

Scaling Rules for Optimization

Jeremy Bernstein

jbernstein@mit.edu

Plan for today

introduce the optimization problem

cover some classical approaches

heuristic picture of scaling

modularizing the theory

Newton

Gauss-Newton

steepest descent

width

depth

The machine learning puzzle

Three pieces to the puzzle:

- ① Approximation Does there exist a neural net in my model family that fits the training data?
- ② Optimization If it does exist, can I find it?
- ③ Generalization Does it work well on unseen data?

This lecture will focus mainly on the second question.

The optimization problem: formal statement

neural net $f(x, w)$

error measure $L(\hat{y}, y)$

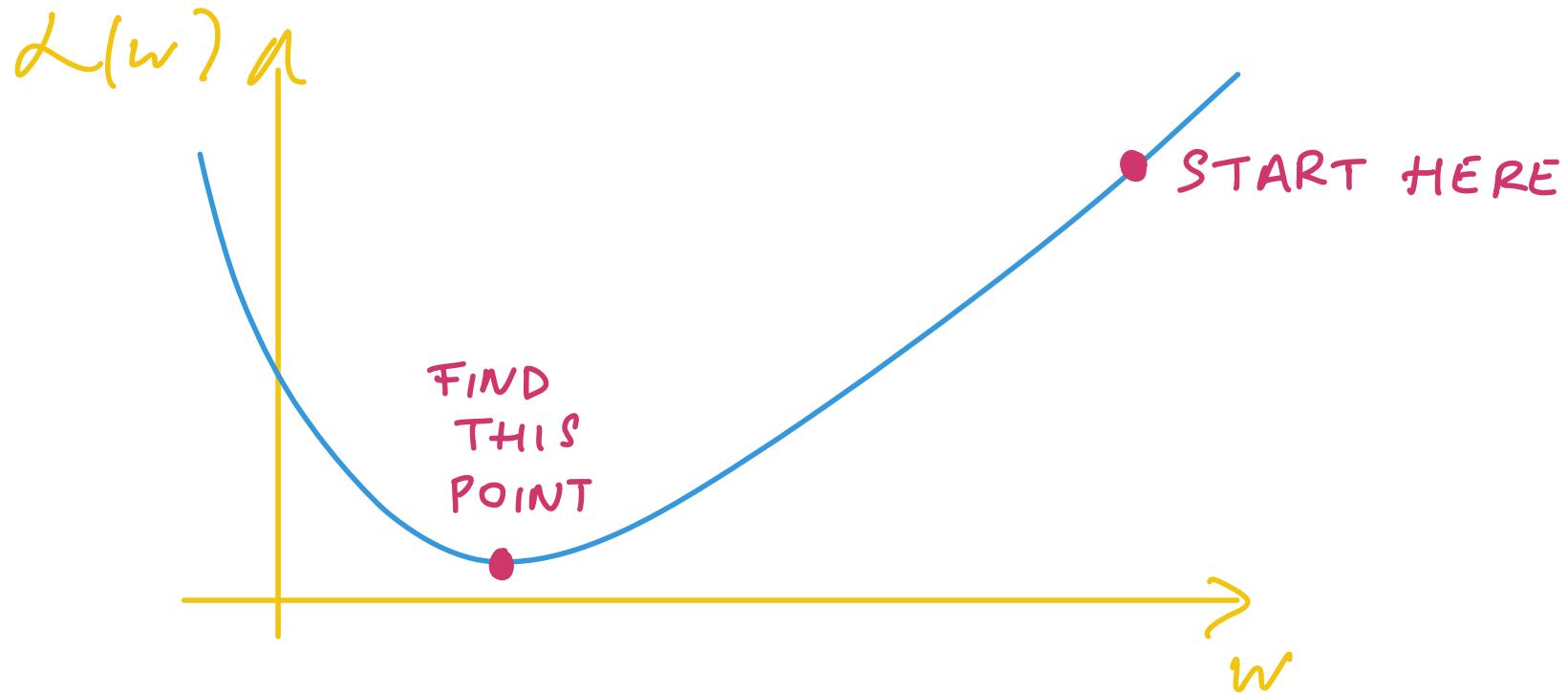
prediction
target

training data $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})$

loss function $L(w) = \frac{1}{N} \sum_{i=1}^N L(f(x^{(i)}, w), y^{(i)})$

GOAL find w that minimizes $L(w)$

The optimization problem: a picture



roughly, we just iterate

$$w \rightarrow w - \gamma \frac{\partial L}{\partial w}$$

learning rate gradient

What makes optimization hard?

