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Outline

• What is generalization 

• Do deep nets generalize? 

• Deep nets violate certain classical generalization theory 

• Why do they generalize? → What are their inductive biases?
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Approximation vs Generalization

• How well will our trained neural network do on new data? 

• We minimize the empirical risk: 

• We actually want the population risk (test error) to be small:
<latexit sha1_base64="Q9QxIeXljiqACki9bwx70ou11BI="></latexit>

R(✓) = E(x,y)⇠P L(f✓(x),y)

<latexit sha1_base64="ar5183qbe5TknqivcKlJTr/DcMk="></latexit>

bR(✓) =
1

N

NX

i=1

L(f✓(xi),yi)

Important questions: 
Approximation: what is the best  we can achieve with our model? 

Optimization: how well are we minimizing ? 

Generalization: how different is  from ?

ℛ(θ*) ̂ℛ (θ)̂ℛ (θ) ℛ(θ)
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Intuitive ideas about generalization
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Bad data

Suppose we want to train a cats vs dogs classifier. 

But our training data only contains cats. 

Can we do it? ….. No
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Bad models: the filing cabinet 

Every time we see a new training point (x,y), we 
put it in the cabinet. 

What will the approximation error be? 

What will the generalization error be?
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Would you trust Paul?

Bad models: Paul the octopus

© The �ailÞ 	east. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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3-layer relu-MLP

Do deep nets generalize?

Memorization

Generalization

Filing cabinet
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1. Suppose an LLM is a filing cabinet (no generalization)
2. How big does the cabinet need to be?
3. Simple counting experiment:

• Sample random sequences of n words from a vocab of size m
• There are m^n such sequences
• Input a set of such sequences into your favorite model that answers some
question about a text input; estimate percent of time, p, that the output is
correct (or at least “non-zero”) 

• Filing cabinet (and training data) needs to be size s = p*m^n

Do deep nets generalize?

What about much big fancy modern nets?
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n = 30, m = 10

My estimated p for GPT-4o: 1.0 (5/5)

prompt: “How many citrus fruits are
in this list?”

s = 100 trillion 

Vocab:

Created with ChatGPT.
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n = 30, m = 10

My estimated p for GPT-4o: 0.125 (1/8)

prompt: Draw these fruits

s = 12.5 trillion 

Created with ChatGPT.
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[HED: Xie & Tu, 2015]
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[pix2pix: Isola, Zhu, Zhou, Efros, 2017]

© Saining Xie and Zhuowen Tu; and Isola, et al. All rights reserved. This 
content is excluded from our Creative Commons license. For more 
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Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid Images created using pix2pix and 
edges2cats.14
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Inductive bias toward simple modular processing

“When I see an oval, draw an eye.”

Why? Bias of convnets!
f
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Generalization theory
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Occam’s Razor

The simplest model that fits the 
data will generalize best.

How do we measure “simpler”?

Image is in the public domain.
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The shortest program that fits the data is the one that will generalize best.

Intractable, but good to keep in mind…

[Solomonoff 1964]

How should we measure model complexity?

Theory answer:
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Review: Overfitting and the bias-variance tradeoff

test error   =   train error   +    (test error   -   training error)

bias variance 

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=
NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/w

w
w

.p
na

s.o
rg

 b
y 

M
IT

 L
IB

RA
RI

ES
 o

n 
Se

pt
em

be
r 1

6,
 2

02
2 

fro
m

 IP
 a

dd
re

ss
 1

28
.3

0.
32

.1
90

.

image: Belkin et al, 2019

© Belkin, et al. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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# parameters?

How should we measure model complexity?
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d=1
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d=3
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d=20
Overfitting to the noise! 
Function swings up wildly 
to fit the deviations from 
the d=3 ground truth.
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d=1000
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learned model  =  “simple”  +  “spiky”
predictive 

component
overfitting 

component

The simple + spiky hypothesis

How can deep nets perfectly fit noisy training data but also make good predictions on test data?

