

Lecture 4: Architectures for Grids

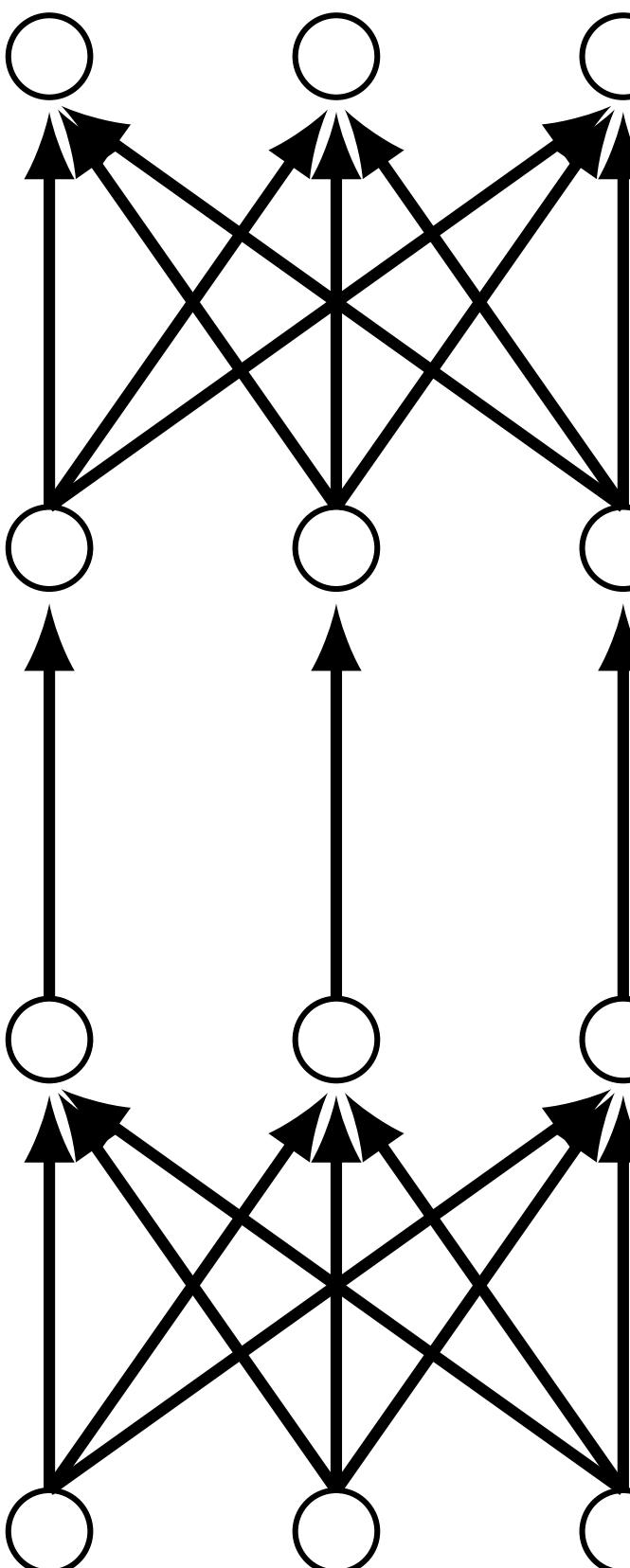
Speaker: Sara Beery

4. Architectures for Grids

- Why build better architectures?
- Convolutional layers
- Pyramids
- Architecture zoo
- Neural fields and positional encodings

Multilayer Perceptron

linear comb. of neurons ▷



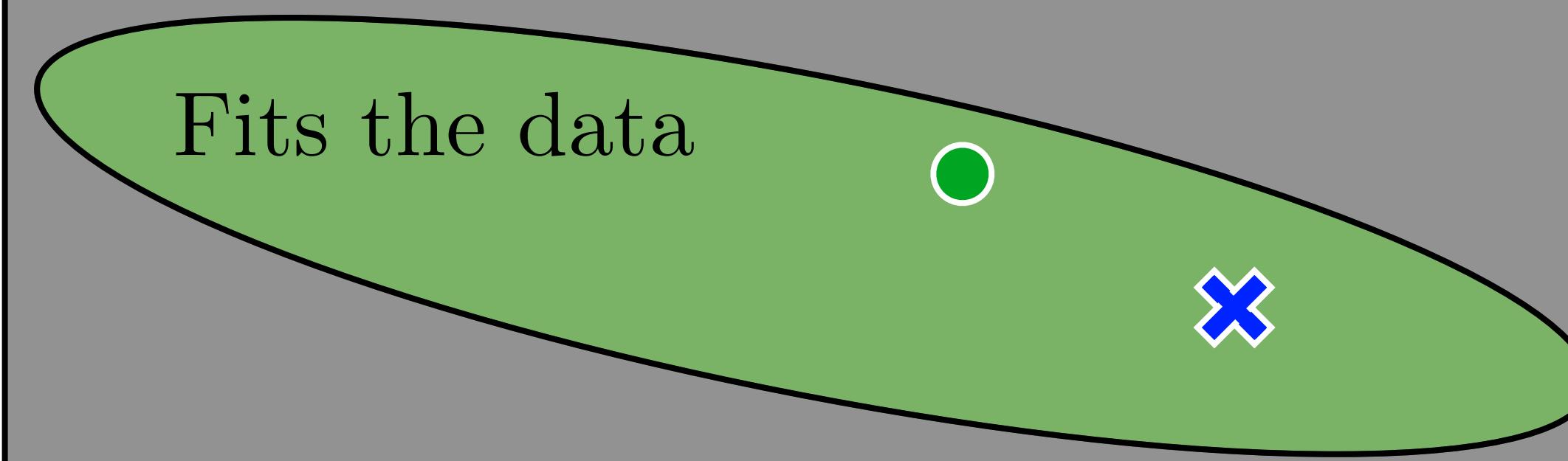
neuron-wise nonlinearity ▷

linear comb. of neurons ▷

- + Universal
- + Simple (elegant theory)
- + Embarassingly parallel
- Weak inductive biases
- Sample inefficient / data hungry
- Dense (fully-connected) linear layers take a lot of compute

Why use other architectures?

All mappings $\mathcal{X} \rightarrow \mathcal{Y}$

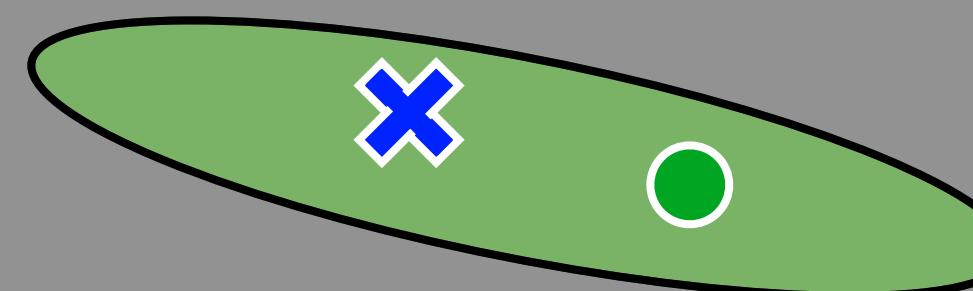


- True solution
- ✖ Learned solution

Why use other architectures?

All mappings $\mathcal{X} \rightarrow \mathcal{Y}$

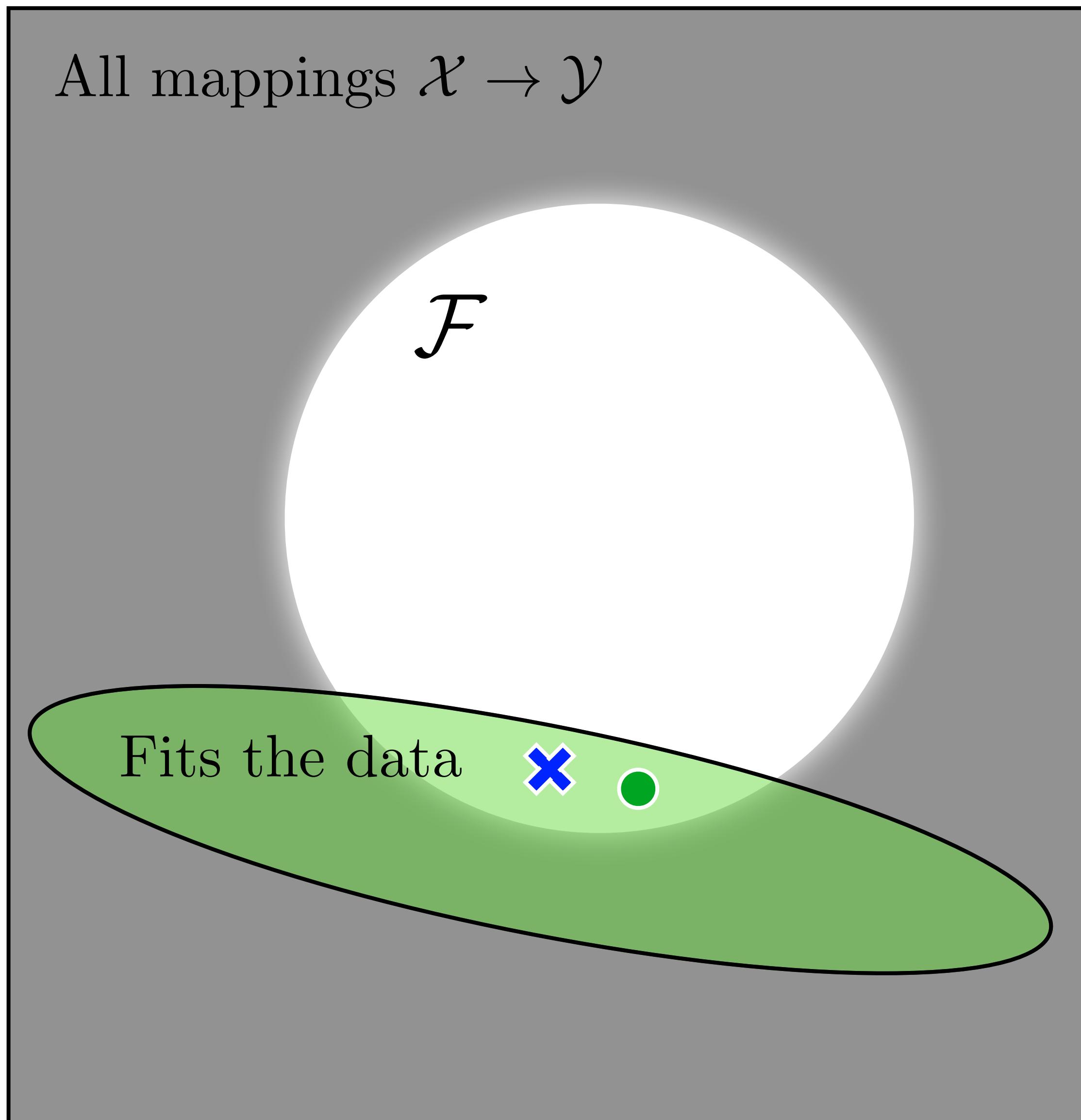
Fits the data



- True solution
- ✖ Learned solution

Effect of adding more data.

Why use other architectures?