Some examples:

① size: a lot of weights

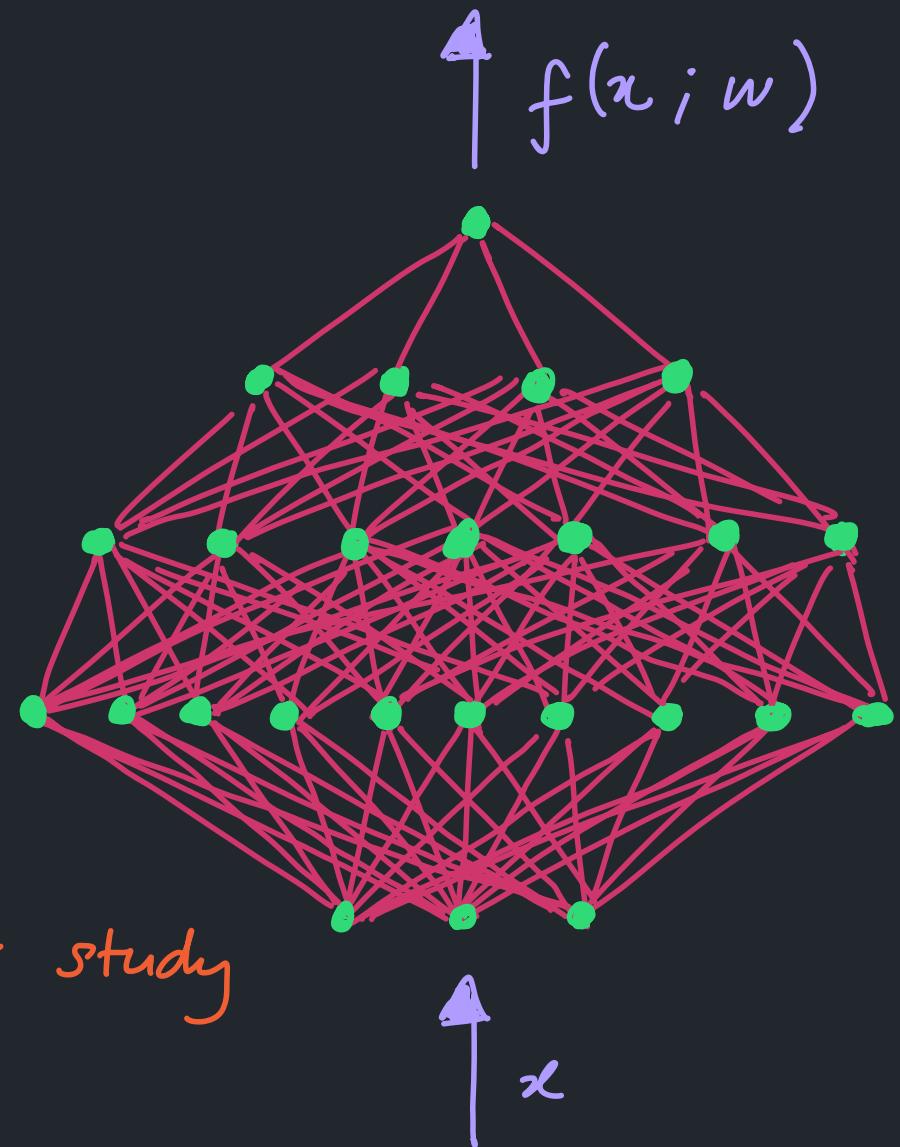
② depth: a lot of layers

③ noise: a lot of data

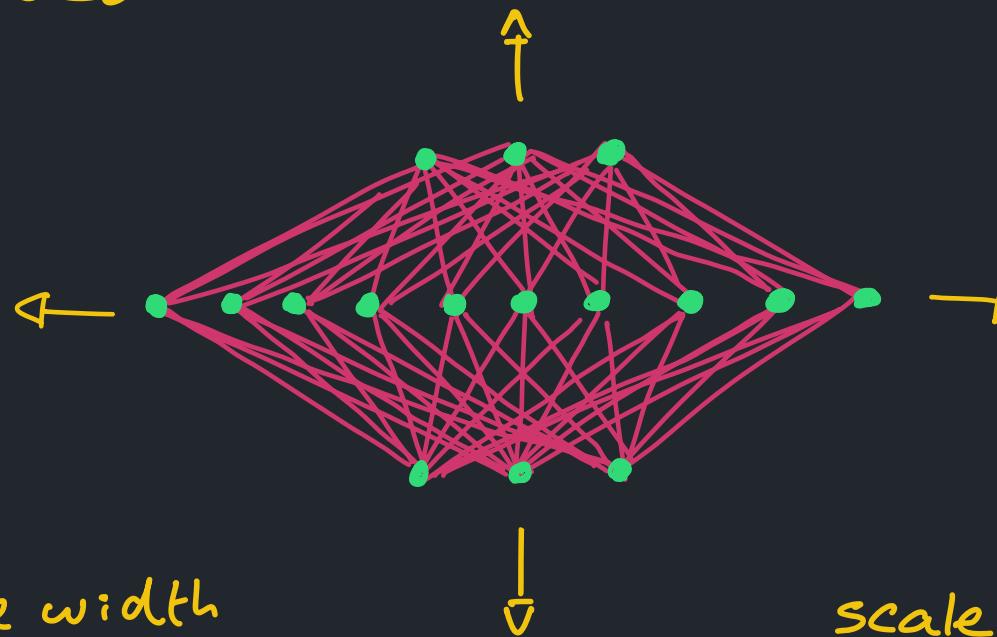
must use
mini-batches

In this lecture, we will just study
full-batch optimization ...

... it's already interesting.

