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* Learning tasks with graphs

* Message passing GNNs

* Approximation Power



Prediction with graphs: examples

Node
classification

Pins: Visua bookmarks someone
has saved from the intemet to a
e board they've created.

4= Pinfeatures: mage, text, link

lllustration © J. Leskovec. Text © Derrow-
Pinion, et al. All rights reserved. This
content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Link Prediction

(e.qg. Ying et al, 2018; illustration: J. Leskovec)

concerned recommender systems, which are very naturally repre-
sentable as a graph-structured task: with Pinterest being one of
the most early adopters [18, 33]. GNNs have also been deployed
for product recommendation at Amazon [12], E-commerce applica-
tions at Alibaba [32], engagement forecasting and friend ranking
in Snapchat [22, 24], and most relevantly, they are powering traffic
predictions within Baidu Maps [6].



Example: molecule property prediction

“thy

Property

Solubility

M%T:El:e =P Toxicity
Drug efficacy

(Duvenaud et al, 2015, Stokes et al 2020, ...)

ragelelt U AU On the cover: Antibiotic resistance is a pervasive public health problem, *
Cell Press. All rights reserved. This -

content is excluded from our Creative requiring the adoption of creative approaches to drug discovery. In this

Commons license. For more information, .
see https://ocw.mit.edu/help/fag-fair-use/ ISSUe, ... ShOW more




Example: Polypharmacy side effects

. © Zitnik, et al. All rights reserved. This content is excluded
Pair of Nodes Edge from our Creative Commons license. For more information,
# i see https://ocw.mit.edu/help/fag-fair-use/
Drugs Interaction type

5 (Zitnik et al, 2018)



Example: Predicting traffic times

Analysed
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Figure 1: Google Maps estimated time-of-arrival (ETA) pre-
diction improvements for several world regions, when using
our deployed graph neural network-based estimator. Num-
bers represent relative reduction in negative ETA outcomes
compared to the prior approach used in production. A neg-
ative ETA outcome occurs when the ETA error from the ob-

Predictions NQ

\ Google Maps

Training API

data

Surfaced

((ON Y

Google.Maps Candidate Google Maps
routing user routes app
SYStem A-B

Figures © Paulo Estriga & Adam Cain. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

https://d@epmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks



Example: learning to simulate physics

© Sanchez-Gonzalez, et al. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

7 (Sanchez-Gonzalez et al, 2020)



Example: learning to simulate physics

Compute
representation
- © Sanchez-Gonzalez, et al. All rights reserved. This content
Collection of Nodes is excluded from our Creative Commons license. For more
Particles e > New state information, see https://ocw.mit.edu/help/fag-fair-use/

3 (Sanchez-Gonzalez et al, 2020)



Example: (Combinatorial) Optimization

e replace full algorithm or i T
learn steps (e.g. branching decision) x
Ax < b
[ <z <u
2

r e Z” x R"™P

3

source

(e.g. Velickovic et al 2020)

“Neural Algorithmic
Reasoning”
Solution / decision | |
Graph Path constraints variables (Gasse et al 2019)
Problem instance ' Branching variable clauses variables (Selsam et al 2018)




Two goals

Input: Graph + attribute vector for each node (adjacency matrix
A € R™" feature matrix X € R4

1. Node embeddings 2. Graph embedding

A A

s :S: -

GNNs: |learn a function from graph/neighborhood + node/edge attributes
to vector
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- _ ?
|[dea 1: fully-connected NN 1 :

Idea 1: Use the adjacency matrix as input to a neural network

0O 1 0 1 O 1 1 O
[ 10 0 1 + |10 1 0
A= 0O 0 0 1 PAP " = 1 1 0 1
1 1 1 0 0O 0 1 O
We want:
e Permutation invariance (graph embedding): f(PAP",PX) = f(A,X)
(output: single vector) and
e Permutation equivariance (hode embeddings): f(PAP' ,PX)=Pf(A,X)

(output: one vector for each node)

-—>—
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|[dea 2: Images are like graphs...

e Convolution? (local operator “encodes” local neighborhoods)

 What is different in a graph?

» Commonalities: local operations, globalize through depth, weight sharing,
input can have varying size
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A CNN is a GNN over a grid graph

O O

AT

O O

AT

Review questions:
e \\What's the kernel size?
e \What's the stride?