\mathcal{F} – Hypothesis space

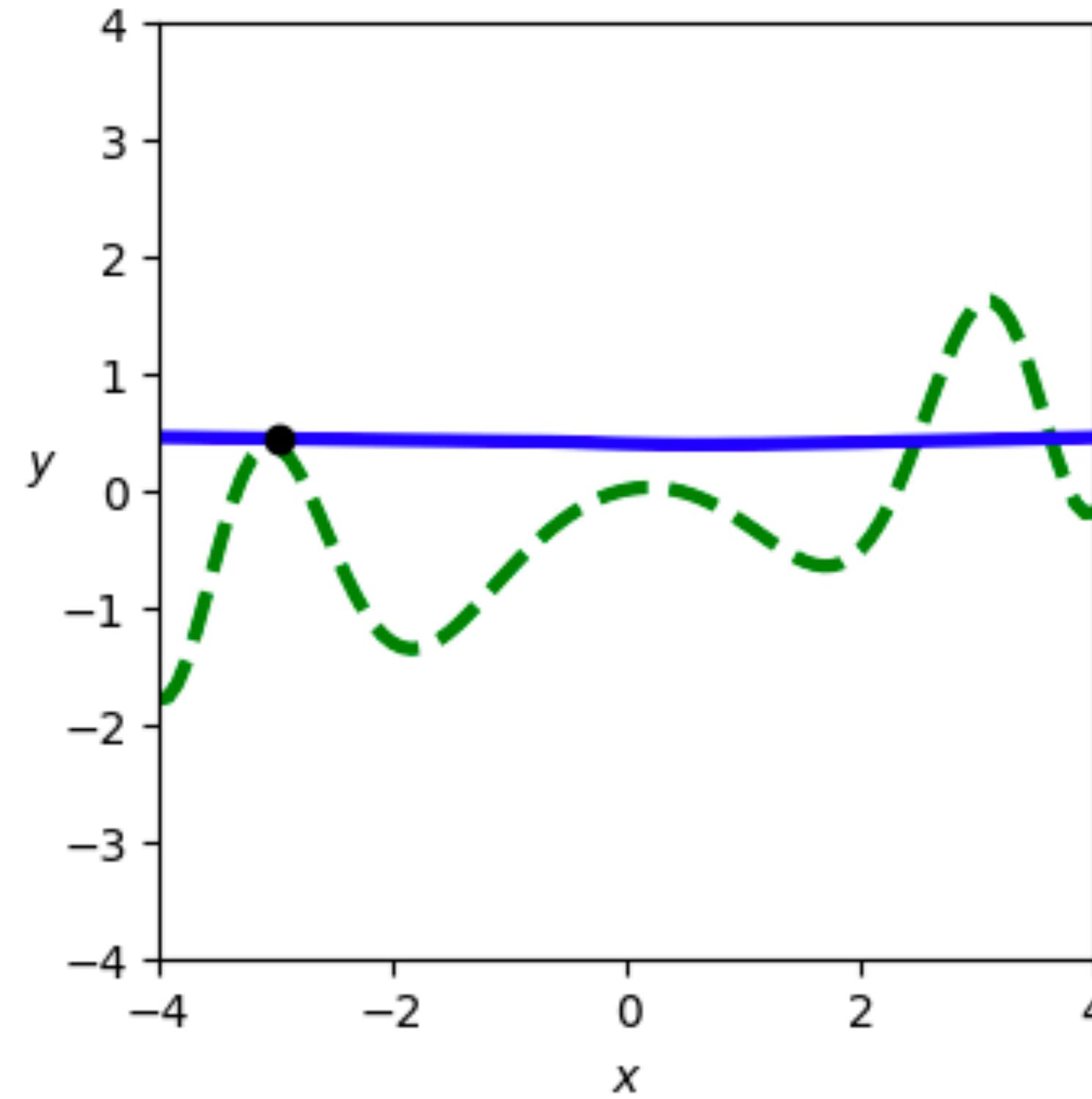
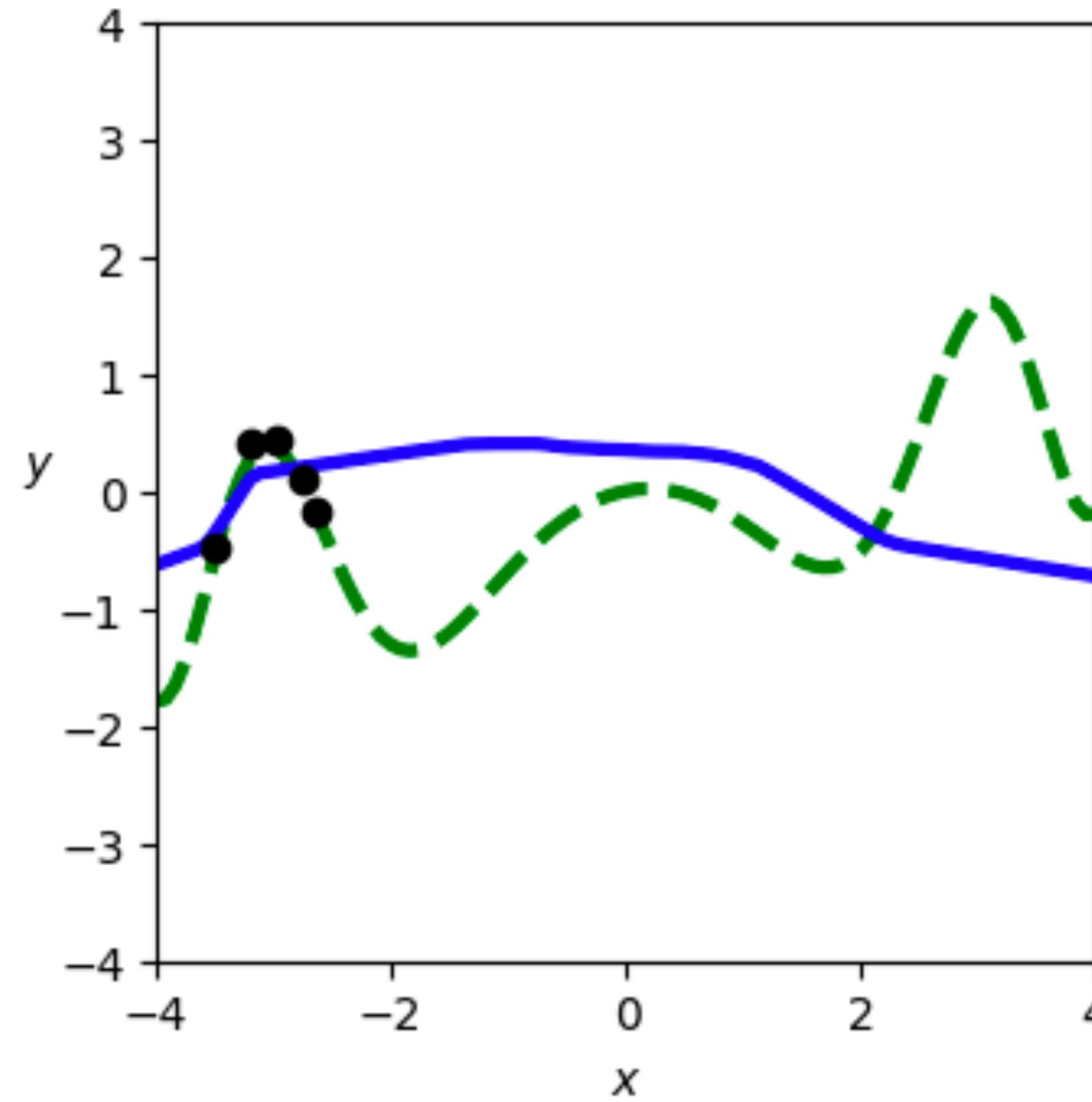
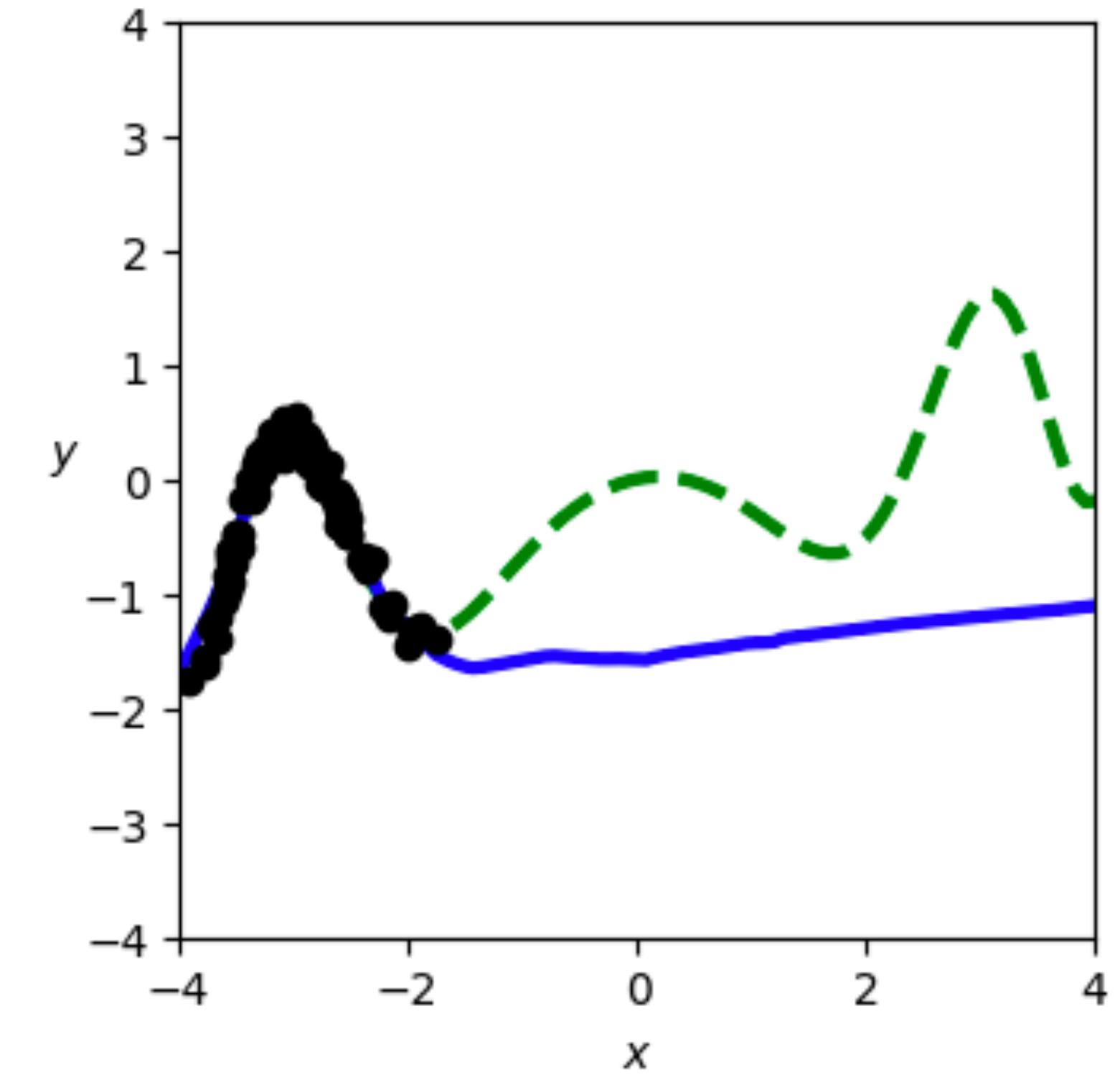
- True solution
- ✖ Learned solution

Less data, better architecture.

We can pin down truth *either* by adding more data, or by using a more constrained architecture.

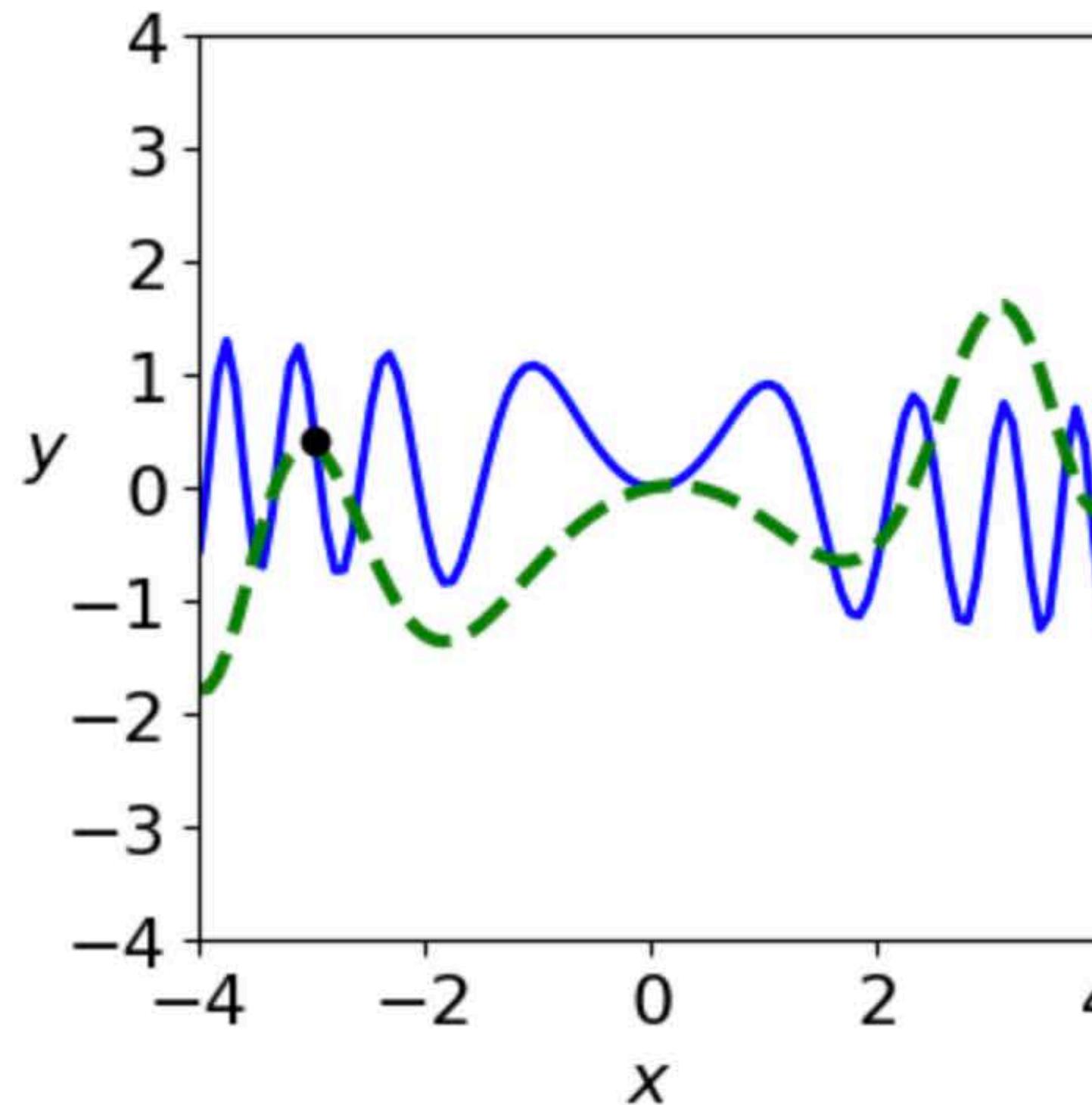
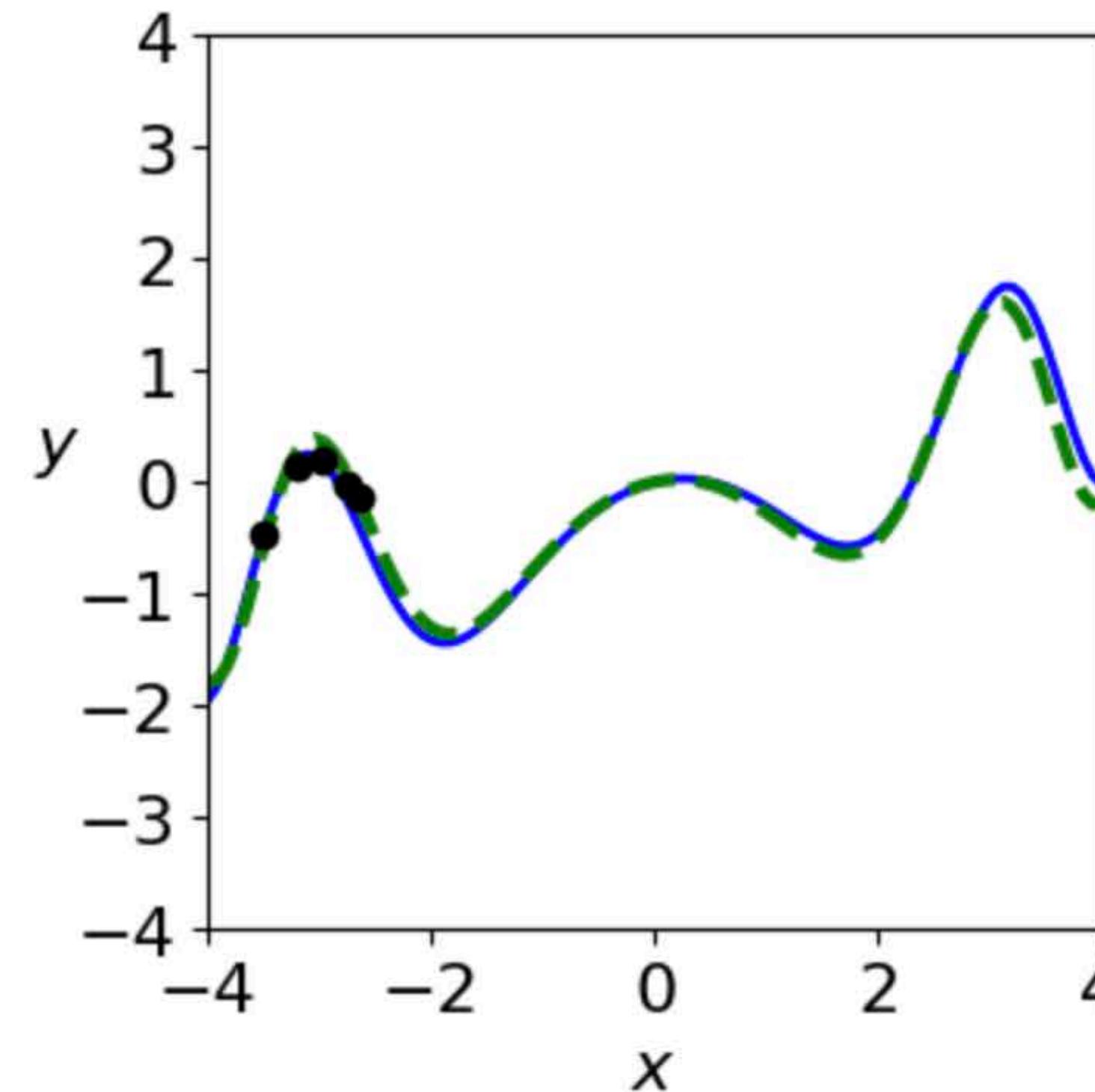
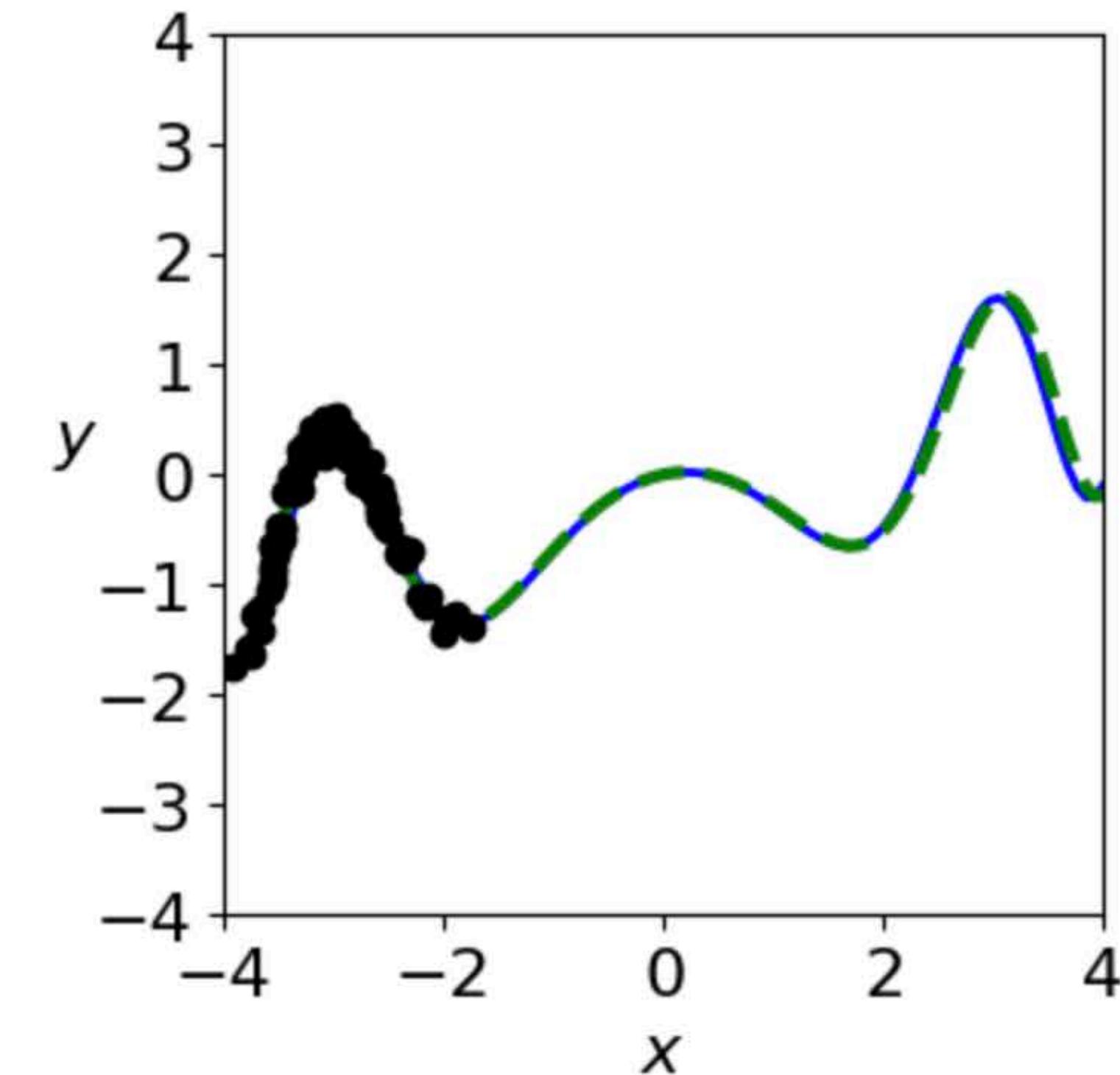
$$y = f(x)$$