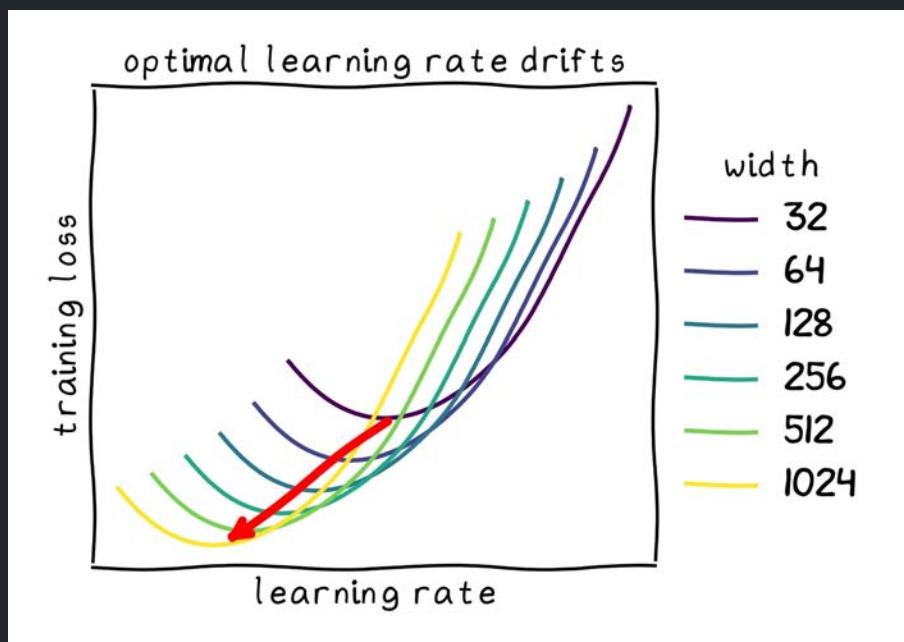
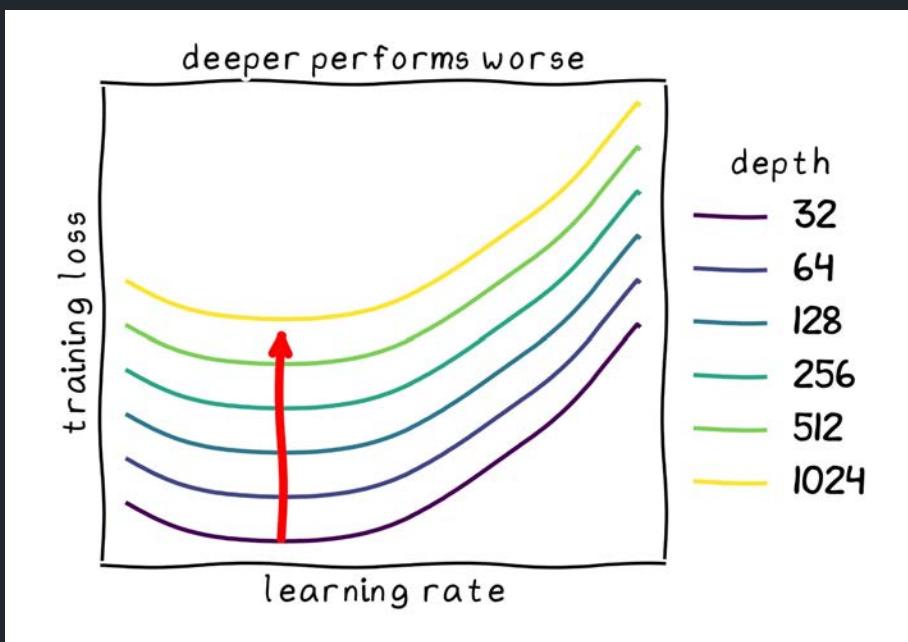


Scaling woes



scale width

scale depth



Classical 1st and 2nd Order Methods

Let's survey some optimization methods

We will look at:

- first-order methods — use 1st derivatives

$$\text{gradient } g = \frac{\partial \mathcal{L}}{\partial w}$$

- second-order methods — use 2nd derivatives

$$\text{Hessian } H = \frac{\partial^2 \mathcal{L}}{\partial w^2}$$

Will try to highlight modelling assumptions
and potential downsides of the different methods

Taylor expanding the loss

Different classical approaches to optimization
take this Taylor expansion as a starting point

$$\begin{aligned} \mathcal{L}(w + \Delta w) &= \mathcal{L}(w) + \underbrace{\frac{\partial \mathcal{L}}{\partial w}^T \Delta w}_{\text{"linearization"}} + \underbrace{\frac{1}{2} \Delta w \frac{\partial^2 \mathcal{L}}{\partial w^2} \Delta w}_{\text{"non-linear part"}} + \dots \\ &= \mathcal{L}(w) + g^T \Delta w + \frac{1}{2} \Delta w^T H \Delta w + \dots \end{aligned}$$

$$g = \frac{\partial \mathcal{L}}{\partial w} \quad \text{"gradient"} \longrightarrow \text{vector in } \mathbb{R}^d$$

$$H = \frac{\partial^2 \mathcal{L}}{\partial w^2} \quad \text{"Hessian"} \longrightarrow \text{matrix in } \mathbb{R}^{d \times d}$$