[Belkin, Rakhlin, Tsybakov 2018]

Visualization for an MLP: 
https://www.youtube.com/watch?v=Kih-VPHL3gA
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Double descent

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]

© Belkin, et al. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]

MNIST result

Double descent

© Belkin, et al. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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The more features, the lower norm the learned function

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]

More features —> smoother solutions

© Belkin, et al. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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# parameters?

How should we measure model complexity?

No!

Parameter norm? maybe
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Consider 
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h(x) = 10�100f(x) + (1� 10�100)g(x)

How many parameters does it have? Does it matter?
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Number of distinct functions the model can represent?

How should we measure model complexity?
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The classical picture: Vapnik-Chervonenkis theory

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Remember: Generalization error = population error - training error

Intuition: 
• “False positive” = function that fits training data but does not generalize
• Chance of a false positive is:

• higher if we have more candidate functions (one could get lucky)
• lower if we have more data (each additional datapoint rules out more
candidate functions) 

• Therefore, if function class is small and training data is big, chance of
false positive is low
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The classical picture: Vapnik-Chervonenkis theory

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Remember: Generalization error = population error - training error

(Assumptions: noise-free training data, true function is in function class, 
optimizer just picks one of the purple points at random)

Candidate function in our function class

Fits the training data

True function
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The classical picture: Vapnik-Chervonenkis theory

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Remember: Generalization error = population error - training error

Candidate function in our function class

Fits the training data

True function

Increase training data

(Assumptions: noise-free training data, true function is in function class, 
optimizer just picks one of the purple points at random)
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The classical picture: Vapnik-Chervonenkis theory

IF size of training set dwarfs number of functions in our function class.

THEN training error matches population error with high probability.

Remember: Generalization error = population error - training error

Candidate function in our function class

Fits the training data

True function

Reduce capacity (i.e. decrease number of functions in our function class)

(Assumptions: noise-free training data, true function is in function class, 
optimizer just picks one of the purple points at random)
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The classical picture: Vapnik-Chervonenkis theory

How to count number of functions in a function class (architecture)?

It turns out you can just count the number of “dichotomies” (i.e. binary 
labelings) that your function class can realize on your data.

img_001.jpg

img_002.jpg

…

img_999.jpg

dichotomy 1 dichotomy 2 dichotomy d 

+1

+1

-1

-1

-1

-1

-1

+1

-1

… … …

…
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The classical picture: Vapnik-Chervonenkis theory

VC dimension (d): 
d = # dichotomies 
n = # training points 

Generalization bound: 
Generalization error is bounded by

<latexit sha1_base64="QPu8OPpmMhAzTWYRBxmNcL0AbXw=">AAACEHicbVDLSsNAFJ34rPUV69JNsAiuSiJSXRbduKxgH9CEMplM2qGTSZy5kZaQn/AD3OonuBO3/oFf4G84bbOwrQcuHM65l3M5fsKZAtv+NtbWNza3tks75d29/YND86jSVnEqCW2RmMey62NFORO0BQw47SaS4sjntOOPbqd+54lKxWLxAJOEehEeCBYygkFLfbPiqkcJmRtKTLIgz0Se982qXbNnsFaJU5AqKtDsmz9uEJM0ogIIx0r1HDsBL8MSGOE0L7upogkmIzygPU0FjqjystnvuXWmlcAKY6lHgDVT/15kOFJqEvl6M8IwVMveVPzXG88DFtMhvPYyJpIUqCDz8DDlFsTWtBwrYJIS4BNNMJFM/2+RIdbVgK6wXNbNOMs9rJL2Rc2p1+r3l9XGTdFRCZ2gU3SOHHSFGugONVELETRGL+gVvRnPxrvxYXzOV9eM4uYYLcD4+gWx4p3Y</latexit>r
d

n
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Empirical observation: NNs can fit random labels

Given a dataset of cats and dogs:

img_001.jpg

img_002.jpg

…

img_999.jpg

cat

cat

dog

…

Assign each image a random label.

Often, the neural net can still fit the random labeling… they can fit noise!

