJZVrYWwmbUE0Z2ohKNgRv/eVN0qlVPbfqPdQqjds8jiJcwCVcgwc30IB7aEIbGEh4hld4cx6dF+fd+Vi1Fpx85hz+wPn8ASR0kAQ=</latexit><latexit sha1_base64="TRc/X31uf+rkNQ2GCCLPpvHdBuU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SmDJoYxkhX5AcYW+zlyzZ2zt354Rw5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXJFIYdN1vp7C1vbO7V9wvHRweHZ+UT886Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Pp3cLvPnFtRKxaOEu4H9GxEqFgFK3Ua2kqlFDjYbniVt0lyCbxclKBHM1h+WswilkacYVMUmP6npugn1GNgkk+Lw1SwxPKpnTM+5YqGnHjZ8t75+TKKiMSxtqWQrJUf09kNDJmFgW2M6I4MeveQvzP66cY1v1MqCRFrthqUZhKgjFZPE9GQnOGcmYJZVrYWwmbUE0Z2ohKNgRv/eVN0qlVPbfqPdQqjds8jiJcwCVcgwc30IB7aEIbGEh4hld4cx6dF+fd+Vi1Fpx85hz+wPn8ASR0kAQ=</latexit><latexit sha1_base64="TRc/X31uf+rkNQ2GCCLPpvHdBuU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SmDJoYxkhX5AcYW+zlyzZ2zt354Rw5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXJFIYdN1vp7C1vbO7V9wvHRweHZ+UT886Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Pp3cLvPnFtRKxaOEu4H9GxEqFgFK3Ua2kqlFDjYbniVt0lyCbxclKBHM1h+WswilkacYVMUmP6npugn1GNgkk+Lw1SwxPKpnTM+5YqGnHjZ8t75+TKKiMSxtqWQrJUf09kNDJmFgW2M6I4MeveQvzP66cY1v1MqCRFrthqUZhKgjFZPE9GQnOGcmYJZVrYWwmbUE0Z2ohKNgRv/eVN0qlVPbfqPdQqjds8jiJcwCVcgwc30IB7aEIbGEh4hld4cx6dF+fd+Vi1Fpx85hz+wPn8ASR0kAQ=</latexit><latexit sha1_base64="TRc/X31uf+rkNQ2GCCLPpvHdBuU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SmDJoYxkhX5AcYW+zlyzZ2zt354Rw5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXJFIYdN1vp7C1vbO7V9wvHRweHZ+UT886Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Pp3cLvPnFtRKxaOEu4H9GxEqFgFK3Ua2kqlFDjYbniVt0lyCbxclKBHM1h+WswilkacYVMUmP6npugn1GNgkk+Lw1SwxPKpnTM+5YqGnHjZ8t75+TKKiMSxtqWQrJUf09kNDJmFgW2M6I4MeveQvzP66cY1v1MqCRFrthqUZhKgjFZPE9GQnOGcmYJZVrYWwmbUE0Z2ohKNgRv/eVN0qlVPbfqPdQqjds8jiJcwCVcgwc30IB7aEIbGEh4hld4cx6dF+fd+Vi1Fpx85hz+wPn8ASR0kAQ=</latexit>

Predictor
<latexit sha1_base64="+R+U7dKldTVrW+2u01d5L703cDY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKezmosegF48RzEOSJczOziZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaJsornQvwoZyJmnbMstpL9UUi4jTbjS5nfvdJ6oNU/LBTlMaCjySLGEEWyc9tjSNGbFKD6s1v+4vgNZJUJAaFGgNq1+DWJFMUGkJx8b0Az+1YY61ZYTTWWWQGZpiMsEj2ndUYkFNmC8OnqELp8QoUdqVtGih/p7IsTBmKiLXKbAdm1VvLv7n9TObXIc5k2lmqSTLRUnGkVVo/j2KmabE8qkjmGjmbkVkjDUm1mVUcSEEqy+vk06jHvj14L5Ra94UcZThDM7hEgK4gibcQQvaQEDAM7zCm6e9F+/d+1i2lrxi5hT+wPv8AfYvkH4=</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit>