Second-order optimization: Newton's method

Take the Taylor expansion to second-order:

$$\mathcal{L}(w + \Delta w) \approx \mathcal{L}(w) + g^\top \Delta w + \frac{\lambda}{2} \Delta w^\top H \Delta w$$

and minimize the RHS with respect to Δw

Take derivative and set to zero $g + \lambda H \Delta w = 0$

$$\Rightarrow \boxed{\Delta w = -H^{-1}g} \quad \text{Newton's method}$$

“pre-condition the gradient with the inverted Hessian”

Second-order optimization: Problems w/ Newton

Newton's method

$$\boxed{\Delta w = -H^{-1}g}$$

“pre-condition the gradient with the inverted Hessian”

Problems with Newton's method

$$g = \frac{d}{l}$$

A hand-drawn diagram of a rectangular container. The vertical height is labeled H in blue. The horizontal width is labeled d in yellow. The depth is labeled d in yellow.

Composite optimization : the GN decomposition

Gauss! Newton!

Suppose we have a "composite" objective $\mathcal{L} = l \circ f$
— e.g. error l composed with neural net f

$$\left\{ \begin{array}{l} \frac{\partial \mathcal{L}}{\partial w} = \frac{\partial l}{\partial f} \cdot \frac{\partial f}{\partial w} \quad \leftarrow \text{chain rule} \\ \frac{\partial^2 \mathcal{L}}{\partial w^2} = \frac{\partial l}{\partial f} \cdot \frac{\partial^2 l}{\partial f^2} \cdot \frac{\partial f}{\partial w} + \frac{\partial l}{\partial f} \frac{\partial^2 f}{\partial w^2} \quad \leftarrow \text{product rule} \\ \quad \quad \quad + \text{chain rule} \end{array} \right.$$

we call the second result the "Gauss-Newton" decomposition of the Hessian

Composite optimization: the GN method

Given composite loss function $\mathcal{L} = l \circ f$

$$\frac{\partial^2 \mathcal{L}}{\partial w^2} = \frac{\partial f}{\partial w} \cdot \frac{\partial^2 l}{\partial f^2} \cdot \frac{\partial f}{\partial w} + \frac{\partial l}{\partial f} \frac{\partial^2 f}{\partial w^2}$$

full Hessian H

curvature
of error

curvature
of model

- ① for square loss, $l = \frac{1}{2} (f - y)^2$, we have $\frac{\partial^2 l}{\partial f^2} = 1$
- ② ignore the curvature of the model 😊

\Rightarrow Newton's method becomes

$$\boxed{\Delta w = - \left[\frac{\partial f}{\partial w} \frac{\partial f}{\partial w} \right]^{-1} g}$$

Gauss
Newton
method

Composite optimization : Problems w/ GN method

$$\boxed{\Delta w = - \left[\frac{\partial f}{\partial w} \frac{\partial f}{\partial w} \right]^{-1} g} \quad \begin{array}{l} \text{Gauss} \\ \text{Newton} \\ \text{method} \end{array}$$

- ① requires computing extra derivatives $\frac{\partial f}{\partial w}$
- ② is it safe to ignore curvature of the model?

$$\frac{\partial^2 \lambda}{\partial w^2} = \frac{\partial f}{\partial w} \cdot \frac{\partial^2 L}{\partial f^2} \cdot \frac{\partial f}{\partial w} + \cancel{\frac{\partial L}{\partial f} \frac{\partial^2 f}{\partial w^2}}$$

\nwarrow full Hessian H \nwarrow curvature of error \uparrow curvature of model

First-order optimization: Steepest descent

Take the Taylor expansion:

$$\mathcal{L}(w + \Delta w) = \mathcal{L}(w) + g^T \Delta w + \underbrace{\frac{1}{2} \Delta w^T H \Delta w}_{\text{non-linear part}} + \dots$$

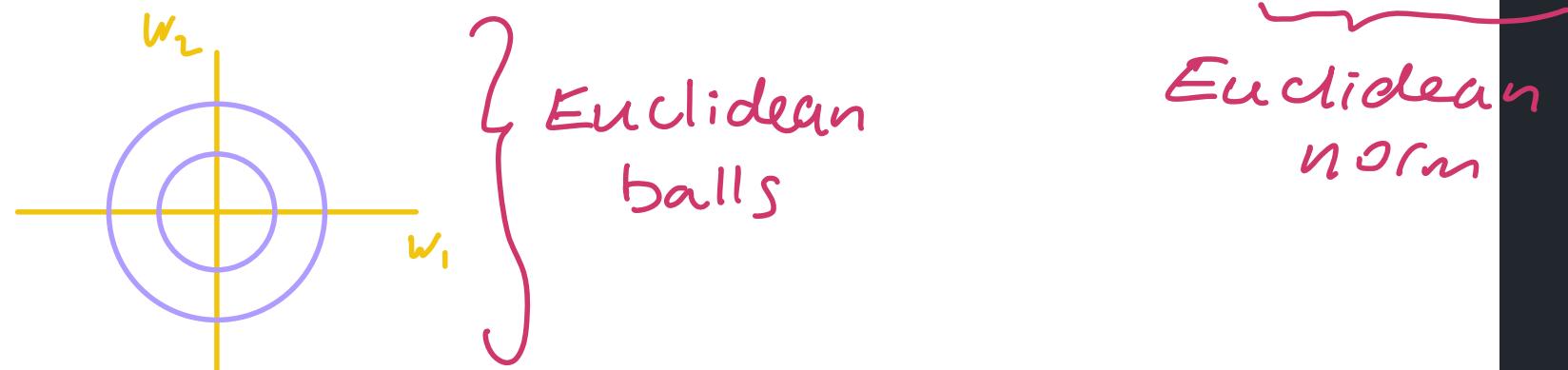
↪ model with $\frac{\lambda}{2} \|\Delta w\|^2$