42



The classical picture: Vapnik-Chervonenkis theory

VC dimension (d): 
d = # dichotomies 
n = # training points 

Generalization bound: 
Generalization error is bounded by

<latexit sha1_base64="QPu8OPpmMhAzTWYRBxmNcL0AbXw=">AAACEHicbVDLSsNAFJ34rPUV69JNsAiuSiJSXRbduKxgH9CEMplM2qGTSZy5kZaQn/AD3OonuBO3/oFf4G84bbOwrQcuHM65l3M5fsKZAtv+NtbWNza3tks75d29/YND86jSVnEqCW2RmMey62NFORO0BQw47SaS4sjntOOPbqd+54lKxWLxAJOEehEeCBYygkFLfbPiqkcJmRtKTLIgz0Se982qXbNnsFaJU5AqKtDsmz9uEJM0ogIIx0r1HDsBL8MSGOE0L7upogkmIzygPU0FjqjystnvuXWmlcAKY6lHgDVT/15kOFJqEvl6M8IwVMveVPzXG88DFtMhvPYyJpIUqCDz8DDlFsTWtBwrYJIS4BNNMJFM/2+RIdbVgK6wXNbNOMs9rJL2Rc2p1+r3l9XGTdFRCZ2gU3SOHHSFGugONVELETRGL+gVvRnPxrvxYXzOV9eM4uYYLcD4+gWx4p3Y</latexit>r
d

n

For neural nets, often we can fit any dichotomy! 
There are d = 2^n dichotomies of n datapoints. 
Therefore, generalization bound is extremely loose (in fact, vacuous).
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NNs empirically

• NN “memorize”/
interpolate the
data, even
random labels

• can still
generalize

• with and without
explicit
regularization

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params random crop weight decay train accuracy test accuracy

Inception 1,649,402

yes yes 100.0 89.05
yes no 100.0 89.31
no yes 100.0 86.03
no no 100.0 85.75

(fitting random labels) no no 100.0 9.78

Inception w/o
BatchNorm 1,649,402 no yes 100.0 83.00

no no 100.0 82.00
(fitting random labels) no no 100.0 10.12

Alexnet 1,387,786

yes yes 99.90 81.22
yes no 99.82 79.66
no yes 100.0 77.36
no no 100.0 76.07

(fitting random labels) no no 99.82 9.86

MLP 3x512 1,735,178 no yes 100.0 53.35
no no 100.0 52.39

(fitting random labels) no no 100.0 10.48

MLP 1x512 1,209,866 no yes 99.80 50.39
no no 100.0 50.51

(fitting random labels) no no 99.34 10.61

parameters than data points (Vapnik, 1998). The basic idea is that although the original hypothesis
is too large to generalize well, regularizers help confine learning to a subset of the hypothesis space
with manageable complexity. By adding an explicit regularizer, say by penalizing the norm of
the optimal solution, the effective Rademacher complexity of the possible solutions is dramatically
reduced.

As we will see, in deep learning, explicit regularization seems to play a rather different role. As the
bottom rows of Table 2 in the appendix show, even with dropout and weight decay, InceptionV3 is
still able to fit the random training set extremely well if not perfectly. Although not shown explicitly,
on CIFAR10, both Inception and MLPs still fit perfectly the random training set with weight decay
turned on. However, AlexNet with weight decay turned on fails to converge on random labels. To
investigate the role of regularization in deep learning, we explicitly compare behavior of deep nets
learning with and without regularizers.

Instead of doing a full survey of all kinds of regularization techniques introduced for deep learn-
ing, we simply take several commonly used network architectures, and compare the behavior when
turning off the equipped regularizers. The following regularizers are covered:

• Data augmentation: augment the training set via domain-specific transformations. For
image data, commonly used transformations include random cropping, random perturba-
tion of brightness, saturation, hue and contrast.

• Weight decay: equivalent to a `2 regularizer on the weights; also equivalent to a hard
constrain of the weights to an Euclidean ball, with the radius decided by the amount of
weight decay.

• Dropout (Srivastava et al., 2014): mask out each element of a layer output randomly with
a given dropout probability. Only the Inception V3 for ImageNet uses dropout in our
experiments.

