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Outline

e \What is generalization
* Do deep nets generalize?
* Deep nets violate certain classical generalization theory

e \Why do they generalize? = What are their inductive biases?



Approximation vs Generalization

e How well will our trained neural network do on new data?

1 N

e \We minimize the empirical risk: R () = ~ > L(fo(xi),yi)
1=1

* We actually want the population risk (test error) to be small:

R(0) = Ex y)~p L(fo(%x),¥)

Important questions:
Approximation: what is the best £(6*) we can achieve with our model?

Optimization: how well are we minimizing /9%(6’)?
Generalization: how different is &£ (0) from £(0)?
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Intuitive ideas about generalization



Bad data

Suppose we want to train a cats vs dogs classifier.
But our training data only contains cats.

Canwe do it? ..... No



Bad models: the filing cabinet

Every time we see a new training point (x,y), we
put it in the cabinet.

def predict(x):
1f X 1n cabilnet:
return cabinet [x]
else:
return 0

What will the approximation error be?

What will the generalization error be?
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Bad models: Paul the octopus

The Amazing ale of Paul the Psychic Octopus: Germany s
World Gup Soothsayer

| NEVER FORGET |

Sure, Germany is back in the World Cup final. But it’ll have to beat Argentina without Paul, the
cephalopod that correctly predicted the results of all eight (!) German matches last go-around.

: __ Updated Apr. 14, 2017 3:21PM EDT .
N
Emily Shire | o biished Jul. 12, 2014 12:00AM EDT f Yy N o

© The Daily Beast. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

Would you trust Paul?



Do deep nets generalize?
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def predict(x):

Do deep nets generalize? I7 % in Cabinat:
return cabinet[x]
glLse.
What about much big fancy modern nets? return

1. Suppose an LLM is a filing cabinet (no generalization)
2. How big does the cabinet need to be?

3. Simple counting experiment:
e Sample random sequences of n words from a vocab of size m

® There are m” n such sequences
* Input a set of such sequences into your favorite model that answers some

question about a text input; estimate percent of time, p, that the output is

correct (or at least “non-zero”)
e Filing cabinet (and training data) needs to be size s = p*m”n



Vocab:

fruits = |

‘Apple', 'Banana', 'Orange', 'Grapes', 'Mango', 'Peach', 'Pear', 'Pineapple', 'Strawberry', 'Blueberry’,
‘Raspberry', 'Watermelon', 'Cantaloupe’, 'Cherry', 'Coconut', 'Fig', 'Guava', 'Kiwi', 'Lemon', 'Lime’,

‘Lychee', 'Mandarin', 'Nectarine', 'Papaya', 'Passion Fruit', 'Plum', 'Pomegranate', 'Tangerine', 'Dragonfruit', 'Durian'’

How many citrus fruits are in this list: Cantaloupe, Fig, Raspberry,
Blueberry, Papaya, Lemon, Tangerine, Cherry, Grapes, Orange
n=30 m=10

prompt: N HOW many CItrus fruits are &) In the list you provided, the citrus fruits are:
in this list?” e Lemon

My estimated p tor GPT-40: 1.0 (5/5) + Tangerine

e Orange

s = 100 trillion

So, there are 3 citrus fruits in the list.

ﬂ)) @ (JJ Sv

Created with ChatGPT.
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Draw these fruits: Blueberry, Mandarin, Kiwi, Cantaloupe, Peach,
Dragonfruit, Coconut, Cherry, Passion Fruit, Lychee

n=30, m=10

prompt: Draw these fruits ®

My estimated p for GPT-40: 0.125 (1/8)

s = 12.5 trillion

Created with ChatGPT.
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Training data

X y

. © Saining Xie and Zhuowen Tu; and Isola, et al. All rights reserved. This
[HED: Xie & Tu, 2015]

content is excluded from our Creative Commons license. For more
information, see

https://ocw.mit.edu/help/fag-fair-use/

[pix2pix: Isola, Zhu, Zhou, Efros, 2017]
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edgesZcats
TOOL

INPUT

13

[

OUTPUT

save

© Chris Hesse. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see

https://ocw.mit.edu/help/fag-fair-use/

edges2cats: Chris Hesse, 2017]




PIX2pix

process

Vita |y Vi d rT]li rOV @Vvi d Images created using pix2pix and

edges2cats.



OUTPUT
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OUTPUT




INPUT OUTPUT




INPUT OUTPUT




Inductive bias toward simple modular processing

INPUT OUTPUT

"When | see an oval, draw an eye.” -

Why? Bias of convnets!
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Generalization theory



Occam’s Razor

The simplest model that fits the
data will generalize best.

How do we measure “simpler”?

Image is in the public domain.
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How should we measure model complexity?

Theory answer:

The shortest program that fits the data is the one that will generalize best.

Intractable, but good to keep in mind...

[Solomonoft 1964]
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Review: Overtitting and the bias-variance tradeoft

test error = train error + (test error - training error)

bias variance

>

under-fitting over-fitting

- Test risk

N

-~ ‘lraining risk
sweet spot. + —

S
—
—
o © Belkin, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
a;p a;C 1 >/ O https://ocw.mit.edu/help/fag-fair-use/
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How should we measure model complexity?