model

$$\left\{ \mathcal{L}(w + \Delta w) \approx \mathcal{L}(w) + g^T \Delta w + \frac{\lambda}{2} \|\Delta w\|^2 \right.$$

First-order optimization: ℓ_2 steepest descent

model $\left\{ \boxed{\mathcal{L}(w + \Delta w) \approx \mathcal{L}(w) + g^\top \Delta w + \frac{\lambda}{2} \|\Delta w\|_2^2}$



minimize RHS of model wrt Δw

\Rightarrow differentiate and set derivative to zero

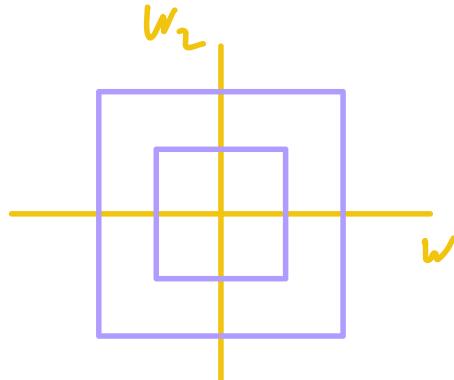
$$\Rightarrow g + \lambda \Delta w = 0$$

$$\Rightarrow \boxed{\Delta w = -\frac{1}{\lambda} g}$$

vanilla
gradient
descent!

First-order optimization: ℓ_∞ steepest descent

model $\left\{ \begin{array}{l} \mathcal{L}(w + \Delta w) \approx \mathcal{L}(w) + g^\top \Delta w + \frac{\lambda}{2} \|\Delta w\|_\infty^2 \end{array} \right.$



infinity balls

infinity norm

minimize RHS of model wrt Δw

\Rightarrow <do homework>

$\Rightarrow \left\{ \Delta w = -\frac{\|g\|_1}{\lambda} \text{sign}(g) \right.$

sign gradient descent!

First-order optimization: General steepest descent

model $\left\{ \boxed{\mathcal{L}(w + \Delta w) \approx \mathcal{L}(w) + g^\top \Delta w + \frac{\lambda}{2} \|\Delta w\|^2} \right.$

general norm

minimizing the right hand side with respect to Δw has a "dual formulation"

$$\underset{\Delta w}{\operatorname{argmin}} \left[g^\top \Delta w + \frac{\lambda}{2} \|\Delta w\|^2 \right] = \frac{\|g\|^+}{\lambda} \underset{\substack{\operatorname{argmax} \\ t : \|t\|=1}}{\operatorname{argmax}} g^\top t$$

↗
step size ↘
Step direction

where $\|\cdot\|^+$ is the "dual norm" to $\|\cdot\|$

Heuristics for Scaling

How large should the weight updates be?

We want the "Goldilocks" update size...

... not too big, not too small

But always ask: in which norm?

observation a neural net is built out of weight matrices

perhaps we could try a matrix norm?