f: 5 layer ReLU-net



- True solution
- Learned solution
- Training data

$$y = ax + \sin(bx^2)$$



- True solution
- Learned solution
- Training data

Architectures enable us to generalize *outside the training distribution*.

A good architecture is one that can represent the true function and is otherwise minimal (and is also easy to search over via gradient-based learning, easy to parallelize, fast on GPU, etc).

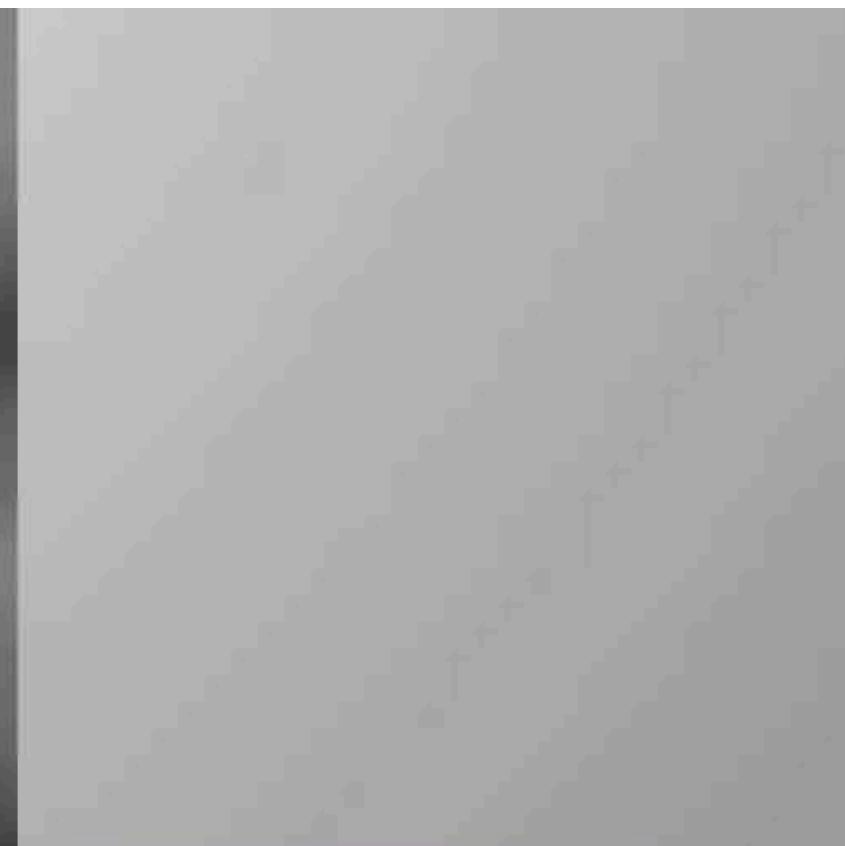
Preview: better architectures can approximate important function classes more efficiently.

**Goal: Fit this image
(a function $x, y \rightarrow I$)**

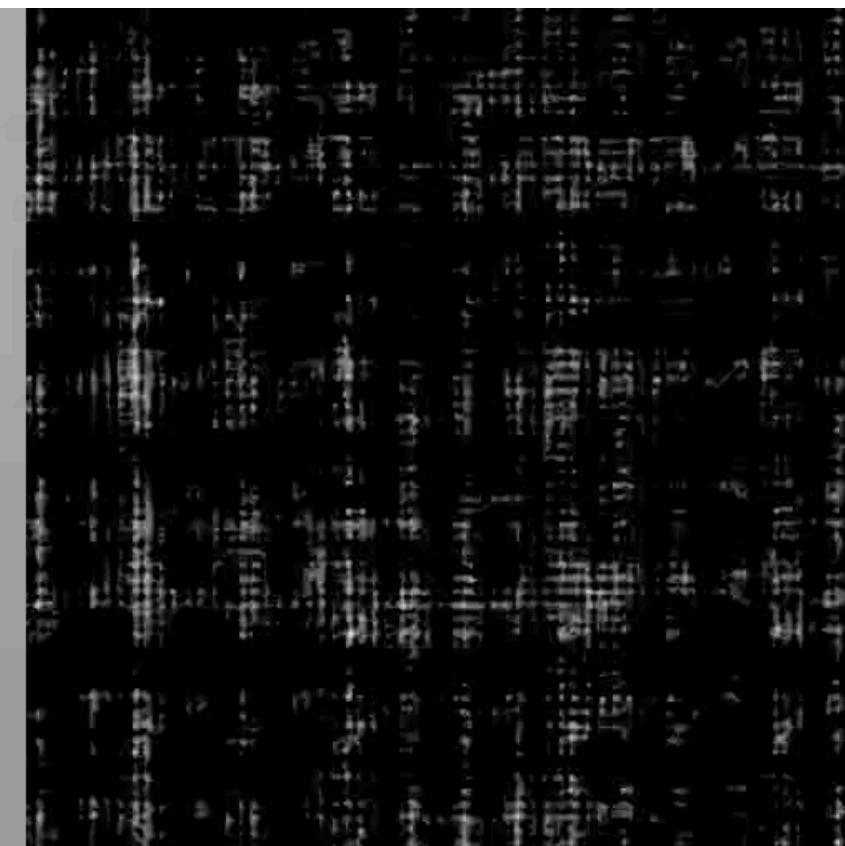
ReLU-net



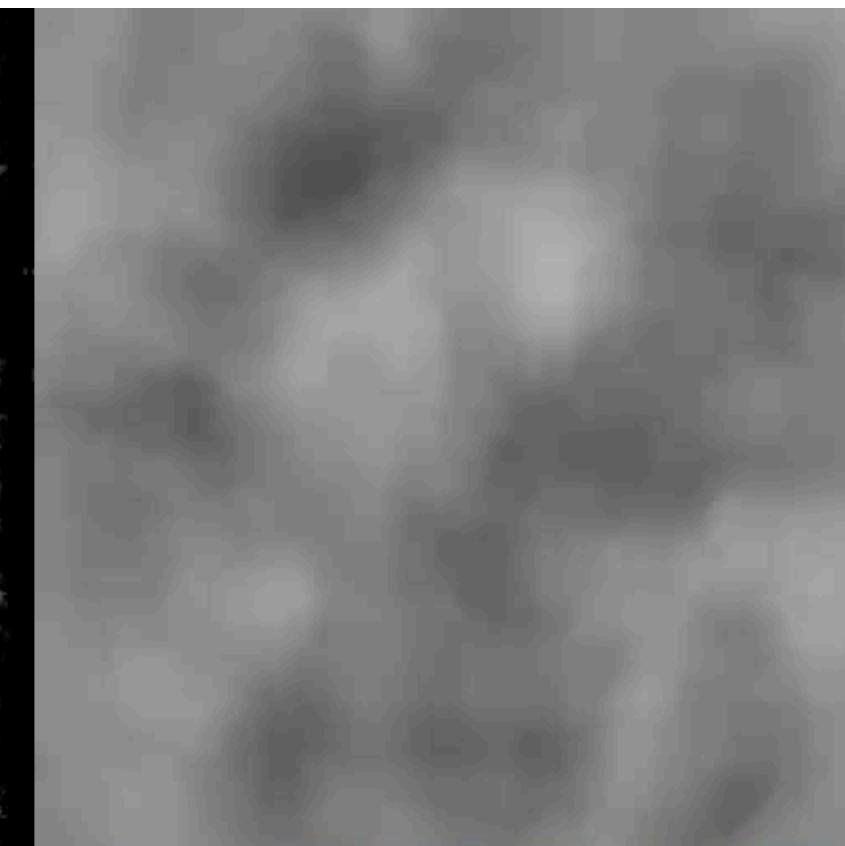
TanH-net



ReLU P.E.