O O

AT

O O

07

of

GNN’s attribute vector per node == CNN's column of channels at each index in a feature map
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Roadmap

* Learning tasks with graphs

* Message passing GNNs

* Approximation Power
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Graph neural networks

|dea:
1. Encode each node (based on message passing between nodes)

2. Aggregate set of node embeddings into a graph embedding

15



Encoding neighborhoods: general form

In each round k:

Aggregate information from neighbors

node embedding

k _
? m\;,, = AGGREGATE® ({h{} ‘”\u c N(v)})
'ﬁ feature description
of node u in round k-1

'/ Update current node representation by incorporating
messages from neighbors

h(¥) = UPDATE® (h(*~ 1), mj\’jzv))

(Merkwirth & Lengauer 2005; Scarselli et al 2009; Bruna et al 2014, Dai et al 2016; Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al., 2015; Hamilton et al., 2017;
Kearnes et al., 2016; Kipf & Welling, 2017; Gilmer et al 2017; Li et al., 2016; Velickovic péa/., 2018; Verma & Zhang, 2018; Ying et al., 2018; Zhang et al., 2018; ...)



What are the aggregation functions?

m|7),, = AGGREGATE® ({h{*"V 1 u e N(v) })

P ¥ b nD)

ueN (v)

ug\‘/c
’

h{¥) = UPDATE® (h{*"" m{7) )

N(v) = {u | I(u,v) € E(G)} node’s neighborhood
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What are the aggregation functions?

Aggregate: permutation invariant, multi-set function

h

e Sum, average, ... Mpr(y) = Z h, M () = Z u
WEN (v) vty VIV ()N (u))
(Merkwirth & Lengauer 2005, Scarselli et al 2009) (Kipf & Welling 2016, Hamilton et al 2017)

e Min / max (coordinate-wise)

mys(,y = max {h{F~Y :u € N(v)

Can implement e.g. shortest path:  d\¥) = n}\l[]?) A=Y 1 cost(u, v)
uc (Y
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Learning a shortest path algorithm

Bellman-Ford

dik][u] = miny d[k-1][v] + cost (v, U) IR st )

h® = 3, MLP(hy(-1), hytn)

sum or max pooling
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Aggregation functions and updates

Aggregate: General form (universal approximation

of multi-set functions).  (zanceretal2017, Gietal 2017, Xu et al 2019)

my () = MLPy( 3" MLPy(h,,h,))

ueN (v)
[ earned
aggregation
function
Update: e.gd. hgjk) = O'(Wselfhfgk_l) =+ Wneighmj(\l;%v) +b)

~_

learned

20



Graph embeddings

hg = READOUT ({h{®) :v € G})

pooling operation (just like AGGREGATE)

|dea:
1. Encode each node (based on message passing between nodes)

2. Aggregate set of node embeddings into a graph embedding

21



GNNs unrolled

UPDATE®

N

AGGREGATE®

e | ike an MLP but nodes are vectors rather than

scalars, edges are potentially complex functions
(e.g., an edge can be an MLP)

UPDATEW

. . L AGGREGATEW
e Each iteration of GNN message passing is a layer

o AGGREGATE is akin to a linear layer

e UPDATE is akin to a pointwise layer

22



What is the graph for an MLP?

An MLP is a GNN over single node

unroll

» OO0 O

Update:

O I%l> UPDATE®
hrgk) — O-(Wselfhfg{_l) + Wneighmj\];)(,v) + b)

> OO0 O

UPDATEW

QOO
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Generalizations

e Use edge attributes / features in M /() = Z MLP®) (h*=1 h=1 w,.)
aggregation ueN (v)

1))

* Multi-relational: multiple “channels
different aggregations for different Doxycycline @-
types of edges

(§) Simvastatin

Drugs

DIrocin

e Attention (Velickovic et al 2018).

IMN(v) = Z av,uhu
ueN (v)

(Zitnik et al, 2018)

e Janossy pooling murphy et al 2018
permutation-sensitive function averaged over permutations

© Zitnik, et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Node embeddings: tree view

TARGET NODE

“
2
.
.
 J
L J
 J
.
“
 J

.0
A
/.'5 '0':‘:;}\\
INPUT GRAPH A - > RN
@
V..’
| o

grey boxes: aggregation functions that we learn

25

lllustration © J. Leskovec. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/
fag-fair-use/

(illustrations: J. Leskovec)



Node embeddings: tree view

TARGET NODE

INPUT GRAPH

grey boxes: aggregation functions that we learn
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lllustration © J. Leskovec. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/
fag-fair-use/

(illustrations: J. Leskovec)



Node embeddings: tree view

shared

weights
layer O

(input)

