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Plan for today 
introduce the optimization problem 

Newton 
cover some classical approaches I Gauss Newton 

steepestdescentheuristic picture of scaling 

X 
width 

modularizing the theory depth 
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The machine learning puzzle 

Three pieces to the puzzle 

Approximation Does there exist a neural net 
in my model family that fits the training data 

Optimization If it does exist can I find it 

Generalization Does it whell on unseen data 

This lecture will focus mainly on the second question 
3



The optimization problem formal statement 

prediction neural net f x W 

error measure g y 
target 

training data 
a y fam yen 

loss function Llw I É flue w y 

God find w that minimizes Lew 
4



The optimization problem a picture 

Llula 
START HERE 

W 

roughly we just iterate 

w w 28 
A 

Learning rate gradient 
5
































































What makes optimization hard 

some examples 
t flu w 

size a lot of weights 80 

depth a lot of layers ha 
noise a lot of data 

I Itches É 

É 

In this lecture we will just study 
full batch optimization Te 

it's already interesting 6



 

Scaling woes 

stale width scale depth 
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Classical 1st and 2nd Order Methods 
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Let's survey some optimization methods 

We will look at 

first order methods use 1 
t 
derivatives 

gradient g 8 
second order methods use 2ⁿᵈderivatives 

Hessian H 

Will try to highlight modelling assumptions 
and potential downsides of the different methods 9
































































the Taylor expanding loss 

Different classical approaches to optimization SEE 
take this Taylor expansion as a starting point 

an 

α 

gradient vector in Rd 

w g Aw AWH Aw 

9 8 
H 8 Hessian matrix in 1rad 10
































































Selond order optimization Newton's method 

Take the Taylor expansion to second order 

L w Aw w g Aw ATHAN 

and minimize the RHS with respect to An 

Take derivative and set to zero g HAW 0 

tg 
Newton's 
method 

pre condition thegraditwiththe inverted Hessian 
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Selond order optimization Problems w Newton 

NEYE pre condition the gradient 
with the inverted Hessian 

can fix with cubic regularization 
d parameters Hessian is dxd 

too expensive even for small networks 

g f H N 
12
































































Composite optimization the GN decomposition 
F T 

Gance Newton 

Suppose we have a composite objective L L of 
e g error I composed with neural net f 

p 
chain 
rule 

we call the second result the Gauss Newton 
decomposition of the Hessian 
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Composite optimization the GN method 

Given composite loss function α of 

I full Hessian H curvature system of error 
for square loss L If y5 we have of I 
ignore the curvature of the model 

Newton's method becomes 

Gauss 

t.IT fI'g newton 
method 

� 
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Composite optimization Problems w GN method 

Gauss 

t.IT EI'g newton 
method 

requires computing extra derivatives 

is it safe to ignore curvature of the model 

I full Hessian H curvature ff.hu of error 15













First order optimization Steepest descent 

Take the Taylor expansion 

L w Aw 214 54W 

model with 11An 12 

model 
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ÉtÉ 
LffffÉÉÉfÉyff 

minimize RHS of model wrt Aw 

differentiate and set derivative to zero 

vanilla 

gradient
descent 17
































































First order optimization a steepest descent 

ii 

minimize RHS of model wrt Aw 

do homework 

sign 

Ftfsign gradient
descent 18






















First order optimization General steepest descent 

model 

I5I 
f 

minimizing the right hand side with respect to 
Aw has a dual formulation 
ars jaw 11AM 11ft argmax 

t t.lk 
g't 

step size step direction 
where II It is the dual norm to 11.11 19



Heuristics for Scaling 

20



How large should the weight updates be 

We want the Goldilocks update size 

not too big not too small 

But always ask inw orm 

observation a neural neti builtontof 
weight matrices 

perhaps we could try a matrix norm 

e g 
Frobenius norm 

spectral norm 

nuclear norm 
21



Perspectives on neural computation 

NEURAL PERSPECTIVE fff 

TENSOR PERSPECTIVE reln 

ME 
SPECIAL PERSPECTIVE using SUDS 

rem 

orthogonal diagonal seating 
scalars 

unit vector 22



The spectral norm 

ki 
VMI 

Matrix M Vector v 

spectual norm 1m14 7 171 
Answers question how much can a matrix scale up the 
Euclidean norm of a vector 

It spectral norm largest singular value 
23



The RMS RMS operator norm 

IE hEata 
Matrix M Vector V E Rd 

Equip vectors in Rd with the RMS norm Hillems 11.112 

Rms Rms operator norm 1Mlens rms 1 171 5 
Interrelation 1 Arms rms constrains how much a matrix 

can change the RMS norm of its input 

Exercise show that 11 llrme.am JEFHill 24



   
 

 

Spectrally controlled weight updates 

our recall 

calim 

scaling woes 

t.atEE II 
© @kellerjordan0on X. All rights reserved. This content is excluded fromour 
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drift in optimal learning to remove rate 
as width is varied for all layers 1 1 C do 

initialize weights so that IWilliams rms 1 
State updates so that IAtWilliams rms t 

See homework 25
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Depth scaling 

t.IETE I 
the trick seems to be to parameterize your 
residual block the right way 
relall that I i E exp a 

so build your residual block like 
a a layer a SEE 
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Building a Theory Modularization 

my research so be skeptical 
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Building a modular theory 

IDEA if you want an optimization theory 
that handles complicated neural networks 

build the theory with the neural net 

inputs 

fm.nueT 
outputs 

weighs 
28



Write a library of atomic modules 

Definition module M 

M forward W x X 4SEE 

M backward 4 Wx WXX 

M norm w R 

Linear 

Embedding with hand specified 

ConvzD forward backward and norms 

Recu 
29



Write combination rules 

e g module composition M Mz M 

M forward just compose Me forward 
with M forward M backward 

NM norm 

µ 
do the chain rule 

how should we combine 

Mz norm and Mi norm 
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