# parameters?
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- ground-truth
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- ground-truth
e model
® samples



d

20

Overtitting to the noise!
Function swings up wildly

| to fit the deviations from
. the d=3 ground truth.

= ground-truth
| model
.;" ® samples l |
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d=1000 =~ ground-tru




The simple + spiky hypothesis

How can deep nets pertectly fit noisy training data but also make good predictions on test data?

- ground-truth
model
® samples

learned model = “simple” + “spiky”
predictive overtitting
component component

[Belkin, Rakhlin, sybakov 2018]

Visualization for an MLP:
https://www.youtube.com/watch?v=Kih-VPHL3gA
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https://www.youtube.com/watch?v=Kih-VPHL3gA

Double descent

>
o

under-fitting over-fitting

- Test risk

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Risk
Risk

~N

~ ‘Iraining risk ~ [TIraining risk:
sweet spot. .+ — o

- . _interpolation threshold
\ ~— ~—

— T i Gl
Capacity of H Capacity of H

© Belkin, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]




Double descent

MNIST result

Squared loss

3 10 40 100 300 800

Number of parameters/weights (x103), . .

Creativ Cmm sllce Fm fmt
https://ocw.mit.edu/he ||o/fq1c

[Double-descent: Belkin, Hsu, Ma, I\/Ianda\ PNAS 2019]




The more teatures, the lower norm the learned function

447
c§> 0 +«—— More features —> smoother solutions
=> w= RFF ore rteatures U
- Min. norm solution h, .
)

0 10 20 30 40 50 60

Number of Random Fourier Features (x103) (N)

© Belkin, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]




How should we measure model complexity?

# parameters?

No!

Parameter norm? maybe
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Consider h(z) =107 f(z) + (1 — 10~ ") g(x)

How many parameters does it have? Does it matter?
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How should we measure model complexity?

Number ot distinct functions the model can represent?
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The classical picture: Vapnik-Chervonenkis theory

Remember: Generalization error = population error - training error

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Intuition:
e “False positive” = function that fits training data but does not generalize
e Chance of a false positive is:
* higher if we have more candidate functions (one could get lucky)
* lower it we have more data (each additional datapoint rules out more
candidate functions)
e Therefore, if function class is small and training data is big, chance of
false positive is low
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The classical picture: Vapnik-Chervonenkis theory

Remember: Generalization error = population error - training error

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

8@(} 8@ Q Candidate tfunction in our function class

Fits the training data
QQQ

Q Q%Q O True function

(Assumptions: noise-free training data, true function is in function class,
optimizer just picks one of the purple points at random)
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The classical picture: Vapnik-Chervonenkis theory

Remember: Generalization error = population error - training error

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Increase training data
88 8@ Q Candidate function in our function class

Fits the training data
QQQ

Q Q%Q O True function

(Assumptions: noise-free training data, true function is in function class,
optimizer just picks one of the purple points at random)
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The classical picture: Vapnik-Chervonenkis theory

Remember: Generalization error = population error - training error

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Reduce capacity (i.e. decrease number of functions in our function class)

Q Q Candidate function in our function class

Q Q Q Fits the training data
O Q O True function
O

(Assumptions: noise-free training data, true function is in function class,

O

optimizer just picks one of the purple Fgg)ints at random)



The classical picture: Vapnik-Chervonenkis theory

How to count number of functions in a function class (architecture)?

't turns out you can just count the number ot “dichotomies” (i.e. binary
labelings) that your function class can realize on your data.

dichotomy 1 dichotomy 2 ... dichotomy d
img_001.jpg + 1 - -

img_002.jpg +1 - +1

img_999.Jpg - - -
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The classical picture: Vapnik-Chervonenkis theory

VC dimension (d):
d = # dichotomies

n = # training points

Generalization bound:
Generalization error is bounded by 4/ —
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Empirical observation: NNs can fit random labels

Given a dataset of cats and dogs:

img_001.jpg cat
img_002.jpg cat
img_999.jpg dog

Assign each image a random label.

Often, the neural net can still fit the random labeling... they can fit noise!
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The classical picture: Vapnik-Chervonenkis theory

VC dimension (d):
d = # dichotomies

n = # training points

Generalization bound:
Generalization error is bounded by 4/ —

For neural nets, often we can fit any dichotomy!
There are d = 2An dichotomies of n datapoints.
Theretore, generalization bound is extremely loose (in fact, vacuous).
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Zhang, et al., 2017 Understanding deep learning requires rethinking generalization.