TARGET NODE

,,

layer 2

INPUT GRAPH

grey boxes: aggregation functions that we learn

lllustration © J. Leskovec. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/
fag-fair-use/

27 (illustrations: J. Leskovec)



Weignt sharing

5 L
.......... OSSR N——- -
, shared parameters _
. i B v A B B s i Ao
 \We use the same aggregation g5
functions for all nodes. o o
shared parameters ‘ ﬁ

Compute graph for node A Compute graph for node B

............... .
* So we can generate encodings for previously AN /\

unseen nodes & graphs too! —\
° ° \ j
(dynamic graphs, different molecules, ...) e e
ustration . Leskovec. All rights
/ resetrved. This content is exeluged from

our Creative Commons license. For more
information, see https://ocw.mit.edu/help/

fag-fair-use/

28 lllustrations: J. Leskovec



Training a GNN

e What is a data point?

{node, label} pairs {graph, label} pairs

e What to specify?
e Aggregate, updates and readout functions

* Loss function on prediction

 Train with SGD

29



Example architecture 1: polypharmacy

[§) Simvastatin

Doxycycline Q

Drugs
pirocin

o Different types of edges: drug-drug, drug-protein,
protein-protein

h{**) =ReLU [ > > ¢™WHh{ + h{"
r ueN,(v)

separate aggregation per edge type r,
then sum them up

h(k‘H)

M Bradycardia effect

© Zitnik, et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information,

% ng ) see https://ocw.mit.edu/help/fag-fair-use/

W B (k) Modeling Polypharmacy Side Effects with
%mg oot o Graph Convolutional Networks

Marinka Zitnik ', Monica Agrawal ! and Jure Leskovec 1:*
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Example architecture 2: Google Maps

* segments v (50-100m), supersegments u (ca 20 segments);
input features: historical travel times, road type, traffic pattern at prediction time

e 3 aggregation/update operations: h's (using adjacent edges h,, h ),
edges h, (using adjacent segments h,and h),

h, (using segments h, and edges h, in supersegment)
® combination of pooling operations for each aggregation

* linear combination of losses per time horizon (segment travel time, super segment

time, cumulative segment time, self-supervised / generative loss)

© Derrow-Pinion, et
al. All rights reserved.
This content is

excluded from our
Creative Commons

license. For more

information, see
https://ocw.mit.edu/
help/fag-fair-use/

(Derrow-#inion et al., ETA Prediction with Graph Neural Networks in Google Maps, CIKM 2021)




Many connections

Graph signal processing and convolutions

Inference in graphical models paiest ar 2016)
e Node embeddings = latent variables

e Given node features and graph, infer latent variables

* “Neural message passing”

Distributed / Local algorithms (sato et a1 2019, Loukas 2020)
* Bounds for detection, verification, computation with GNNs

Random walks xu et a/ 2078)
e Oversmoothing, graph structure and depth

e (Adaptive) skip connections

Graph isomorphism testing woris et al 2019, Xu et al 2019)

32



Roadmap

* Learning tasks with graphs

* Message passing GNNs

* Approximation Power
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Which functions can GNNs approximate?

______
~~~~~~~
~~~~~
,,,,,,
7 SS
- S
7 h
’

’

~~~~~~ Which graphs can GNNs distinguish?
L f(G)# J(C)1

\~~
~ U
Sso ’
So L
~ ’
~a e
~ ’¢
“““““
————————
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Which functions can GNNs approximate?

______
~~~~~~~
~~~~~
NNNNNN
7 S
- S
I’ f
’
”

~~~~~~ Which graphs can GNNs distinguish?
. f(G) # [(G)T

\~~
~ e
~~~ P
~ U4
~
-~ P d
~a P d
~§ ”
~~~ -
=

Distinction implies function approximation : @

for node and graph predictions

/
. | (G,G") € p(F) <
(Symmetric Stone-Weierstrass theorem)
(Azizian & Lelarge 21, Chen-Villar-Chen-Bruna 19, Keriven & Peyré 19, Maron-Fetaya-Segol-Lipman 19) ( ) _ ( / )
VF e F, F(G)=F(G

Theorem.

If function H on a compact domain does not assign different labels to graphs in one equivalence
class, then it can be approximated by message passing GNNSs:

Ve >0, 3F € FONN . sup |H(G) — F(G)|| <e
" GeK
35



Discriminative Power

M. SR ) SR N

> A
> Ao

Theorem (Morris-Ritzert-Fey-Hamilton-Lenssen-Rattan-Grohe 19, Xu-Hu-Leskovec-Jegelka 19)
Any GNN can at best distinguish the same graphs as the 1-dim WL algorithm.