Table 1 shows the results of Inception, Alexnet and MLPs on CIFAR10, toggling the use of data
augmentation and weight decay. Both regularization techniques help to improve the generalization

Zhang, et al., 2017 Understanding deep learning requires rethinking generalization.
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Number of distinct functions the model can represent?

How should we measure model complexity?

No!
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How should we measure model complexity???

… for deep learning, it’s still an open question!
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Recap so far
Deep nets generalize. They can make reasonable predictions on inputs
they have never seen during training.

Generalization requires inductive biases. Can’t be explained by just fitting 
the training data (we have to rule out the filing cabinet!).

Therefore, deep learning must have some nice inductive biases that
control complexity in ways we don’t fully know how to characterize!

Next: what are they?

These inductive biases can’t just be about classical notions of complexity (# 
parameters, VC-dimension, etc don’t work).
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Why do deep nets learn functions that generalize?

Other than fitting the training data, what are the other 
pressures that affect the solution deep learning arrives at?
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If we fit the data, what’s left to consider?

Version space: set of all
mappings that achieve 
zero training error.Version space

Hypothesis space
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Simplicity bias in the parameter-function map

[Valle Pérez, Camargo, Louis, ICLR 2019]

<latexit sha1_base64="cmpx9rfzRf38KxxjRwBgkSQHRTA=">AAACKXicbVBLSgNBFOyJ//iLunTTGARBCDMiKq5EQdwICsYEMiG86XSSJj0fut+oYZhDeA4P4FaP4E7duvAa9iRBTGJBQ1H1HvW6vEgKjbb9YeWmpmdm5+YX8otLyyurhbX1Wx3GivEyC2Woqh5oLkXAyyhQ8mqkOPie5BWve5b5lTuutAiDG+xFvO5DOxAtwQCN1Cjsuj5gh4FMLtNj6t50OAJ1lWh3EJQK7+mvf542CkW7ZPdBJ4kzJEUyxFWj8O02Qxb7PEAmQeuaY0dYT0ChYJKneTfWPALWhTavGRqAz3U96X8qpdtGadJWqMwLkPbVvxsJ+Fr3fM9MZifqcS8T//UeBgGj6dg6qiciiGLkARuEt2JJMaRZa7QpFGcoe4YAU8LcT1kHFDA03ebzphlnvIdJcrtXcg5KB9f7xZPTYUfzZJNskR3ikENyQi7IFSkTRh7JM3khr9aT9Wa9W5+D0Zw13NkgI7C+fgBBXqd6</latexit>

M : ⇥ ! FParameter-function map:

Most random settings of the weights 
in biases in a neural net map to 
simple functions.
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Simplicity bias in the parameter-function map

[Valle Pérez, Camargo, Louis, ICLR 2019]

Version space

Hypothesis space
Parameter space

Simple 
functions

lea
rn

ing
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Low-rank bias of depth

[Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]
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Figure 3: Gram matrices of networks: Gram matrices of neural networks trained with various non-linearities
and depth. The Gram matrix is computed using the cosine-distance on the features of the test-set near zero-
training loss. Increasing the number of layers decreases the effective rank of the Gram matrix on a variety of
non-linear activation functions. The Gram matrix is hierarchically clustered (Rokach & Maimon (2005)) for
visualization. We observe the emergence of block structures in the Gram matrix as we increase the number of
layers, indicating that the embeddings become lower rank with depth.

model parameters that gradient descent explores. In light of this, we repeat our experiment above by
computing the PDF on randomly sampled parameters after taking n gradient descent steps.

Observation 2. Deep neural networks trained with gradient descent also learns to map data to
simple embedding with low effective rank.

Figure 2 illustrates the change in distribution as we train our model to convergence using gradient
descent. Each randomly drawn network sample is trained to minimize the least-squares error. The
initial distribution is plotted with dotted lines, and the converged distribution is plotted with solid
lines. As the model is trained, the distribution of the rank shifts towards the ground-truth rank (green
line). Training the model with gradient descent results in a distribution that is still largely dependent
on depth; this reaffirms that the role of optimization does not remove the parameterization bias in
deep models. In fact, if the bias stems from the model’s parameterization, the same bias must also
exist under other common and natural choices of optimizers. We investigate this claim in the next
section.