NNs empirically

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset
Performance with and without data augmentation and weight decay are compared. The results o
fitting random labels are also included.

e NN "memorize”/

interpolate the

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05 data , EVEn
. es no 100.0 89.31
Inception 1,649,402 31710 ves 100.0 26 03 ra ndom ‘a be‘ S
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78 .
o
Inception w/o no yes 100.0 83.00 can st ‘ ‘
1,649,402 A
BatchNorm no no 100.0 82.00 ‘ .
(fitting random labels) no no 100.0 10.12 9 enerallZe
yes yes 99.90 81.22
yes no 99.82 79.66 ° . .
Alexnet 1,387,786 0° v 00,0 Gy with and without
no no 100.0 76.0°7 .«
(fitting random labels) no no 99.82 9.86 expl ICIT
no yes 100.0 53.35 reaularization
MLP 3x512 1,735,178 o - 1000 >3 9
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 50.51
(fitting random labels) no no 99.34 10.61
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How should we measure model complexity?

Number ot distinct functions the model can represent?

No!
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How should we measure model complexity??7?

... for deep learning, it's still an open question!
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Recap so far

Deep nets generalize. They can make reasonable predictions on inputs
they have never seen during training.

Generalization requires inductive biases. Can't be explained by just fitting
the training data (we have to rule out the tiling cabinet!).

These inductive biases can't just be about classical notions of complexity (#
parameters, VC-dimension, etc don't work).

Therefore, deep learning must have some nice inductive biases that
control complexity in ways we don’t fully know how to characterize!

Next: what are they?
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Why do deep nets learn functions that generalize?

Other than fitting the training data, what are the other
pressures that aftect the solution deep learning arrives at?
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I we fit the data, what's left to consider?

Hypothesis space

Version space: set of all

\/\ mappings that achieve

zero training error.

Version space
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Simplicity bias in the parameter-function map

Parameter-function map: M : 0 — F

10~4{.8
102
. . 1073
Most random settings of the weights 2 "3
. . . = LU s
in biases in a neural net map to 8 183
: : 2107 °s
simple functions. s :
107 g
1117
| | 111 Y VPP
0 20 40 60 80 100

Lempel-Ziv complexity

[Valle Pérez, Camargo, Louis, ICLR 2019]
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Simplicity bias in the parameter-function map

Hypothesis space
Parameter space

C \/\

Version space

Simple

functions

[Valle Pérez, Camargo, Louis, ICLR 2019]
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Low-rank bias ot depth

5LHuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Low-rank bias of depth

Similarity matrices between different inputs (aka kernel)

-

)
o
o

Common understanding: deeper nets have greater capacity to organize the data

Images courtesy of Huh, et al. Used under CC BY-NC-SA 5LHuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Low-rank bias of depth

Similarity matrices between different inputs (aka kernel)

Same phenomenon with deep linear nets
(depth does not increase modeling capacity in this case)

Images courtesy of Huh, et al. Used under CC BY-NC-SA 5[1Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Low-rank bias ot depth

Similarity matrices between different inputs (aka kernel)

Why? Products of matrices tend to be low rank.

Images courtesy of Huh, et al. Used under CC BY-NC-SA 5LHuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Parameter-kernel map

Sample a random set of network weights

low full
effective rank

JHuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Parameter-kernel map

Sample a random set of network weights

K

low full
effective rank

5[;,—Iuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]




Parameter-kernel map

Sample a random set of network weights

K

full

effective rank

JHuh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Deeper nets are biased toward lower-rank embeddings

N W W
o1 O Ol

Deeper networks have a greater
proportion of parameter space
that maps the input data to
lower-rank embeddings.

—_—
o1 O Ol

unnormalized P(p(K))
S

L\

10 12 14 1.6 1.8 20 22
effective rank p(K)

depth 1

depth 2

depth4 == depth 8 depth 16

{Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Visualizing how depth reshapes the parameter landscape

single-layer two-layer

Images courtesy of Huh, et al. Used under CC BY-NC-SA 6[)Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]



Implicit regularization of optimizers

e Weight decay acts like an L2 regularizer on weights, shrinking them toward zero all
else being equal.

e |nitialization near zero biases solutions toward low norm. GD initialized near zero

converges to minimum norm solution for linear models [Zhang et al. 2017,
Gunasekar et al. 2017]

e SGD, and GD with finite step size, converge to “tlat” minima; they will tend to
overshoot or bounce out of minima that are too narrow. [see Vardi 2022 for a review]
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Architectural symmetries

Equivariances

Compositionality )

U

U
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Invariances

Imax




Domain specific constraints

5D Input
Position + Direction

o
\/‘ **«'
2

© sources unknown. All rights reserved. This content is excluded from

our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

Output
Color 4+ Density
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Ray:2
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M Bradycardia effect
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How should we measure model complexity?

Theory answer:

The shortest program that fits the data is the one that will generalize best.

Intractable, but good to keep in mind...

Or... do we actually have to optimize for shortest? How about just short
enough?

[Solomonoft 1964]
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Finite models, infinite data

(rough memory of a conversation with llya Sutskever around 2018)

* |lya: Deep nets generalize because they tind small circuits that fit the data.

* Me: Small circuits? But deep nets are big! Don’t we need something else
to bias toward small circuits?

* |lya: No. Deep nets are tinite; that is enough. Anything finite will look small
once you have enough data.
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