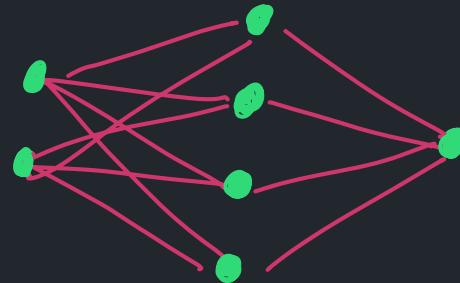
Frobenius norm

e.g. spectral norm

nuclear norm

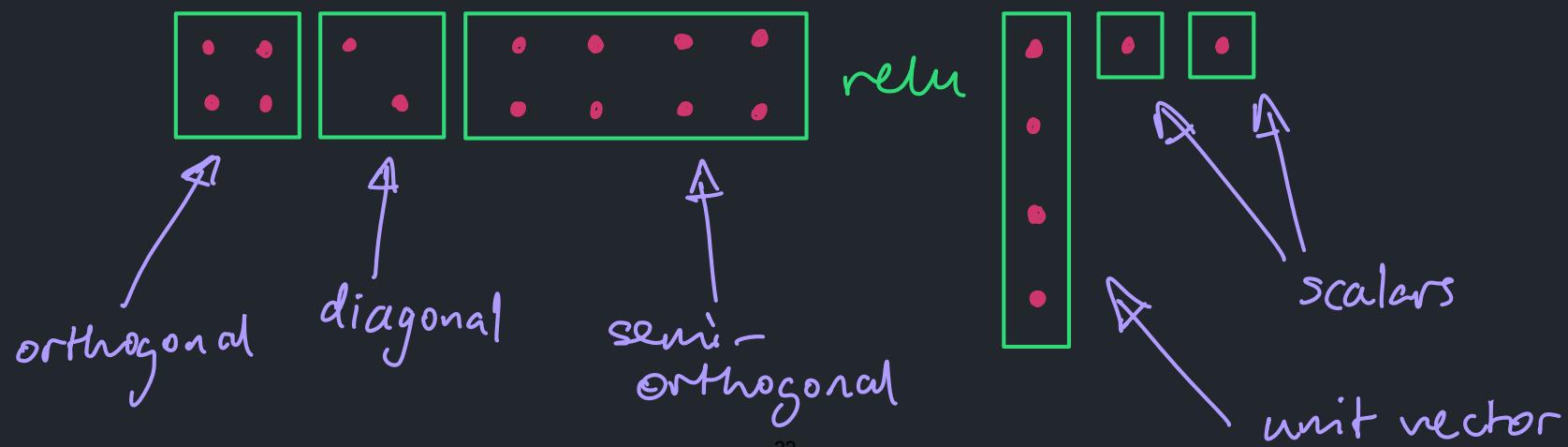
Perspectives on neural computation

① NEURAL PERSPECTIVE



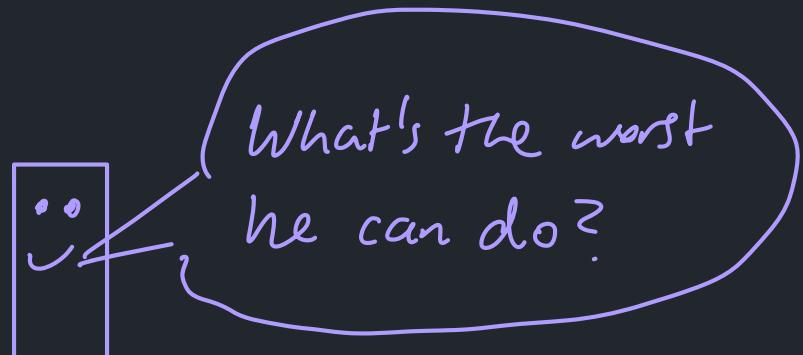
② TENSOR PERSPECTIVE

③ SPECTRAL PERSPECTIVE using SVDs



The spectral norm

Matrix M



Vector v

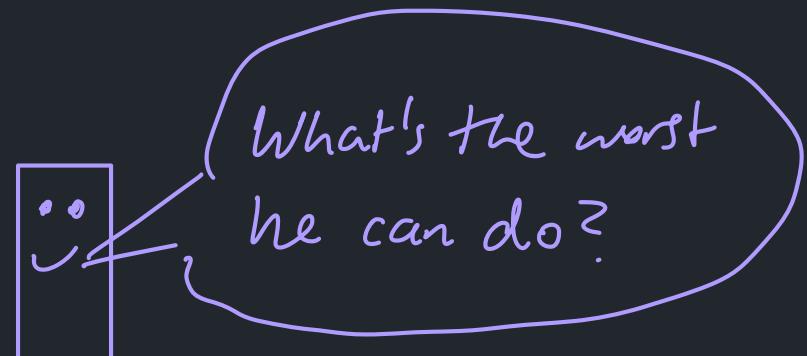
Spectral norm $\|M\|_*$ = $\max_{v \neq 0} \frac{\|Mv\|_2}{\|v\|_2}$

Answers question : how much can a matrix scale up the Euclidean norm of a vector?

FACT spectral norm \equiv largest singular value

The RMS-RMS operator norm

Matrix M



Vector $v \in \mathbb{R}^d$

Equip vectors in \mathbb{R}^d with the RMS norm $\|\cdot\|_{\text{RMS}} = \sqrt{\frac{1}{d} \|\cdot\|_2^2}$