x1, . . . ,xn�1
<latexit sha1_base64="znjXy0+k6Y6LgLBlKwLGl2a8VrY=">AAACEXicbVC7TsMwFHXKq5RXgJHFokLqAFWCkGCsYGEsEn1ITRQ5jtNadZzIdhBVlF9g4VdYGECIlY2Nv8FpM5SWI1k+Oude3XuPnzAqlWX9GJWV1bX1jepmbWt7Z3fP3D/oyjgVmHRwzGLR95EkjHLSUVQx0k8EQZHPSM8f3xR+74EISWN+ryYJcSM05DSkGCkteWbDiZAa+WH2mHuZnZ9ChwWxkvqf0/mZnXtm3WpaU8BlYpekDkq0PfPbCWKcRoQrzJCUA9tKlJshoShmJK85qSQJwmM0JANNOYqIdLPpRTk80UoAw1joxxWcqvMdGYqknES+riz2lIteIf7nDVIVXrkZ5UmqCMezQWHKoIphEQ8MqCBYsYkmCAuqd4V4hATCSodY0yHYiycvk+5507aa9t1FvXVdxlEFR+AYNIANLkEL3II26AAMnsALeAPvxrPxanwYn7PSilH2HII/ML5+AZwFnXw=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit>

xn
<latexit sha1_base64="NEqcSgvVdiYNMT3e3vfZTfnIuzA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APasWTSTBuaSYYko5Zh/sONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwUoS0iuVTdAGvKmaAtwwyn3VhRHAWcdoLJde53HqjSTIo7M42pH+GRYCEj2Fjpvh9hMw7C9CkbpCIbVGtu3Z0BLROvIDUo0BxUv/pDSZKICkM41rrnubHxU6wMI5xmlX6iaYzJBI9oz1KBI6r9dJY6QydWGaJQKvuEQTP190aKI62nUWAn85R60cvF/7xeYsJLP2UiTgwVZH4oTDgyEuUVoCFTlBg+tQQTxWxWRMZYYWJsURVbgrf45WXSPqt7bt27Pa81roo6ynAEx3AKHlxAA26gCS0goOAZXuHNeXRenHfnYz5acoqdQ/gD5/MHU2aTCQ==</latexit><latexit sha1_base64="IYTkgzSO0wB0ZCxojdc1faITPZE=">AAACGnicjVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cK9gHtWDJppg1NMkOSEcsw/+HCjb/iRsSduPFvzLSz0NaFBwKHc+7l5pwg5kwb1/1ySkvLK6tr5fXKxubW9k51d6+lo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+zP32PVWaRfLWTGLqCzyULGQEGyvd9QQ2oyBMH7J+KrN+tebW3SnQIvEKUoMC/xvvVz96g4gkgkpDONa667mx8VOsDCOcZpVeommMyRgPaddSiQXVfjqNlqEjqwxQGCn7pEFT9edGioXWExHYyTyKnvdy8S+vm5jw3E+ZjBNDJZkdChOOTITyntCAKUoMn1iCiWL2r4iMsMLE2DYrNro3H3SRtE7qnlv3bk5rjYuiszIcwCEcgwdn0IAruIYmEFDwCM/w6jw5L86b8z4bLTnFzj78gvP5DYkqmoI=</latexit><latexit sha1_base64="IYTkgzSO0wB0ZCxojdc1faITPZE=">AAACGnicjVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cK9gHtWDJppg1NMkOSEcsw/+HCjb/iRsSduPFvzLSz0NaFBwKHc+7l5pwg5kwb1/1ySkvLK6tr5fXKxubW9k51d6+lo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+zP32PVWaRfLWTGLqCzyULGQEGyvd9QQ2oyBMH7J+KrN+tebW3SnQIvEKUoMC/xvvVz96g4gkgkpDONa667mx8VOsDCOcZpVeommMyRgPaddSiQXVfjqNlqEjqwxQGCn7pEFT9edGioXWExHYyTyKnvdy8S+vm5jw3E+ZjBNDJZkdChOOTITyntCAKUoMn1iCiWL2r4iMsMLE2DYrNro3H3SRtE7qnlv3bk5rjYuiszIcwCEcgwdn0IAruIYmEFDwCM/w6jw5L86b8z4bLTnFzj78gvP5DYkqmoI=</latexit><latexit sha1_base64="IYTkgzSO0wB0ZCxojdc1faITPZE=">AAACGnicjVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cK9gHtWDJppg1NMkOSEcsw/+HCjb/iRsSduPFvzLSz0NaFBwKHc+7l5pwg5kwb1/1ySkvLK6tr5fXKxubW9k51d6+lo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+zP32PVWaRfLWTGLqCzyULGQEGyvd9QQ2oyBMH7J+KrN+tebW3SnQIvEKUoMC/xvvVz96g4gkgkpDONa667mx8VOsDCOcZpVeommMyRgPaddSiQXVfjqNlqEjqwxQGCn7pEFT9edGioXWExHYyTyKnvdy8S+vm5jw3E+ZjBNDJZkdChOOTITyntCAKUoMn1iCiWL2r4iMsMLE2DYrNro3H3SRtE7qnlv3bk5rjYuiszIcwCEcgwdn0IAruIYmEFDwCM/w6jw5L86b8z4bLTnFzj78gvP5DYkqmoI=</latexit>