Equivalence class

Equivalence class

36



Color refinement / Weisteller-Leman algorithm

(Morgan 65, Weisfeiller & Leman 68)
@
N S
9 PP PP éoe -

coloring ¢ : V(@) = X

¢V (v) = Hash (c(t_l)(v), YD) | u e N(v))

isomorphism test: {c{'<)(v)|v € V(G)} # {c'")(v")]v' € V(G')}?
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Color refinement / Weisteller-Leman algorithm

(Morgan 65, Weisfeiller & Leman 68)
@
N S
9 PP PP éoe -

coloring ) . V(G) = X

¢V (v) = Hash (c(t_l)(v), YD) | u e N(v))

vs GNN: hgt) — fUpdate (hff}t_l), ngg({h&t_l) ‘ U < N(v)}))
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Color refinement / Weisteller-Leman algorithm

(Morgan 65, Weisfeiller & Leman 68)
@
N S
el ® 600 ® 600 PN

coloring ) . V(G) = X

¢V (v) = Hash (c(t_l)(v), YD) | u e N(v))

vs GNN: hgt) — fUpdate (hff}t_l), ngg({h&t_l) ‘ U < N(v)}))

Theorem (Morris-Ritzert-Fey-Hamilton-Lenssen-Rattan-Grohe 19, Xu-Hu-Leskovec-J 19)
Any GNN can at best distinguish the same graphs as the 1-dim WL algorithm.
For any n, there exists a GNN such that for any ¢, ) = p®)
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How could we ensure that the aggregation is injective?

e Any (multi-)set function can be represented with nonlinear functions g, g, as:

ngg Z 92 )

heS

e We can universally approximate g, and g, by MLPs! (see a few slides ago)

k _
mj(\[z ;= MLP; Y MLP; (h{*")
ueN (v)

40



Does this make a difference in practice?

* vary g and pooling operation
fage(S) Z g2(h
hesS
PROTEINS
1.0 - S
§ ot equli Sum — MLP (injective)
5 0.8 -
o
O
8 0.6 - Mean/Max —
.% MLP/linear+RelLu
S 0.4-
0 T :

T T | T T T
0 50 100 150 200 250 300 350
Epoch
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L earning structural graph properties

Can GNNs compute:

e the length of the shortest / longest cycle?
e diameter of the graph?

e the number of occurrences of a motif?

Lemma (Garg et al 2020, Chen et al 2020)

No! Message Passing GNNs (as discussed here) cannot compute these in general.
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Improving discriminative power

e Positional encodings

N TSN

| colormap

o A, = 0.1 /‘} Eigenvector ¢

/
\

. 1 . 1 2 L max
* Add node input features that encode "“position e -
in the graph 0% 1o=10 ‘7% N An=107 % o
e For instance: eigenvectors of the " g ® O Pet ":: B
graph LaplaCIan L :D B . Adjacency (Kreuzer, Beaini, Hamilton, Létourneau, Tossou 2021)
(or its normalized versions) Diagonal matrix i
with node
degrees
“standard”
0.30- /
* adds global structural information 1 Laplacian PE
(basic and improved)
L . 020 ]
e Challenge: ambiguities S
. . . e W 01s-
(sign flips, eigenvalue multiplicities) 7 L
IG_) 0.10-
0.05 - Task: Molecule
Graphs © Kreuzer, et al and Lim, et al. All rights reserved. 0.00 regression (ZI NC)

This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/ from: Lim-Robinson-Zhao-Smidt-Sra-Maron-J 22
help/fag-fair-use/
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Call back to CNNs:
What it you don’t want to be shitt invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this Is
called positional encoding

pos  signal

i

OO000@OO
OQQOQQ!}O
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Summary

® Encodes graph structure and node/edge attributes

® Important: permutation invariance/equivariance
® Main idea: message passing and aggregations

e Can take graphs of varying size and structure (similar to CNNs)

® Connections: graph signal processing, graphical models, distributed computing,
isomorphism testing, ...

® Representational enhancements: higher-order, node IDs/augmentation
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Appendix
 Graph Laplacian (unnormalized): degree matrix D - adjacency matrix A
L=D-A

D;; = deg(v;) or Z w;; and  Dg;=0fori#j

e normalized: I-D'A or TI—-D 2AD1/2
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