In Figure 3, we further visualize the learned Gram matrices when varying the depth of the model.
The Gram matrices trained with various non-linear activation functions also emit the same low-rank
simplicity bias. These activation functions include standard functions such as ReLU and Tanh as
well as recently popularized non-linear functions such as GeLU (Hendrycks & Gimpel (2016)),
and the sinusoidal activation function from SIREN (Sitzmann et al. (2020)). By hierarchically
clustering Rokach & Maimon (2005) these Kernels, we can directly observe the emergence of block
structures in the Gram matrices as we increase the number of layers, implying that the embeddings
become lower rank with depth.
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model parameters that gradient descent explores. In light of this, we repeat our experiment above by
computing the PDF on randomly sampled parameters after taking n gradient descent steps.

Observation 2. Deep neural networks trained with gradient descent also learns to map data to
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initial distribution is plotted with dotted lines, and the converged distribution is plotted with solid
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on depth; this reaffirms that the role of optimization does not remove the parameterization bias in
deep models. In fact, if the bias stems from the model’s parameterization, the same bias must also
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section.
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simplicity bias. These activation functions include standard functions such as ReLU and Tanh as
well as recently popularized non-linear functions such as GeLU (Hendrycks & Gimpel (2016)),
and the sinusoidal activation function from SIREN (Sitzmann et al. (2020)). By hierarchically
clustering Rokach & Maimon (2005) these Kernels, we can directly observe the emergence of block
structures in the Gram matrices as we increase the number of layers, implying that the embeddings
become lower rank with depth.

5

Similarity matrices between different inputs (aka kernel)

Common understanding: deeper nets have greater capacity to organize the data

[Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]

Low-rank bias of depth

Images courtesy of Huh, et al. Used under CC BY-NC-SA.
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[Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]

Low-rank bias of depth

Images courtesy of Huh, et al. Used under CC BY-NC-SA.
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Figure 3: Gram matrices of networks: Gram matrices of neural networks trained with various non-linearities
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Low-rank bias of depth

Images courtesy of Huh, et al. Used under CC BY-NC-SA.
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Figure 1: Deep networks are biased toward low-rank: The approximated probability density function (PDF)
of the effective rank ⇢ over the Gram matrix is computed from features of the networks. The Gram matrix is
computed with 256 random inputs, and we use 4096 network parameter samples to approximate the cumulative
distribution function. The CDF is used to compute the PDF via the finite difference method. We apply Savitzky
& Golay (1964) filter to smoothen out the approximation. There exists more probability mass for lower-rank rank
embeddings when adding more layers. The experiment is repeated for both normal and uniform distributions.

2.3 EMBEDDING MAPS

A parameteric function f{W} 2 FW is a neural network parameterized with a set weights {W} =
{W1, . . . ,Wd} that maps the input space to the output space X ! Y . For a training dataset of
size q, the input and output data is X 2 Rn⇥q and Y 2 Rm⇥q. Then, the predicted output is
Ŷ = Wd ( ) = f{W}(X), where 2 Rn0

⇥q is the last-layer embedding and Wd 2 Rm⇥n0
is the

last layer of the network.

We analyze the embedding space by computing the effective rank on the Gram/kernel matrix K 2

Rp⇥p where p is the size of the test set. The ij-th entry of the Gram matrix corresponds to a
distance kernel Kij = (�i,�j) where �i corresponds to the i-th column of . We use the model’s
intermediate features before the linear classifier and use cosine distance kernel 2, a common method
for measuring distances in feature space (Kiros et al. (2015); Zhang et al. (2018)). Since the
dimensionality of the Gram-matrix depends on the dataset size, we can compare neural networks
with different modeling capacities in the zero training error regime.