Once upon a time

There and back again

The slow brown fox

To be or not to be

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

!
<latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit><latexit sha1_base64="sVBkjs/c+hJlwPgmxP0/MoyXMvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdkBouRcJbKFDybqo5jUPJO+H4duZ3Hrk2QiUPOEl5ENNhIiLBKFrJ72kxHCHVWj31qzW37s5BVolXkBoUaParX72BYlnME2SSGuN7bopBTjUKJvm00ssMTykb0yH3LU1ozE2Qz0+ekjOrDEiktK0EyVz9PZHT2JhJHNrOmOLILHsz8T/PzzC6DnKRpBnyhC0WRZkkqMjsfzIQmjOUE0so08LeStiIasrQplSxIXjLL6+S9kXdc+ve/WWtcVPEUYYTOIVz8OAKGnAHTWgBAwXP8ApvDjovzrvzsWgtOcXMMfyB8/kDwruRjQ==</latexit>

S
am

p
li
n
g

<latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="Aj9KcFM1SaOsijOddBZodfEW3RA=">AAACFHicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbS0XzgGQJdyezyZCZ2WVmVgghP2Fh46/YiNha2Pk3TpItNLHwwMDhnHu5c06UCm6s7395K6tr6xubha3i9s7u3n7p4LBhkkxTVqeJSHQrQsMEV6xuuRWslWqGMhKsGQ2vpn7zgWnDE3VvRykLJfYVjzlF66TWHUp3RfW7pbJf8WcgyyTISRly/G+8W/rs9BKaSaYsFWhMO/BTG45RW04FmxQ7mWEp0iH2WdtRhZKZcDwLNSGnTumRONHuKUtm6s+NMUpjRjJykxLtwCx6U/Evr53Z+CIcc5Vmlik6PxRngtiETBsiPa4ZtWLkCFLN3V8JHaBGal2PRRc9WAy6TBrVSuBXgttquXaZd1aAYziBMwjgHGpwDTdQBwoCHuEZXr0n78V7897noytevnMEv+B9fAPwxJd8</latexit><latexit sha1_base64="Aj9KcFM1SaOsijOddBZodfEW3RA=">AAACFHicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbS0XzgGQJdyezyZCZ2WVmVgghP2Fh46/YiNha2Pk3TpItNLHwwMDhnHu5c06UCm6s7395K6tr6xubha3i9s7u3n7p4LBhkkxTVqeJSHQrQsMEV6xuuRWslWqGMhKsGQ2vpn7zgWnDE3VvRykLJfYVjzlF66TWHUp3RfW7pbJf8WcgyyTISRly/G+8W/rs9BKaSaYsFWhMO/BTG45RW04FmxQ7mWEp0iH2WdtRhZKZcDwLNSGnTumRONHuKUtm6s+NMUpjRjJykxLtwCx6U/Evr53Z+CIcc5Vmlik6PxRngtiETBsiPa4ZtWLkCFLN3V8JHaBGal2PRRc9WAy6TBrVSuBXgttquXaZd1aAYziBMwjgHGpwDTdQBwoCHuEZXr0n78V7897noytevnMEv+B9fAPwxJd8</latexit><latexit