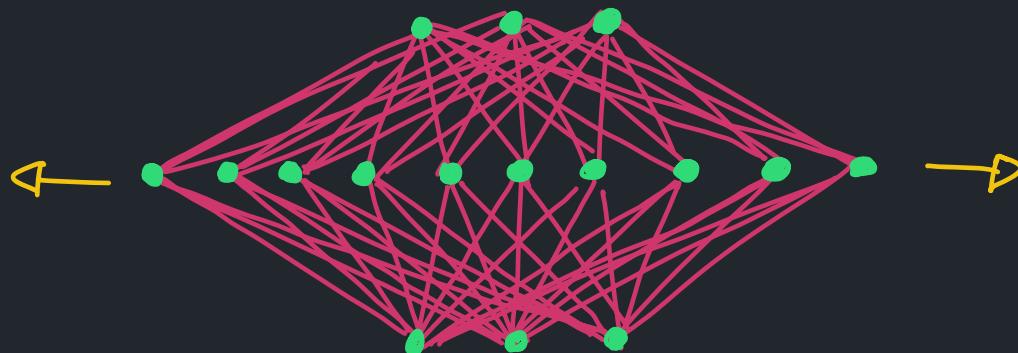
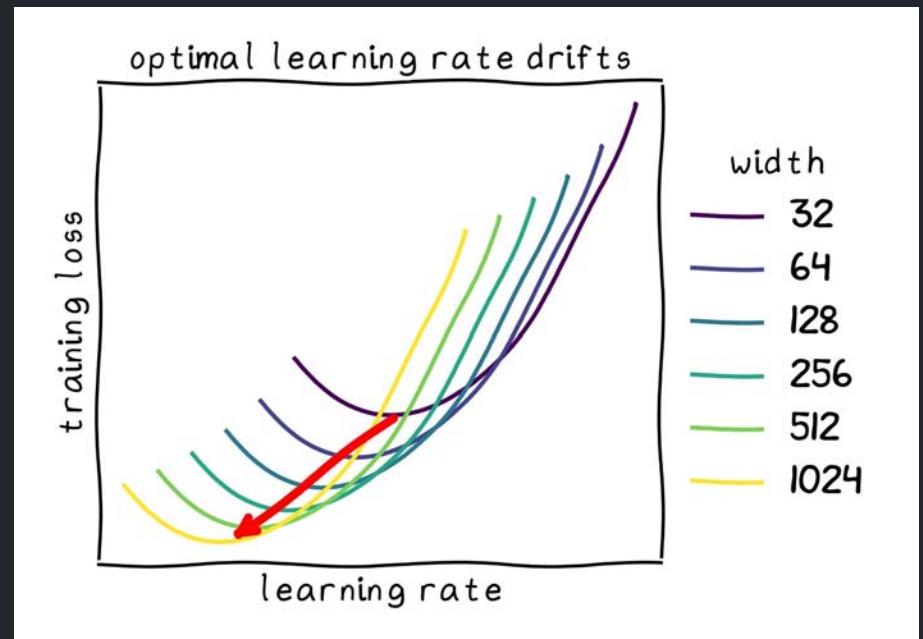
$$\text{RMS-RMS operator norm } \|M\|_{\text{RMS-RMS}} = \max_{v \neq 0} \frac{\|Mv\|_{\text{RMS}}}{\|v\|_{\text{RMS}}}$$

Interpretation $\|\cdot\|_{\text{RMS-RMS}}$ constrains how much a matrix can change the RMS norm of its input

Exercise Show that $\|\cdot\|_{\text{RMS-RMS}} = \sqrt{\frac{\text{d}_{\text{in}}}{\text{d}_{\text{out}}}} \|\cdot\|_*$

Spectrally controlled weight updates

recall our scaling woes



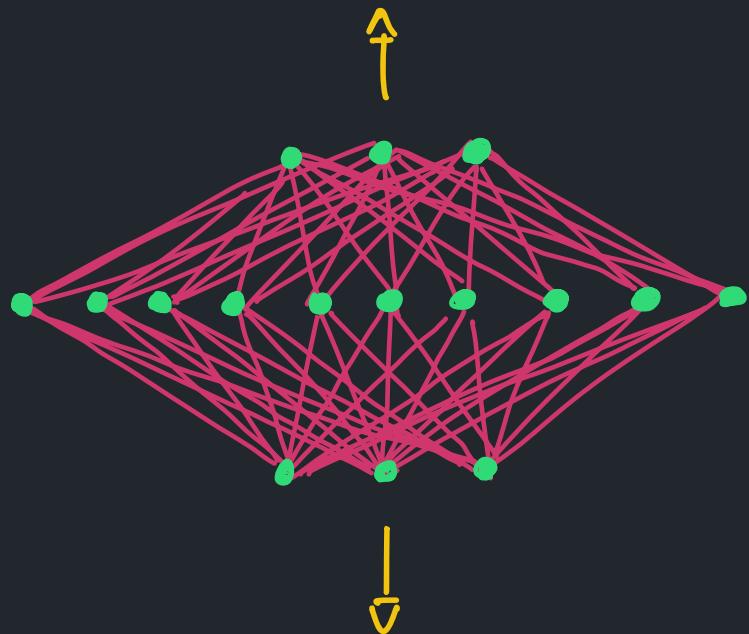
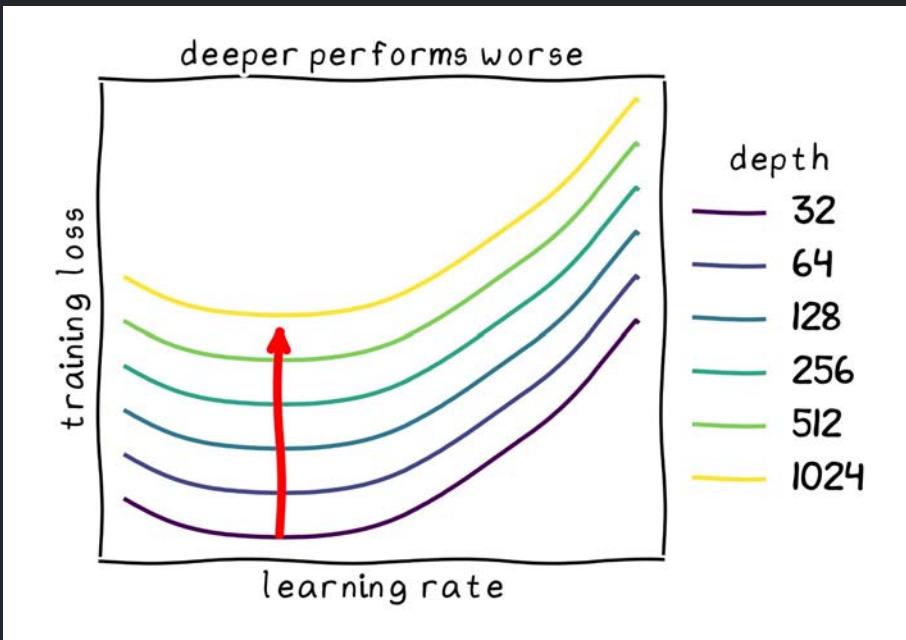
© @kellerjordan0 on X. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Claim: to remove drift in optimal learning rate as width is varied, for all layers $l=1, \dots, L$, do:

- ① initialize weights so that $\|W_l\|_{\text{RMS-RMS}} \sim 1$.
- ② scale updates so that $\|\Delta w_l\|_{\text{RMS-RMS}} \sim 1$.

See homework!

Depth scaling



© @kellerjordan0 on X. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

the trick seems to be to parameterize your residual block the "right" way

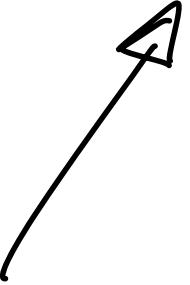
recall that $\lim_{\zeta \rightarrow \infty} \left(1 + \frac{u}{\zeta}\right)^\zeta = \exp(u)$

so build your residual block like

$$x \rightarrow x + \frac{1}{\zeta} \text{layer}(x) ?$$

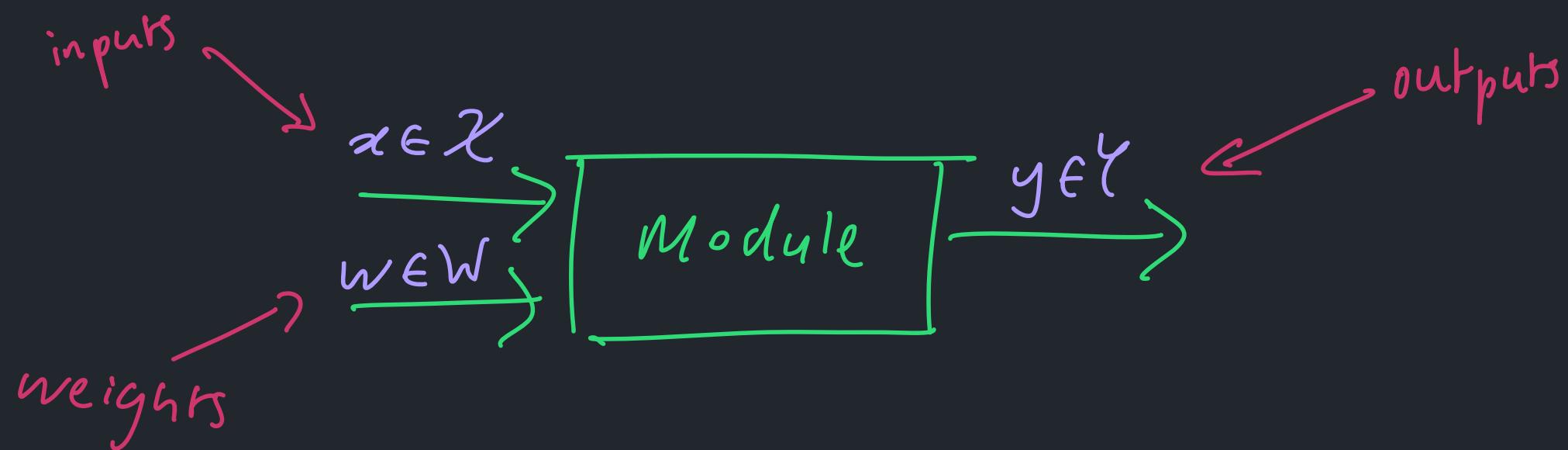
needs
more
research

Building a Theory : Modularization

 my research, so be skeptical

Building a modular theory

IDEA: if you want an optimization theory
that handles complicated neural networks
... build the theory with the neural net



Write a library of "atomic modules"

Definition module M

$M.\text{forward}$ $W \times X \rightarrow Y$

$M.\text{backward}$ $Y \times W \times X \rightarrow W \times X$

$M.\text{norm}$ $W \rightarrow \mathbb{R}$

Linear

Embedding

Conv2D

ReLU

} all with hand-specified
forward, backward and norms

Write combination rules

e.g. module composition $M = M_2 \circ M_1$

$M.\text{forward}$

just compose $M_2.\text{forward}$
with $M_1.\text{forward}$

$M.\text{backward}$

do the chain rule

$M.\text{norm}$

how should we combine
 $M_2.\text{norm}$ and $M_1.\text{norm}$?

References

- Feature Learning in Infinite Width Neural Networks
Yang & Hu (2020)
- Infinite Limits of Multi-Head Transformer Dynamics
Bordelang Chaudhury & Pehlevan (2024)
- Scalable Optimization in the Modular Norm
Large et al (2024)
- Universal Majorization - Minimization Algorithms
Streeter (2023)

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>