Gram matrices are often used to analyze optimization and generalization properties of neural net-
works (Zhang et al. (2019); Du et al. (2018; 2019); Wu et al. (2019); Arora et al. (2019b)). In natural
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Figure 1: Deep networks are biased toward low-rank: The approximated probability density function (PDF)
of the effective rank ⇢ over the Gram matrix is computed from features of the networks. The Gram matrix is
computed with 256 random inputs, and we use 4096 network parameter samples to approximate the cumulative
distribution function. The CDF is used to compute the PDF via the finite difference method. We apply Savitzky
& Golay (1964) filter to smoothen out the approximation. There exists more probability mass for lower-rank rank
embeddings when adding more layers. The experiment is repeated for both normal and uniform distributions.
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embeddings when adding more layers. The experiment is repeated for both normal and uniform distributions.
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Visualizing how depth reshapes the parameter landscape
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The Low-Rank Simplicity Bias in Deep Networks
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Abstract

Modern deep neural networks are highly over-
parameterized compared to the data on which they
are trained, yet they often generalize remarkably
well. A flurry of recent work has asked: why do
deep networks not overfit to their training data?
We investigate the hypothesis that deeper nets are
implicitly biased to find lower rank solutions, and
these are solutions that generalize well. We prove
that the percent volume of low effective-rank so-
lutions increases monotonically as linear neural
networks are made deeper. We empirically find
that a similar result holds for non-linear networks:
deeper non-linear networks learn a feature space
whose kernel has a lower rank. We then demon-
strate how linear over-parameterization of deep
non-linear models can be used to induce low-rank
bias, improving generalization performance with-
out changing model capacity. We evaluate on
various model architectures and demonstrate that
linearly over-parameterized models outperform
existing baselines on image classification tasks,
including ImageNet.

1. Introduction

It has become a conventional wisdom that deep neural net-
works (DNNs) perform better the more layers you add. This
guideline is supported, in part, by theoretical results show-
ing that deeper networks require far fewer parameters than
the shallower networks to obtain the same modeling “capac-
ity”. For example, there exists a function expressible by a
three-layer network that cannot be approximated by a two-
layer network unless exponential in width (Eldan & Shamir,
2016). While it is not surprising that deeper networks out-
perform shallower networks, the fact that state-of-the-art
deep networks do not overfit despite being heavily overpa-
rameterized (e.g., 632 million parameters contained in 200
layers (Dosovitskiy et al., 2020)) than the number of data
points they are trained on (e.g., 1M images in ImageNet),
defies classical statistical theory (Geman et al., 1992; Zhang
et al., 2017; Belkin et al., 2019).

In the face of strong empirical results and the ab-
sence of clear theoretical guidance, the belief that over-

single-layer two-layer

Figure 1. Rank landscape: The landscape of the effective rank
⇢ of a linear function We parameterized either by a single-layer
network (We = W ) or a two-layer linear network (We = W2W1).
The visualization illustrates a simplicity bias of depth, where in the
two-layer model has relatively more parameter volume mapping to
lower rank We. Both models are initialized to the same end-to-end
weights We at the origin. Motivated by (Goodfellow et al., 2015),
the landscapes are generated using 2 random parameter directions
u, v to compute f(↵,�) = ⇢(W+↵·u+� ·v) for the single-layer
model and f(↵,�) = ⇢((W2+↵·u2+�·v2)·(W1+↵·u1+�·v1))
for the two-layer model (u = [u1, u2], v = [v1, v2]).

parameterization via depth improves generalization is used
axiomatically in the design of neural networks. Unlike
conventional regularization methods that penalize model
capacity (e.g., `1/`2 penalty), over-parameterization does
not explicitly reduce model capacity. Yet, like explicit reg-
ularization, over-parameterization appears to prevent the
model from over-fitting.

Unfortunately, why this implicit regularization works is
largely unknown. One notable exception is the case of lin-
ear over-parameterization. To understand this, consider two
models, M1 : y = Wx and M2 : y = (WdWd 1...W1)x.
If W = WdWd 1...W1, then these two models are function-
ally equivalent. However, strangely, when trained as a neural
network, these models find different solutions. Namely, the
second network finds lower rank solutions, despite hav-
ing d times more parameters. Several explanation of this
phenomenon include over-parameterization acting as mo-
mentum in gradient updates (Arora et al., 2018) and nuclear
norm bias (Gunasekar et al., 2017; Arora et al., 2019).