sha1_base64="Aj9KcFM1SaOsijOddBZodfEW3RA=">AAACFHicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbS0XzgGQJdyezyZCZ2WVmVgghP2Fh46/YiNha2Pk3TpItNLHwwMDhnHu5c06UCm6s7395K6tr6xubha3i9s7u3n7p4LBhkkxTVqeJSHQrQsMEV6xuuRWslWqGMhKsGQ2vpn7zgWnDE3VvRykLJfYVjzlF66TWHUp3RfW7pbJf8WcgyyTISRly/G+8W/rs9BKaSaYsFWhMO/BTG45RW04FmxQ7mWEp0iH2WdtRhZKZcDwLNSGnTumRONHuKUtm6s+NMUpjRjJykxLtwCx6U/Evr53Z+CIcc5Vmlik6PxRngtiETBsiPa4ZtWLkCFLN3V8JHaBGal2PRRc9WAy6TBrVSuBXgttquXaZd1aAYziBMwjgHGpwDTdQBwoCHuEZXr0n78V7897noytevnMEv+B9fAPwxJd8</latexit>

Predictor
<latexit sha1_base64="+R+U7dKldTVrW+2u01d5L703cDY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKezmosegF48RzEOSJczOziZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaJsornQvwoZyJmnbMstpL9UUi4jTbjS5nfvdJ6oNU/LBTlMaCjySLGEEWyc9tjSNGbFKD6s1v+4vgNZJUJAaFGgNq1+DWJFMUGkJx8b0Az+1YY61ZYTTWWWQGZpiMsEj2ndUYkFNmC8OnqELp8QoUdqVtGih/p7IsTBmKiLXKbAdm1VvLv7n9TObXIc5k2lmqSTLRUnGkVVo/j2KmabE8qkjmGjmbkVkjDUm1mVUcSEEqy+vk06jHvj14L5Ra94UcZThDM7hEgK4gibcQQvaQEDAM7zCm6e9F+/d+1i2lrxi5hT+wPv8AfYvkH4=</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit><latexit sha1_base64="t8odHEcuZ7FPmmH/Qa/KBYIQVJQ=">AAACFXicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLCOYhyRLmJ2dTYbMY5m5K4SQr7Cw8VdsRGwFO//GSbKFJhYeGDiccy537olSwS34/pdXWFvf2Nwqbpd2dvf2D8qHRy2rM0NZk2qhTScilgmuWBM4CNZJDSMyEqwdja5nfvuBGcu1uoNxykJJBoonnBJw0n3DsJhT0KZfrvhVfw68SoKcVFCO/8X75c9erGkmmQIqiLXdwE8hnBADnAo2LfUyy1JCR2TAuo4qIpkNJ/OrpvjMKTFOtHFPAZ6rPycmRFo7lpFLSgJDu+zNxL+8bgbJZTjhKs2AKbpYlGQCg8azinDMDaMgxo4Qarj7K6ZDYggFV2TJnR4sH7pKWrVq4FeD21qlfpV3VkQn6BSdowBdoDq6QQ3URBRJ9Iie0av35L14b977Ilrw8plj9AvexzfUp5f3</latexit>