RBF ReLU



SIREN

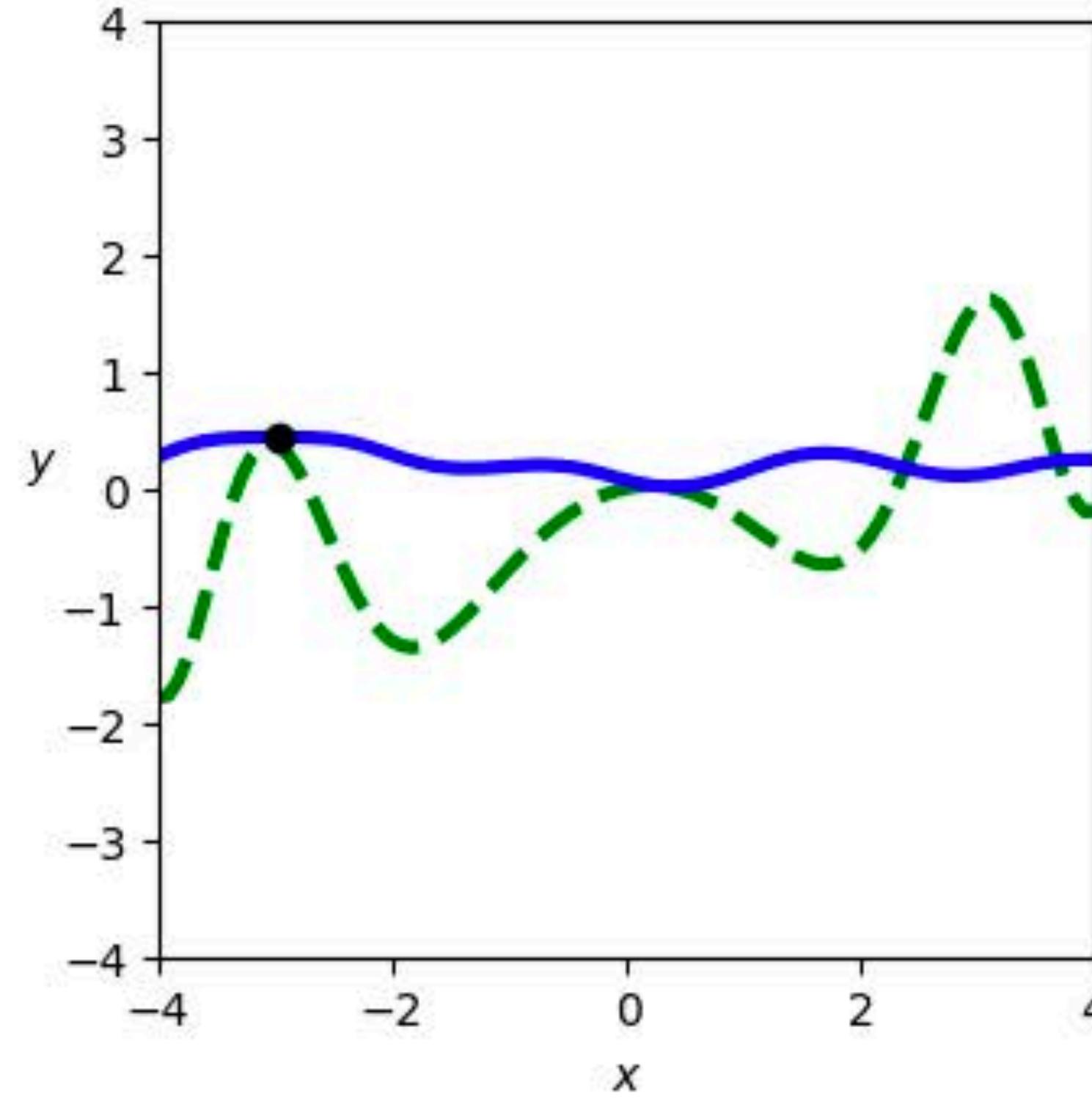
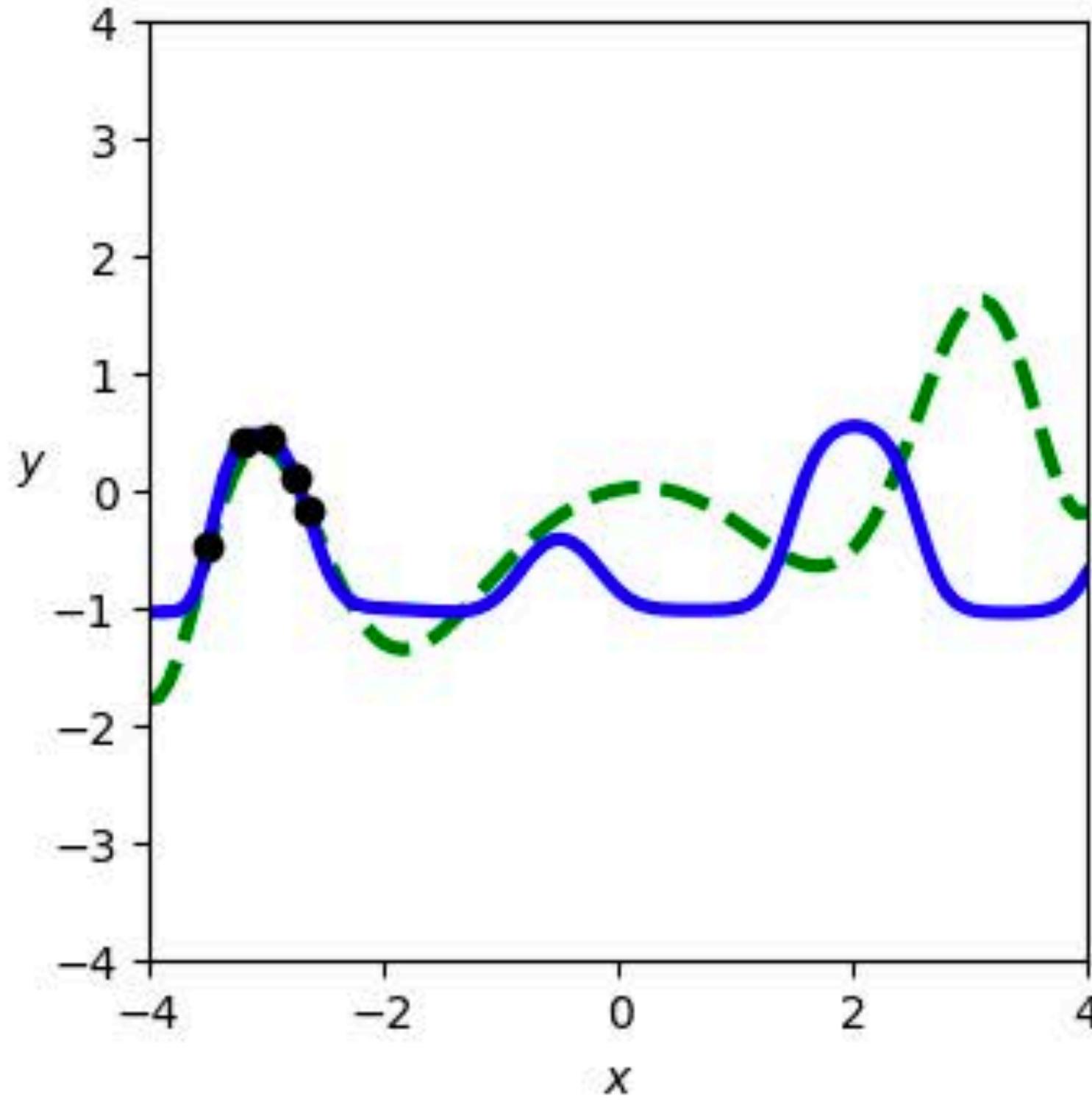
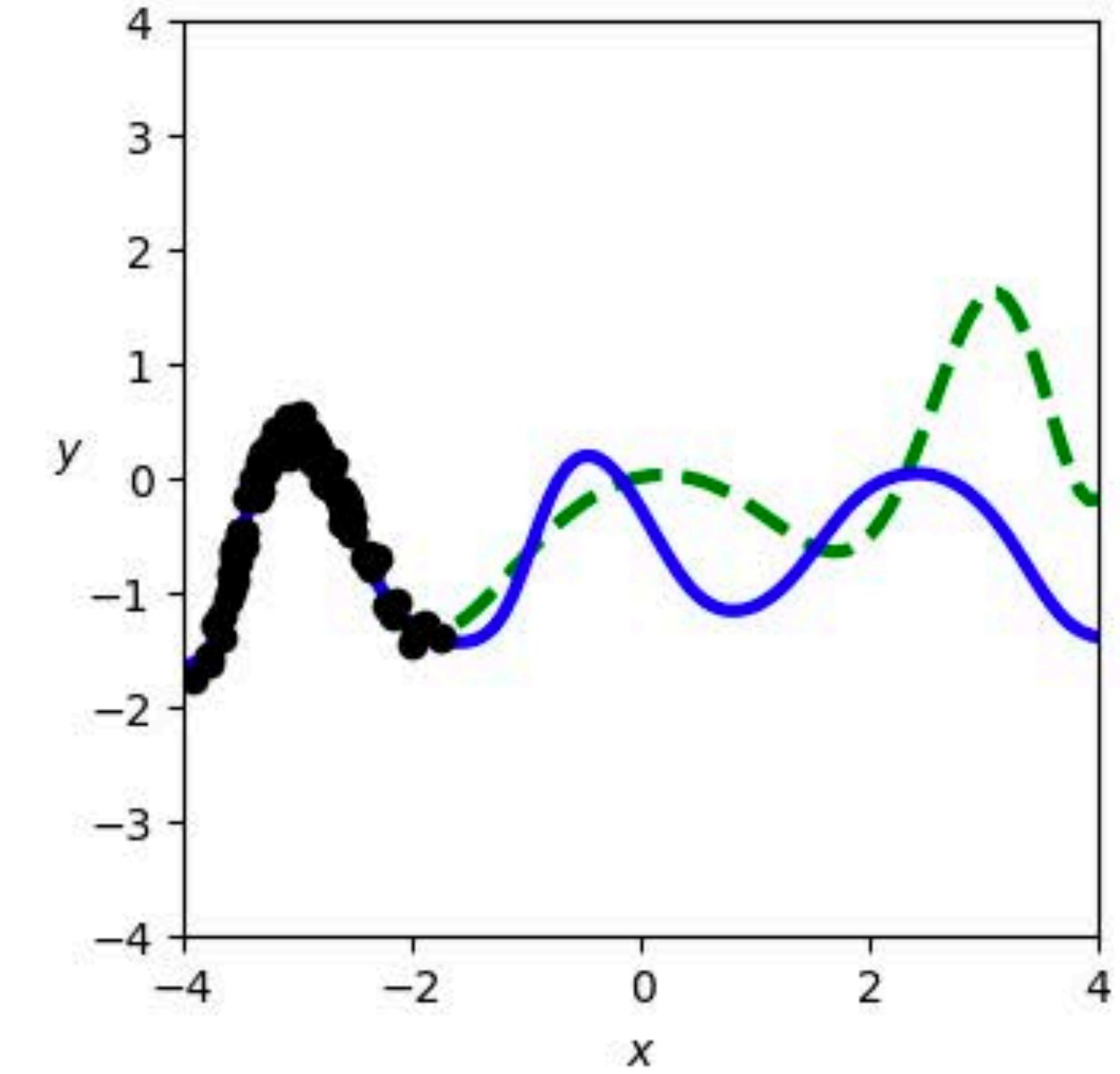
(Note: this result may be due to improved approximation ability but it might also be due to improved optimization ability; these two effects are typically coupled in experiments)

© Sitzmann, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Sitzmann*, Martel*, Bergman, Lindell, Wetzstein, NeurIPS 2020]

$$y = f(x)$$

f: 5 layer sin-net (SIREN)