Now consider M3 : Wd (Wd 1 . . . (W1(x))), where
is a non-linear function. In contrast to linear networks,

[Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, TMLR 2023]Images courtesy of Huh, et al. Used under CC BY-NC-SA.
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Implicit regularization of optimizers

• Weight decay acts like an L2 regularizer on weights, shrinking them toward zero all
else being equal. 

• Initialization near zero biases solutions toward low norm. GD initialized near zero
converges to minimum norm solution for linear models [Zhang et al. 2017, 
Gunasekar et al. 2017] 

• SGD, and GD with finite step size, converge to “flat” minima; they will tend to
overshoot or bounce out of minima that are too narrow. [see Vardi 2022 for a review]
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Architectural symmetries
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<latexit sha1_base64="G0eeYlee7Da1/FD5rsHUWh/uEE4=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMh81hmZsWw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5zf3OI9WGKflgpwkNBR5JFjOCbS71BX4aVGt+3Z8DrZKgIDUo0BxUv/pDRVJBpSUcG9ML/MSGGdaWEU5nlX5qaILJBI9oz1GJBTVhNr91hs6cMkSx0q6kRXP190SGhTFTEblOge3YLHu5+J/XS218HWZMJqmlkiwWxSlHVqH8cTRkmhLLp45gopm7FZEx1phYF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ABsPjkQ=</latexit><latexit sha1_base64="G0eeYlee7Da1/FD5rsHUWh/uEE4=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMh81hmZsWw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5zf3OI9WGKflgpwkNBR5JFjOCbS71BX4aVGt+3Z8DrZKgIDUo0BxUv/pDRVJBpSUcG9ML/MSGGdaWEU5nlX5qaILJBI9oz1GJBTVhNr91hs6cMkSx0q6kRXP190SGhTFTEblOge3YLHu5+J/XS218HWZMJqmlkiwWxSlHVqH8cTRkmhLLp45gopm7FZEx1phYF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ABsPjkQ=</latexit><latexit sha1_base64="G0eeYlee7Da1/FD5rsHUWh/uEE4=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMh81hmZsWw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5zf3OI9WGKflgpwkNBR5JFjOCbS71BX4aVGt+3Z8DrZKgIDUo0BxUv/pDRVJBpSUcG9ML/MSGGdaWEU5nlX5qaILJBI9oz1GJBTVhNr91hs6cMkSx0q6kRXP190SGhTFTEblOge3YLHu5+J/XS218HWZMJqmlkiwWxSlHVqH8cTRkmhLLp45gopm7FZEx1phYF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ABsPjkQ=</latexit><latexit sha1_base64="G0eeYlee7Da1/FD5rsHUWh/uEE4=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMh81hmZsWw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5zf3OI9WGKflgpwkNBR5JFjOCbS71BX4aVGt+3Z8DrZKgIDUo0BxUv/pDRVJBpSUcG9ML/MSGGdaWEU5nlX5qaILJBI9oz1GJBTVhNr91hs6cMkSx0q6kRXP190SGhTFTEblOge3YLHu5+J/XS218HWZMJqmlkiwWxSlHVqH8cTRkmhLLp45gopm7FZEx1phYF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ABsPjkQ=</latexit>

…

Invariances

Equivariances

Compositionality
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Domain specific constraints

r1 Gastrointestinal bleed effect  

r2 Bradycardia effect

Drug target relation

C

CS

D

M

C

© sources unknown. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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The shortest program that fits the data is the one that will generalize best.

Intractable, but good to keep in mind…

[Solomonoff 1964]

How should we measure model complexity?

Theory answer:

Or… do we actually have to optimize for shortest? How about just short 
enough?
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Finite models, infinite data

• Ilya: Deep nets generalize because they find small circuits that fit the data.

• Me: Small circuits? But deep nets are big! Don’t we need something else
to bias toward small circuits?

• Ilya: No. Deep nets are finite; that is enough. Anything finite will look small
once you have enough data.

(rough memory of a conversation with Ilya Sutskever around 2018)
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