x1, . . . ,xn�1
<latexit sha1_base64="znjXy0+k6Y6LgLBlKwLGl2a8VrY=">AAACEXicbVC7TsMwFHXKq5RXgJHFokLqAFWCkGCsYGEsEn1ITRQ5jtNadZzIdhBVlF9g4VdYGECIlY2Nv8FpM5SWI1k+Oude3XuPnzAqlWX9GJWV1bX1jepmbWt7Z3fP3D/oyjgVmHRwzGLR95EkjHLSUVQx0k8EQZHPSM8f3xR+74EISWN+ryYJcSM05DSkGCkteWbDiZAa+WH2mHuZnZ9ChwWxkvqf0/mZnXtm3WpaU8BlYpekDkq0PfPbCWKcRoQrzJCUA9tKlJshoShmJK85qSQJwmM0JANNOYqIdLPpRTk80UoAw1joxxWcqvMdGYqknES+riz2lIteIf7nDVIVXrkZ5UmqCMezQWHKoIphEQ8MqCBYsYkmCAuqd4V4hATCSodY0yHYiycvk+5507aa9t1FvXVdxlEFR+AYNIANLkEL3II26AAMnsALeAPvxrPxanwYn7PSilH2HII/ML5+AZwFnXw=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit><latexit sha1_base64="4azmvVdzS4TRwLXAxwNO+gJO+b8=">AAACNnicjVC9TsMwGHTKXyl/AUYWiwqpA1QJQoKxgoURJPojNVHkOE5r1XEi20FUUV6Bp2Fg4SXYWFgQYuURcNoMpWXgkyyf7u6TfecnjEplWW9GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPR8JAmjnLQVVYz0EkFQ5DPS9UdXhd69J0LSmN+pcULcCA04DSlGSlOe2XAipIZ+mD3kXmbnx9BhQaykvmd4fmLnnlm3mtZk4CKwS1AH5fzP7pmvThDjNCJcYYak7NtWotwMCUUxI3nNSSVJEB6hAelryFFEpJtNYufwSDMBDGOhD1dwws5uZCiSchz52lmEkfNaQf6l9VMVXrgZ5UmqCMfTh8KUQRXDokMYUEGwYmMNEBZU/xXiIRIIK910TUe354Mugs5p07aa9u1ZvXVZdlYFB+AQNIANzkELXIMb0AYYPIIn8AI+jGfj3fg0vqbWilHu7INfY3z/ADAapPU=</latexit>