- True solution
- Learned solution
- Training data

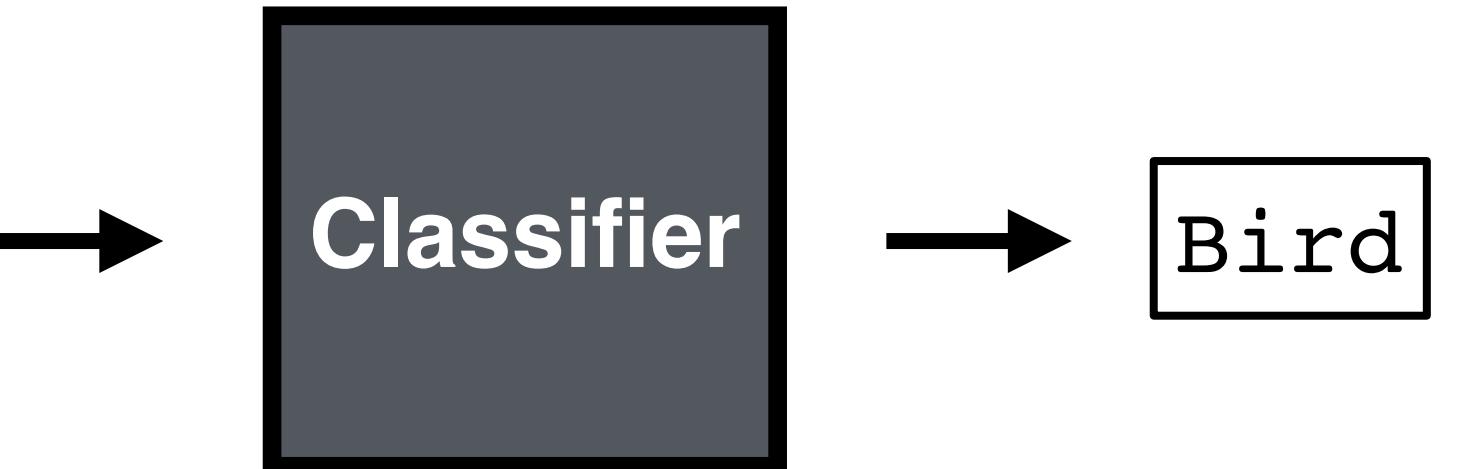
Convolutional Neural Networks

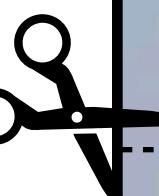
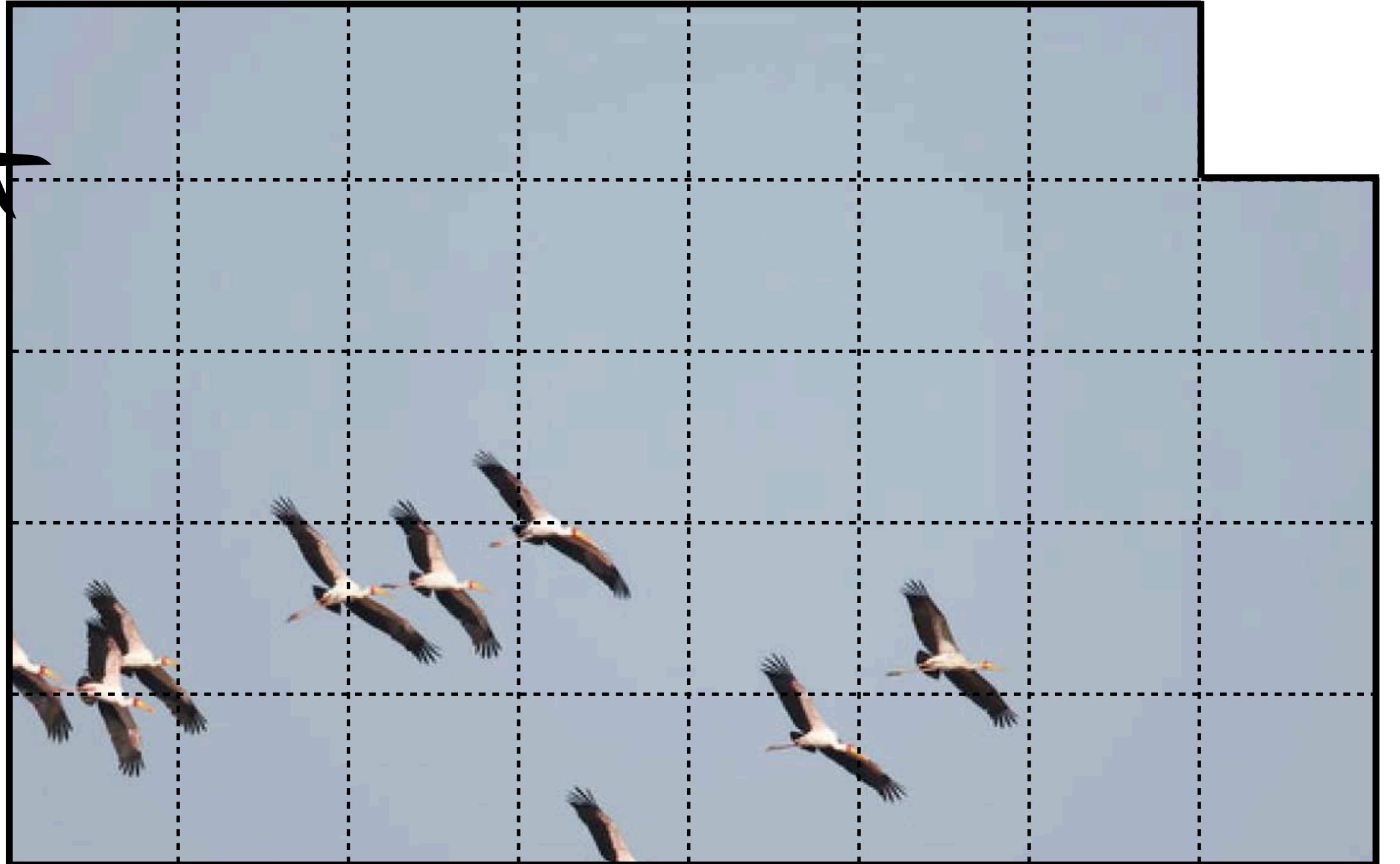
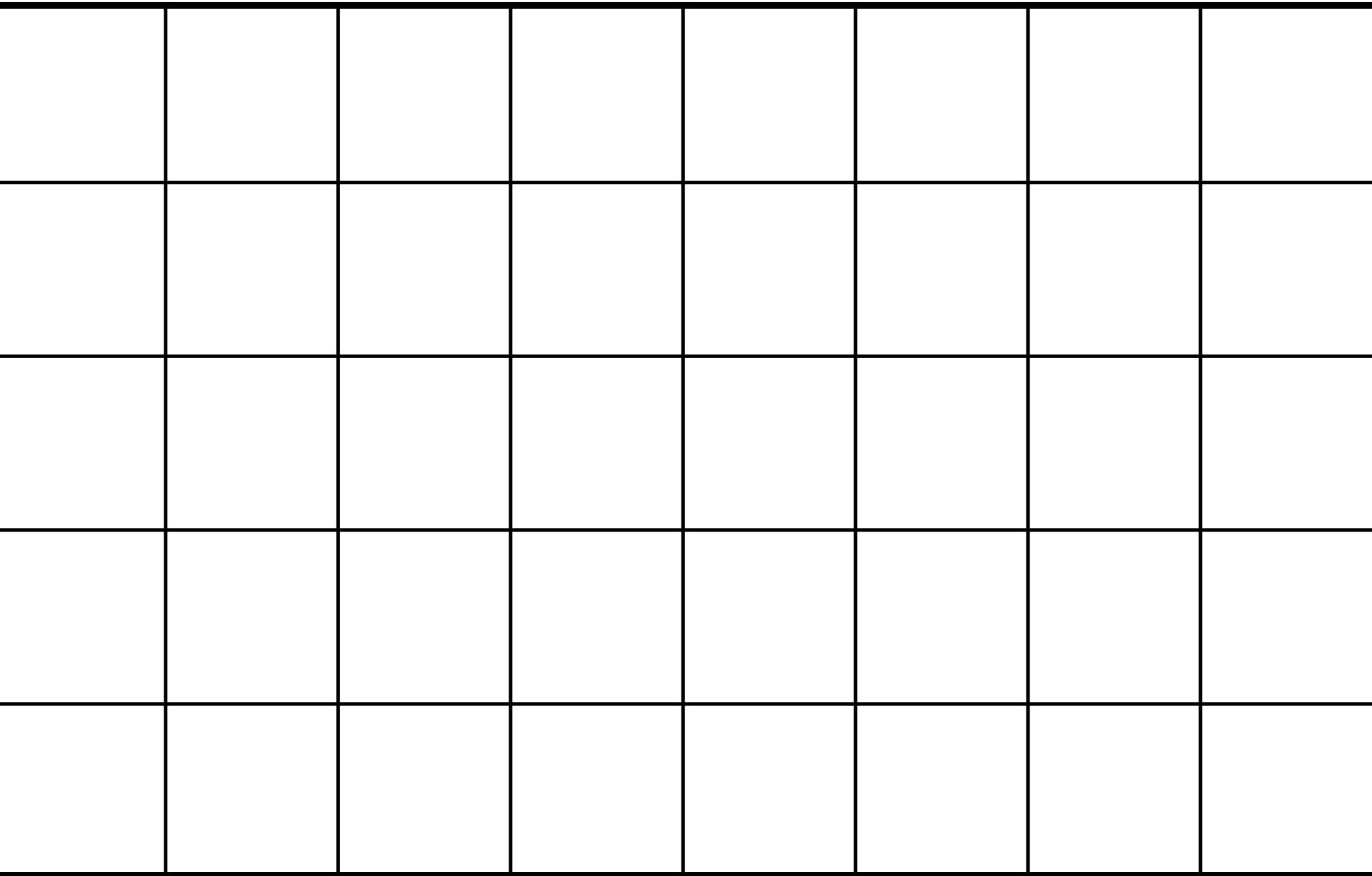
© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Photo credit: Fredo Durand

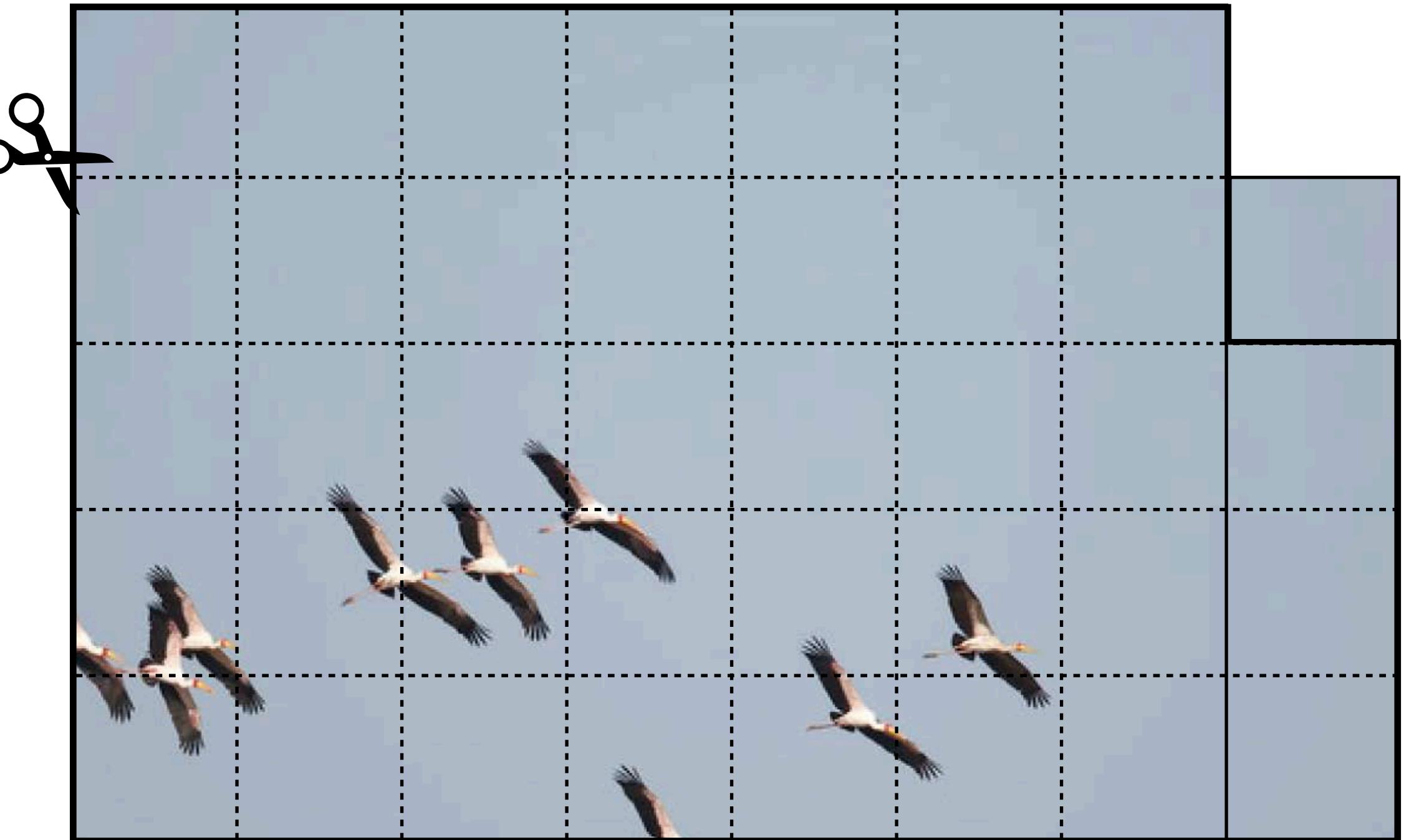
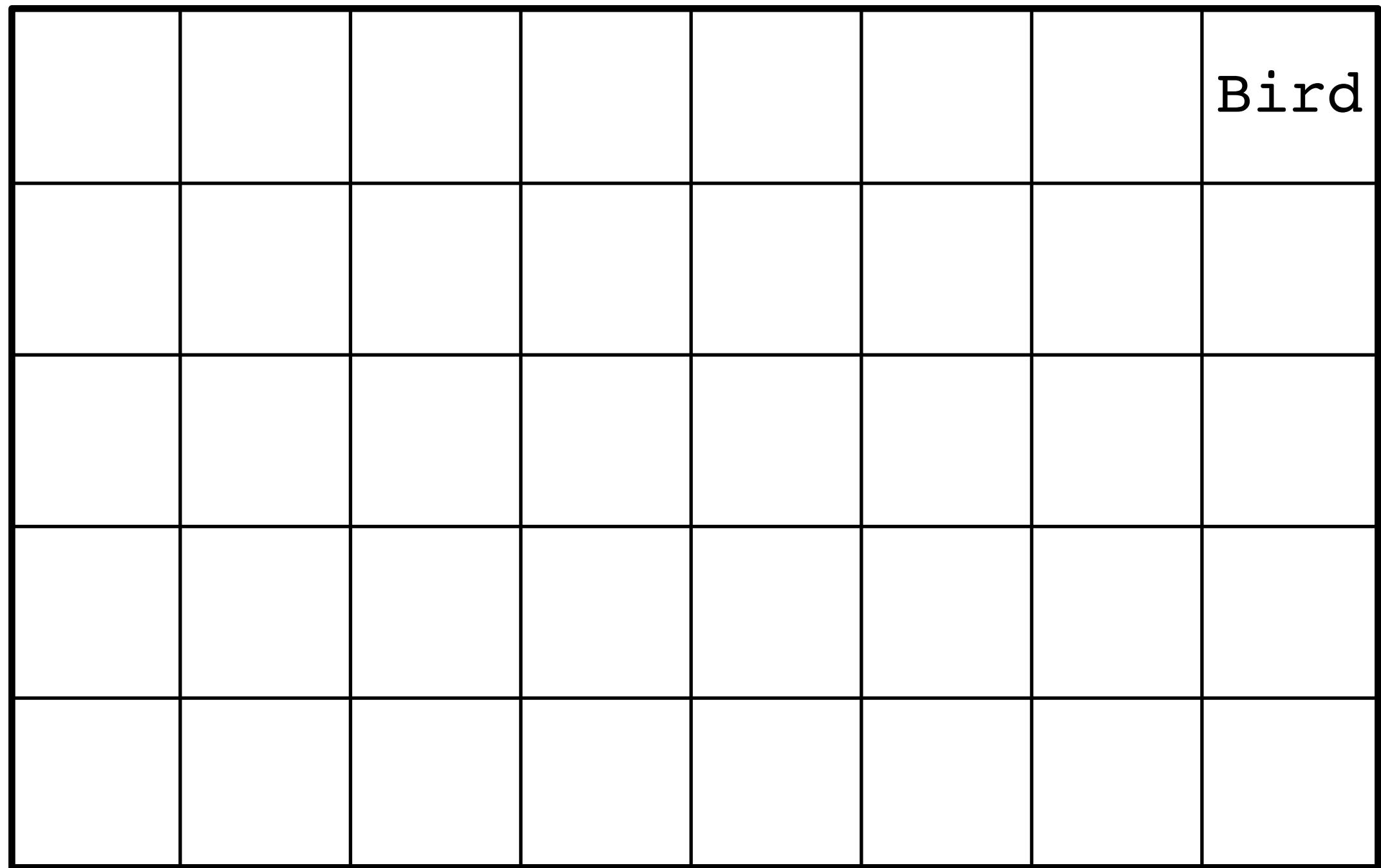
© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