x̂n
<latexit sha1_base64="tuZYpdb5xpUrPFc3v9Np5ovJ474=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyURQZdFNy4r2FZoQplMJ+3QySTMTMQagr/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyScKe0431ZlaXllda26XtvY3NresXf3OipOJaFtEvNY3gVYUc4EbWumOb1LJMVRwGk3GF8VfveeSsVicasnCfUjPBQsZARrI/XtA2+EdeZFWI+CMHvI834m8r5ddxrOFGiRuCWpQ4lW3/7yBjFJIyo04Vipnusk2s+w1Ixwmte8VNEEkzEe0p6hAkdU+dk0fY6OjTJAYSzNExpN1d8bGY6UmkSBmSxiqnmvEP/zeqkOL/yMiSTVVJDZoTDlSMeoqAINmKRE84khmEhmsiIywhITbQqrmRLc+S8vks5pw3Ua7s1ZvXlZ1lGFQziCE3DhHJpwDS1oA4FHeIZXeLOerBfr3fqYjVascmcf/sD6/AG3E5YH</latexit><latexit sha1_base64="8QdJDkrA1hgbV1FJgIs/iQLR9cI=">AAACInicjVDLSsNAFL3xWesrPnZuBovgqiQi6LLoxqWCfUBTwmQ6aYdOJmFmItaQf3Hhxl9xI+pK8GOctFlo68IDA4dz7uXOOUHCmdKO82ktLC4tr6xW1qrrG5tb2/bObkvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweiy8Nt3VCoWi1s9TmgvwgPBQkawNpJv73tDrDMvwnoYhNl9nvuZyH275tSdCdA8cUtSgxL/G/ftd68fkzSiQhOOleq6TqJ7GZaaEU7zqpcqmmAywgPaNVTgiKpeNomYoyOj9FEYS/OERhP150aGI6XGUWAmiyxq1ivEv7xuqsPzXsZEkmoqyPRQmHKkY1T0hfpMUqL52BBMJDN/RWSIJSbatFo10d3ZoPOkdVJ3nbp7c1prXJSdVeAADuEYXDiDBlzBNTSBwAM8wjO8Wk/Wi/VmfUxHF6xyZw9+wfr6BlE0nYA=</latexit><latexit sha1_base64="8QdJDkrA1hgbV1FJgIs/iQLR9cI=">AAACInicjVDLSsNAFL3xWesrPnZuBovgqiQi6LLoxqWCfUBTwmQ6aYdOJmFmItaQf3Hhxl9xI+pK8GOctFlo68IDA4dz7uXOOUHCmdKO82ktLC4tr6xW1qrrG5tb2/bObkvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweiy8Nt3VCoWi1s9TmgvwgPBQkawNpJv73tDrDMvwnoYhNl9nvuZyH275tSdCdA8cUtSgxL/G/ftd68fkzSiQhOOleq6TqJ7GZaaEU7zqpcqmmAywgPaNVTgiKpeNomYoyOj9FEYS/OERhP150aGI6XGUWAmiyxq1ivEv7xuqsPzXsZEkmoqyPRQmHKkY1T0hfpMUqL52BBMJDN/RWSIJSbatFo10d3ZoPOkdVJ3nbp7c1prXJSdVeAADuEYXDiDBlzBNTSBwAM8wjO8Wk/Wi/VmfUxHF6xyZw9+wfr6BlE0nYA=</latexit><latexit sha1_base64="8QdJDkrA1hgbV1FJgIs/iQLR9cI=">AAACInicjVDLSsNAFL3xWesrPnZuBovgqiQi6LLoxqWCfUBTwmQ6aYdOJmFmItaQf3Hhxl9xI+pK8GOctFlo68IDA4dz7uXOOUHCmdKO82ktLC4tr6xW1qrrG5tb2/bObkvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweiy8Nt3VCoWi1s9TmgvwgPBQkawNpJv73tDrDMvwnoYhNl9nvuZyH275tSdCdA8cUtSgxL/G/ftd68fkzSiQhOOleq6TqJ7GZaaEU7zqpcqmmAywgPaNVTgiKpeNomYoyOj9FEYS/OERhP150aGI6XGUWAmiyxq1ivEv7xuqsPzXsZEkmoqyPRQmHKkY1T0hfpMUqL52BBMJDN/RWSIJSbatFo10d3ZoPOkdVJ3nbp7c1prXJSdVeAADuEYXDiDBlzBNTSBwAM8wjO8Wk/Wi/VmfUxHF6xyZw9+wfr6BlE0nYA=</latexit>

Colorless green ideas sleep furiously

… …

49

GPT (and many other related models)

Colorless green ideas sleep

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

furiously

50

GPT training (and many other related models)

Colorless green ideas sleep

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

furiously

Colorless green ideas sleep furiously

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 19

During training, we will give examples like this:

{t1, …, tn} ! tn+1 (1.35)

{t1, …, tn–1} ! tn (1.36)

{t1, …, tn–2} ! tn–1 (1.37)

and so on. We can make all these predictions at once with a single matrix multiply:

1 2 3 4time index:

A
A Tin

=
Tout

Figure 1.18: Masked
attention to make multiple
causal predictions at once.
Black cells are masked;
they are filled with zeros.

This way, one forward pass makes N predictions rather than one prediction. This is equiv-
alent to doing a single next token prediction N times, but it all happens in a single matrix
multiply, using the matrix shown on the right.

This kind of matrix is called causal because each output index i only depends on input
indices j such that j < i. If A is an attention matrix, then this strategy is called causal atten-

tion. This is a masking strategy where each token can only attend to previous tokens in the
sequence. This approach can dramatically speed up training because all the sub-sequence
prediction problems (predict tn–1 given T1:n–2, predict tn given T1:n–1, predict tn+1 given
T1:n) are supervised at the same time.

This also works for transformers with more than one layer, where the masking strategy
looks like shown in figure 1.19.

1 2 3 4time index:

A1

A2

A2 Tin
=
Tout

A1 Tin
=
Tout

Figure 1.19: Multilayer
masked attention achieves
causal prediction with a
deep net.

i
i

i
i

i
i

i
i

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 19

During training, we will give examples like this:

{t1, …, tn} ! tn+1 (1.35)

{t1, …, tn–1} ! tn (1.36)

{t1, …, tn–2} ! tn–1 (1.37)

and so on. We can make all these predictions at once with a single matrix multiply:

1 2 3 4time index:

A
A Tin

=
Tout

Figure 1.18: Masked
attention to make multiple
causal predictions at once.
Black cells are masked;
they are filled with zeros.

This way, one forward pass makes N predictions rather than one prediction. This is equiv-
alent to doing a single next token prediction N times, but it all happens in a single matrix
multiply, using the matrix shown on the right.

This kind of matrix is called causal because each output index i only depends on input
indices j such that j < i. If A is an attention matrix, then this strategy is called causal atten-

tion. This is a masking strategy where each token can only attend to previous tokens in the
sequence. This approach can dramatically speed up training because all the sub-sequence
prediction problems (predict tn–1 given T1:n–2, predict tn given T1:n–1, predict tn+1 given
T1:n) are supervised at the same time.

This also works for transformers with more than one layer, where the masking strategy
looks like shown in figure 1.19.

1 2 3 4time index:

A1

A2

A2 Tin
=
Tout

A1 Tin
=
Tout

Figure 1.19: Multilayer
masked attention achieves
causal prediction with a
deep net.

51

i
i

i
i

i
i

i
i

386 Chapter 26

Figure 26.19: Multi-
layer masked attention

achieves causal prediction
with a deep net.

1 2 3 4time index:

A1

A2

A2 Tin
=
Tout

A1 Tin
=
Tout

permuted). A consequence is that tokens do not know encode their position within the rep-
resentation of the signal.

Note that masked
attention layers are not

permutation invariant
because which tokens get
masked depends on their

ordering. Because of this,
masked attention models

do not necessarily need
positional encodings in

order to become sensitive
to position [190].

Sometimes, however, we may wish to retain positional knowledge.
For example, knowing that a token is a representation of the top region of an image can help
us identify that the token is likely to represent sky. Positional encoding concatenates a code
representing position within the signal onto each token. If the signal is an image, then the
positional code should represent the x- and y-coordinates. However, it need not represent
these coordinates as scalars; more commonly we use a periodic representation of position,
where the coordinates are encoded as the vector of values a set of sinusoidal waves take on
at each position:

px = [sin(x), sin(x/B), sin(x/B2), …, sin(x/BP)]T (26.38)

py = [sin(y), sin(y/B), sin(y/B2), …, sin(y/BP)]T (26.39)

p =

px

py

�
(26.40)

where x and y are the coordinates of the token. This representation is visualized in
figure 26.20:

Figure 26.20:
Positional codes.