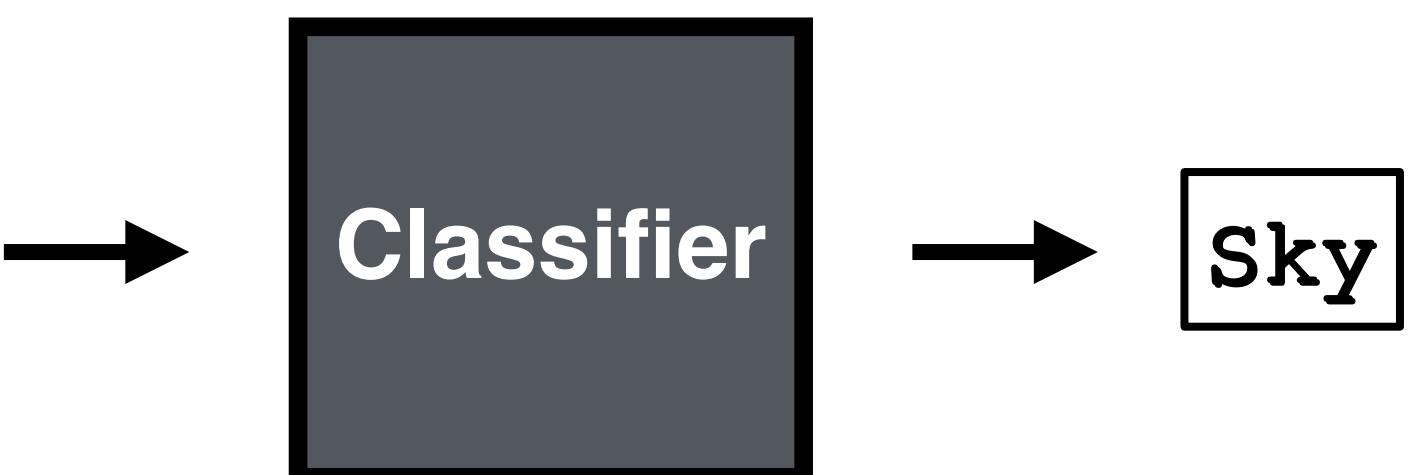


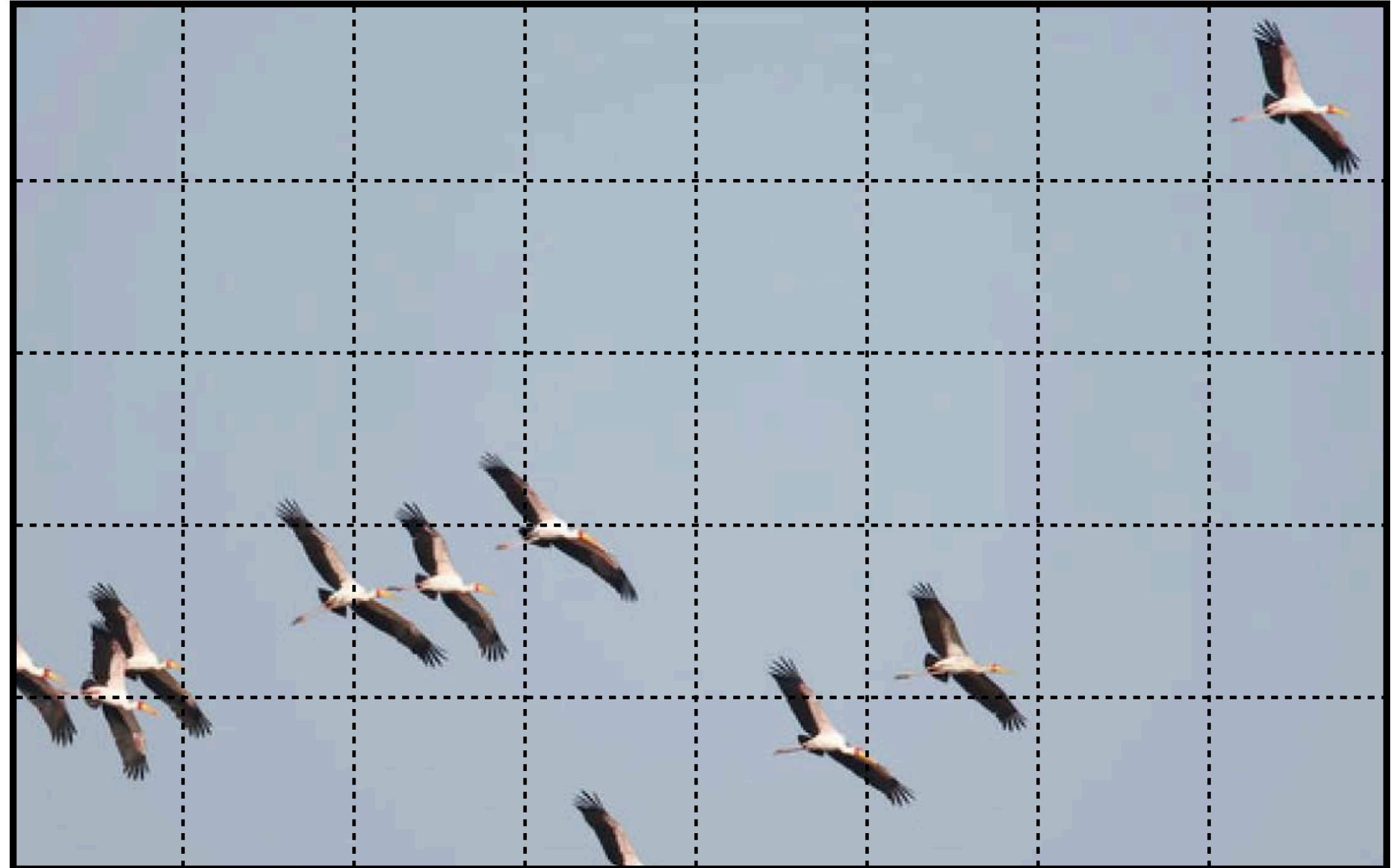


© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



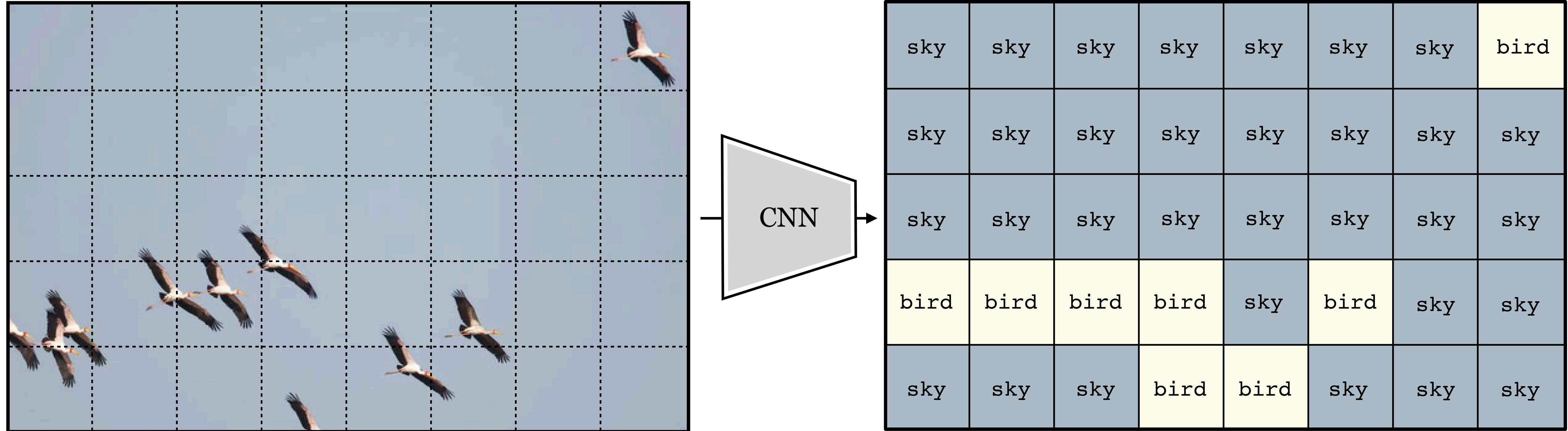
© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>





Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Bird
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Bird	Bird	Bird	Sky	Bird	Sky	Sky	Sky	Sky
Sky	Sky	Sky	Bird	Sky	Sky	Sky	Sky	Sky

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

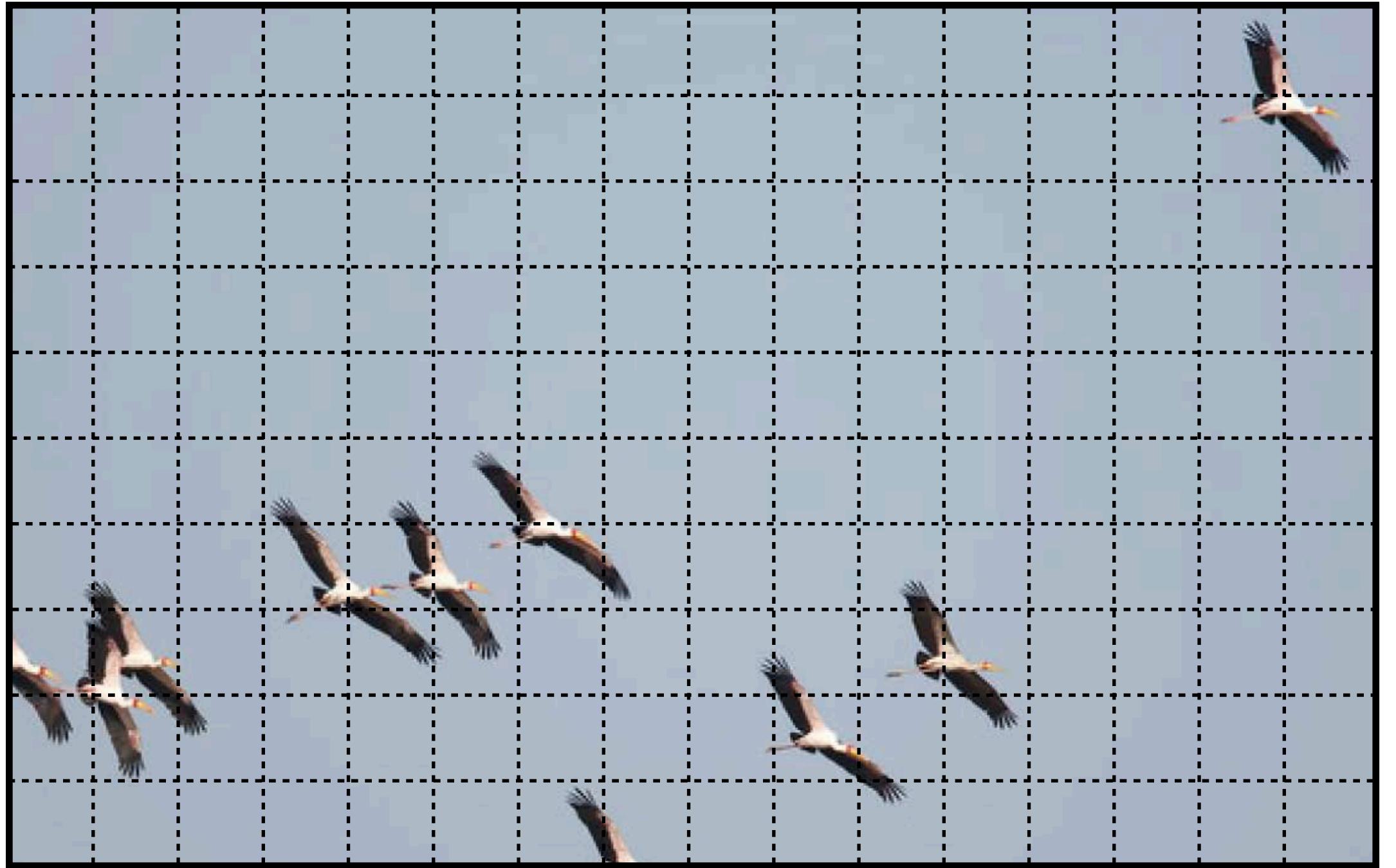


© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Problem:

What if objects don't fit neatly into these patches?

How to increase the resolution of the output map?

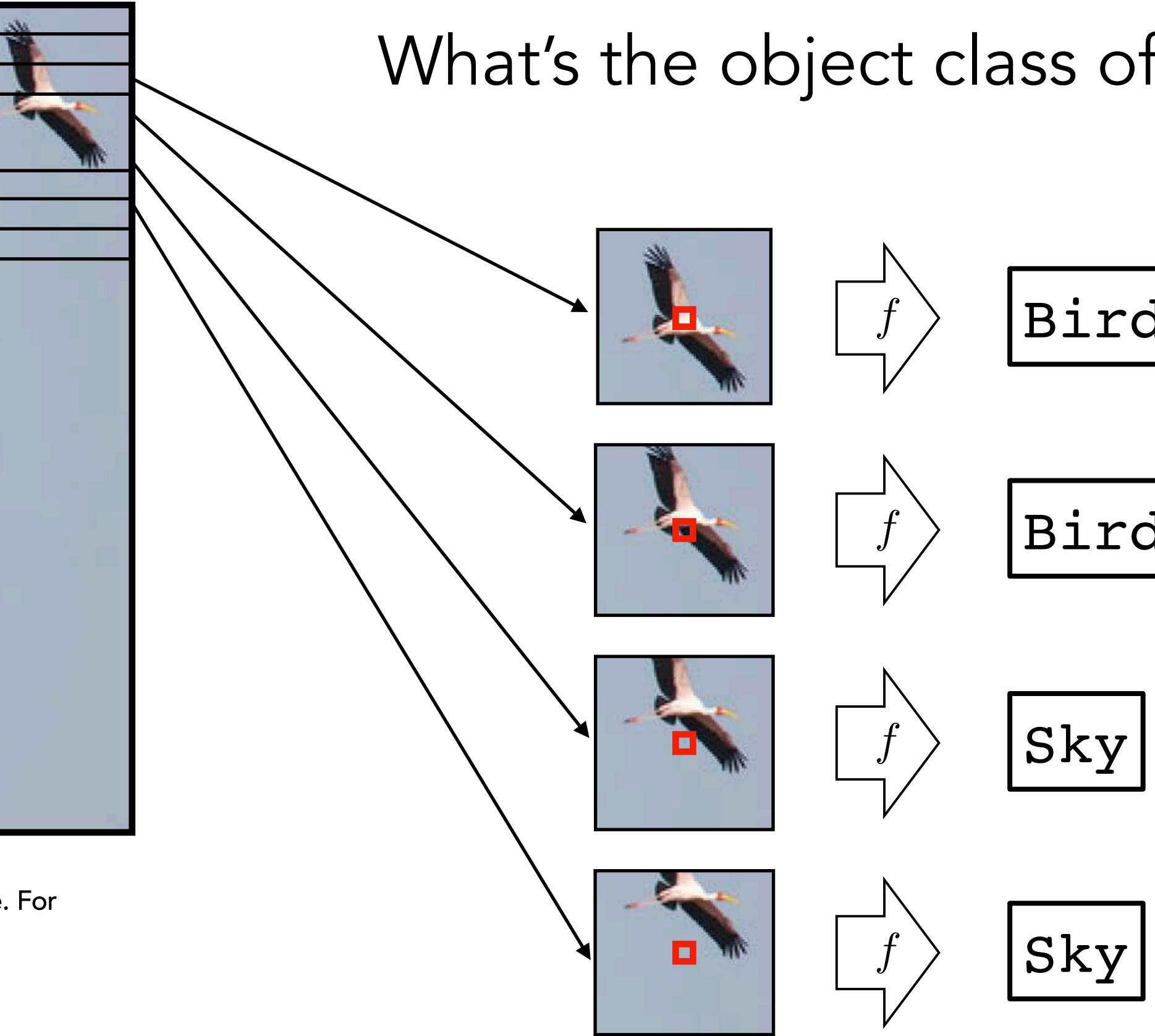


© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Smaller patches increase resolution, but not easy to recognize content in small each patch