(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>(

<latexit sha1_base64="q4WCp+vNSk6GA1s6N0x45fCcZO8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ac0oWy203TpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiGkk+YgzaqzU9Zs8ivx8UK25dXcBsk68gtSgQGtQ/fKHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQiPsWyppjDrIF+fOyIVVhmSUKFvSkIX6eyKnsdbTOLSdMTVjverNxf+8fmZGt0HOZZoZlGy5aJQJYhIy/50MuUJmxNQSyhS3txI2pooyYxOq2BC81ZfXSeeq7rl17+G61mgWcZThDM7hEjy4gQbcQwvawGACz/AKb07qvDjvzseyteQUM6fwB87nDyI/j2w=</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit><latexit sha1_base64="6OZsRXZb9l4oZkzeMOaKbNhciVU=">AAACE3icjVA9SwNBFHwXv2L8ilraLAbBKtyJoGWIjaWCSYTkCHubd5cle3vH7p4QjvwICxv/io2IrY2d/8ZNcoUmFg4sDDPzePsmSAXXxnW/nNLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYm6D6hGwSW2DDcC71OFNA4EdoLR1dTvPKDSPJF3ZpyiH9NI8pAzaqzU6TV5FPXyfrXm1t0ZyDLxClKDAv+L96ufvUHCshilYYJq3fXc1Pg5VYYzgZNKL9OYUjaiEXYtlTRG7eezmybkxCoDEibKPmnITP05kdNY63Ec2GRMzVAvelPxL6+bmfDSz7lMM4OSzReFmSAmIdOCyIArZEaMLaFMcftXwoZUUWZsjRV7urd46DJpn9U9t+7dntcazaKzMhzBMZyCBxfQgGu4gRYwGMEjPMOr8+S8OG/O+zxacoqZQ/gF5+Mb216W5Q==</latexit>

input sin(x) sin(x/B) sin(x/B2) sin(x/B3) sin(x/B4)

sin(y) sin(y/B) sin(y/B2) sin(y/B3) sin(y/B4)

p

52

token-wise MLP
(a.k.a. 1x1 conv)

specific to
autoregressive

modeling

© Vaswani, et al. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/53

Image-to-text architecture
(autoregressive)

i
i

i
i

i
i

i
i

Vision and Language 751

almost all domains of human knowledge (we use language to describe pretty everything we
do and everything we know). So, if we can translate images to text then we link imagery to
many other domains of knowledge.

As an example of an image-to-text system, we will use a transformer to map the input
image to a set of tokens, and we will then feed these tokens as input to an autoregressive
text decoder, which is also implemented with a transformer. See [295] for an example of a
system that uses this general approach. Figure 51.11 shows this architecture.

nself-attn

ncross-attn

A
ye

ll
ow

bi
rd

ye
ll

ow
bi

rd
si

tt
in

g

o
causal
self-attn

o causal
self-attn

Im
ag

e
En

co
de

r

Te
xt

D
ec

od
er

Figure 51.11: Image-
to-text using a small
transformer with cross-
attention. The edges in
gray are cross-attention
edges. Many variations of
this architecture are pos-
sible. For example, each
layer of the text encoder
could cross-attend to the
output image tokens. Or,
the image encoder could
compress all its input
tokens into a single out-
put token that represents
the entire photo; this out-
put token would then get
cross-attended by the text
decoder. This approach
could save memory and
computation time.

There is one special layer to point out, the cross-attention layer (cross-attn). This
layer addresses the question of how to insert image tokens into a text model. The answer is
quite simple: just let the text tokens attend to the image tokens. The image tokens will emit
their value vectors which will be mixed with the text token value vectors according to the
attention weights to produce the next layer of tokens in the text decoder.

Here are the equations for a cross-attention layer:

Qt = TtW
T
t,q (51.1)

K` = T`W
T
`,k (51.2)

V` = T`W
T
`,v (51.3)

54

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

55

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page