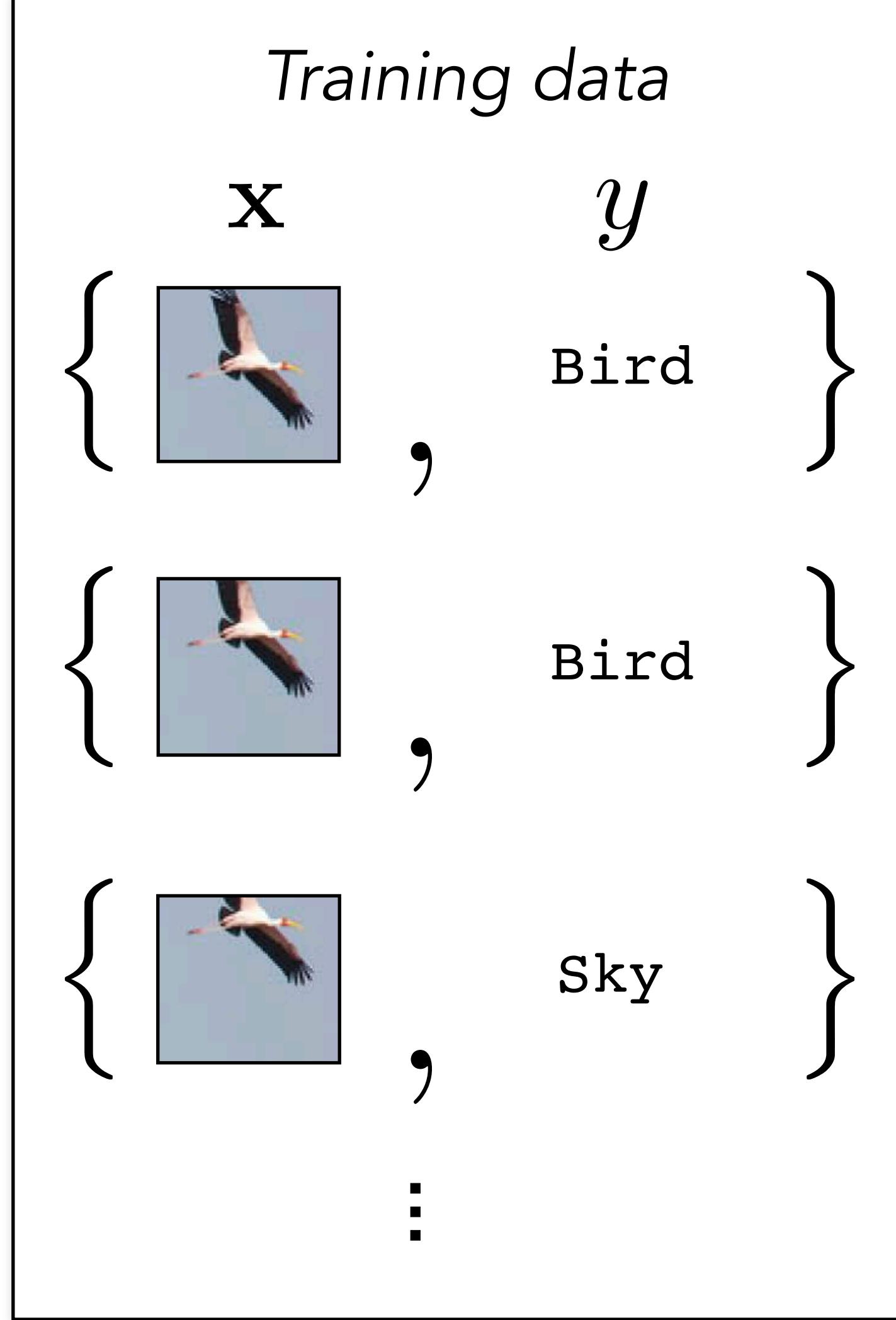
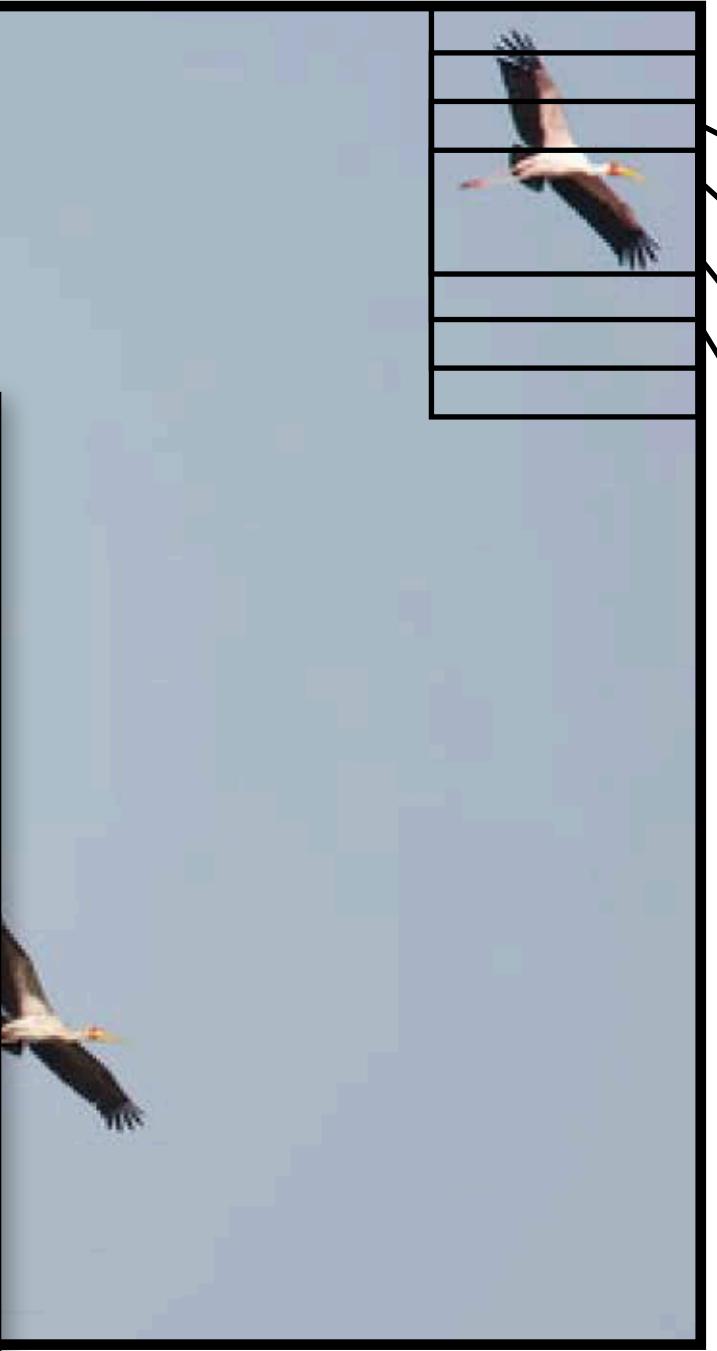
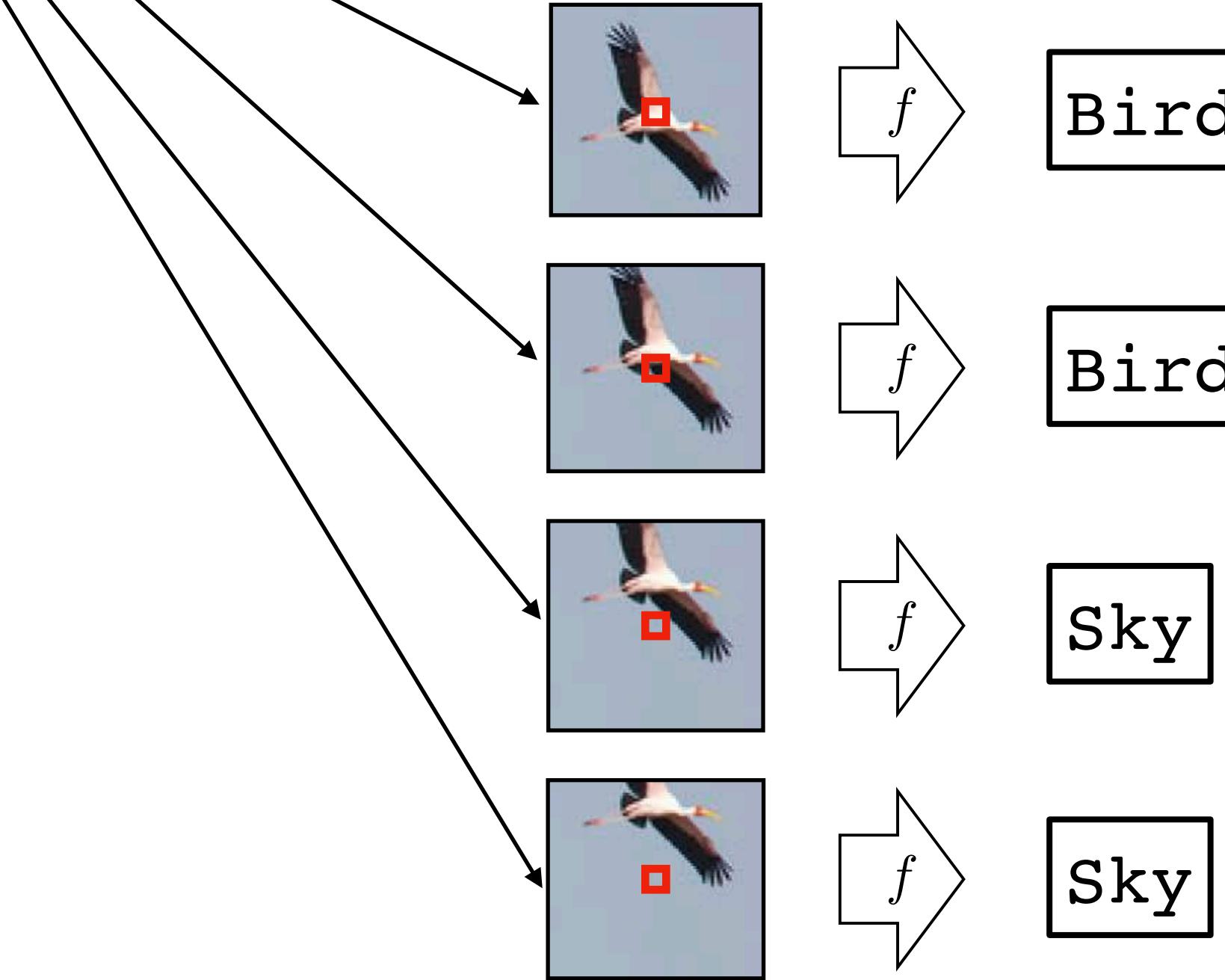
Instead: we will use large but *overlapping* patches

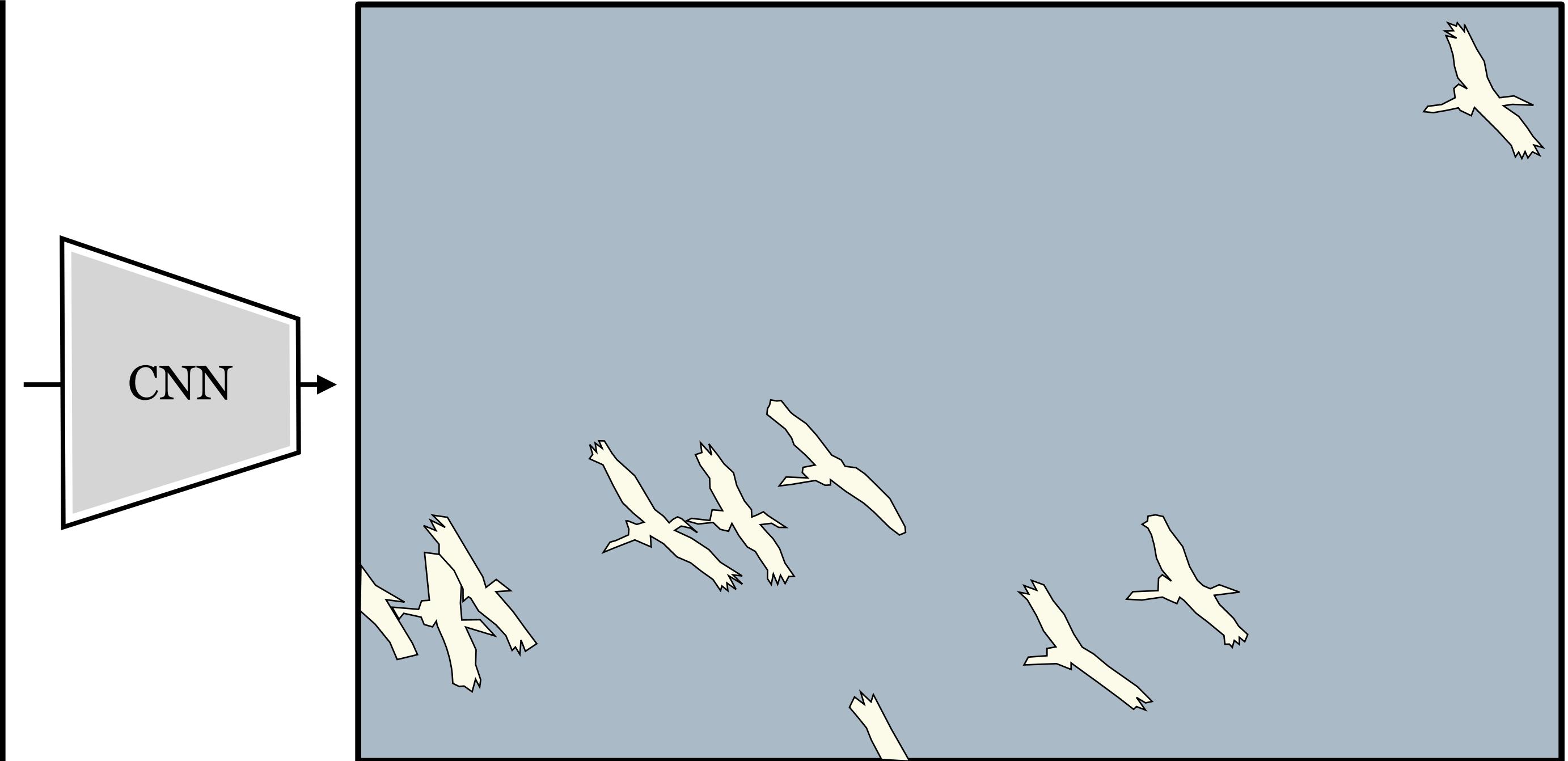
What's the object class of the center pixel?



© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What's the object class of the center pixel?



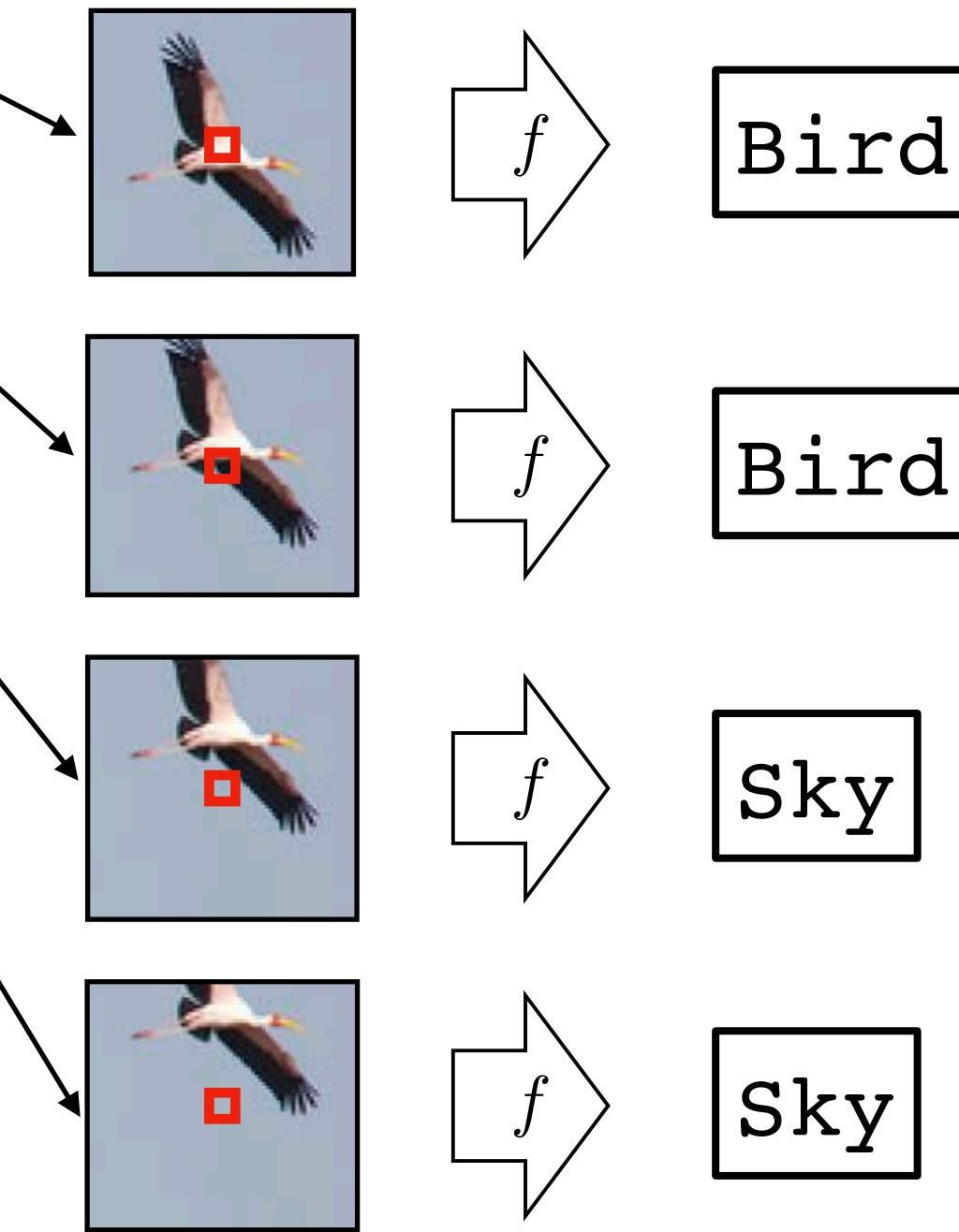


© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

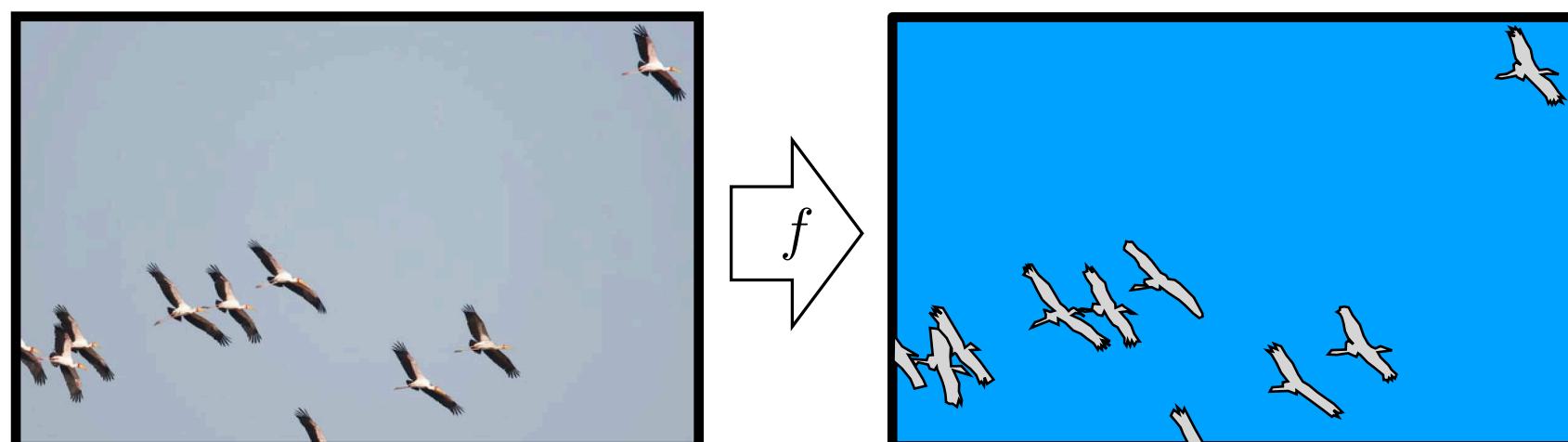
(Colors represent one-hot codes)

This problem is called **semantic segmentation**

What's the object class of the center pixel?



© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

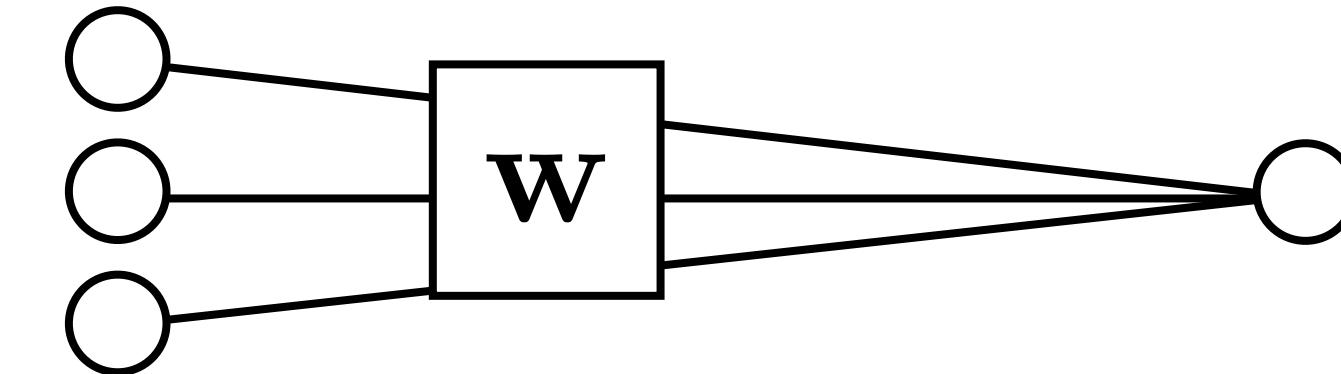


Translation invariance: process each patch in the same way.

An equivariant mapping:

$$f(\text{translate}(x)) = \text{translate}(f(x))$$

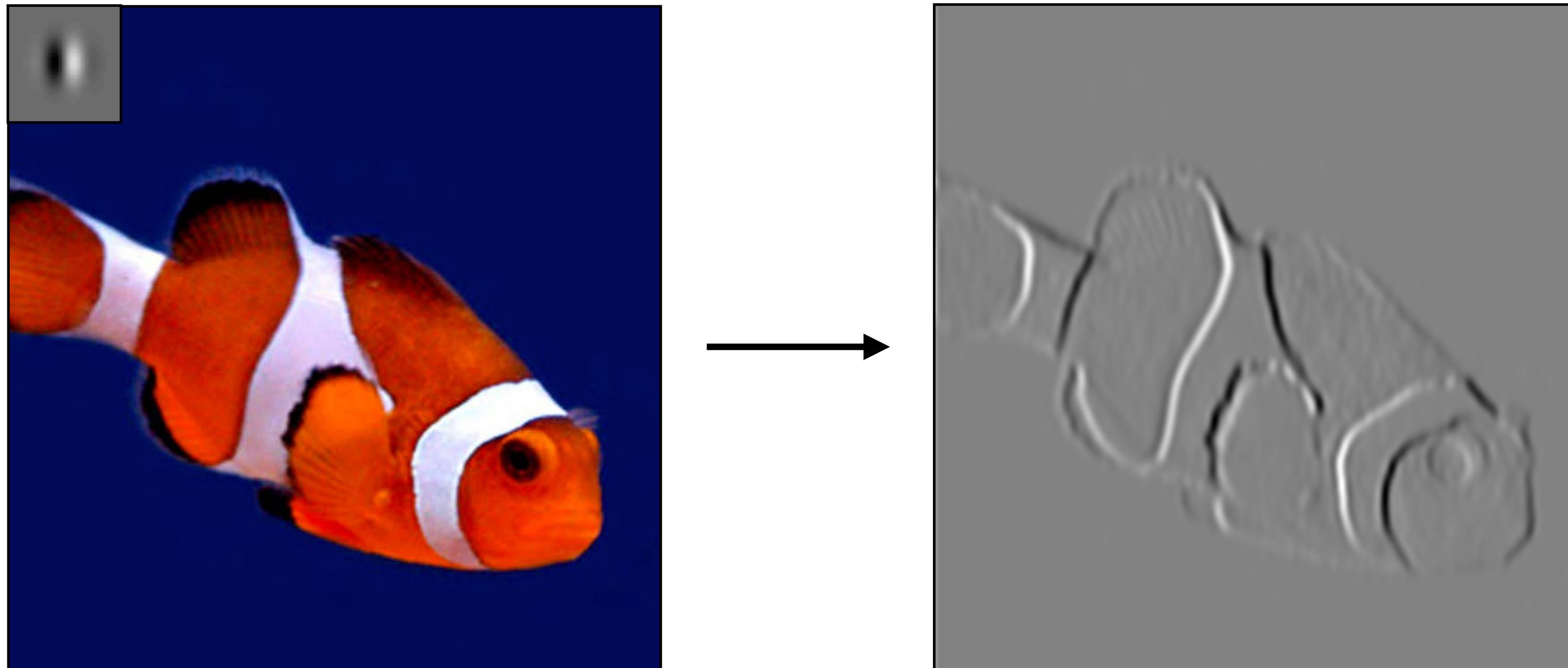
W computes a weighted sum of all pixels in the patch



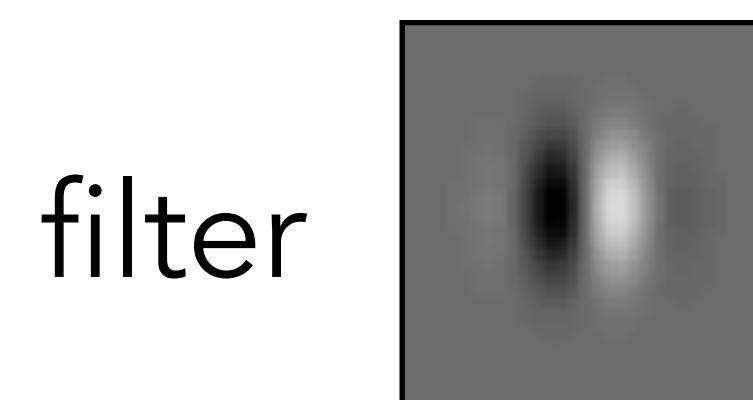
W is a **convolutional kernel** applied to the full image!

Convolution

Linear, shift-invariant transformation



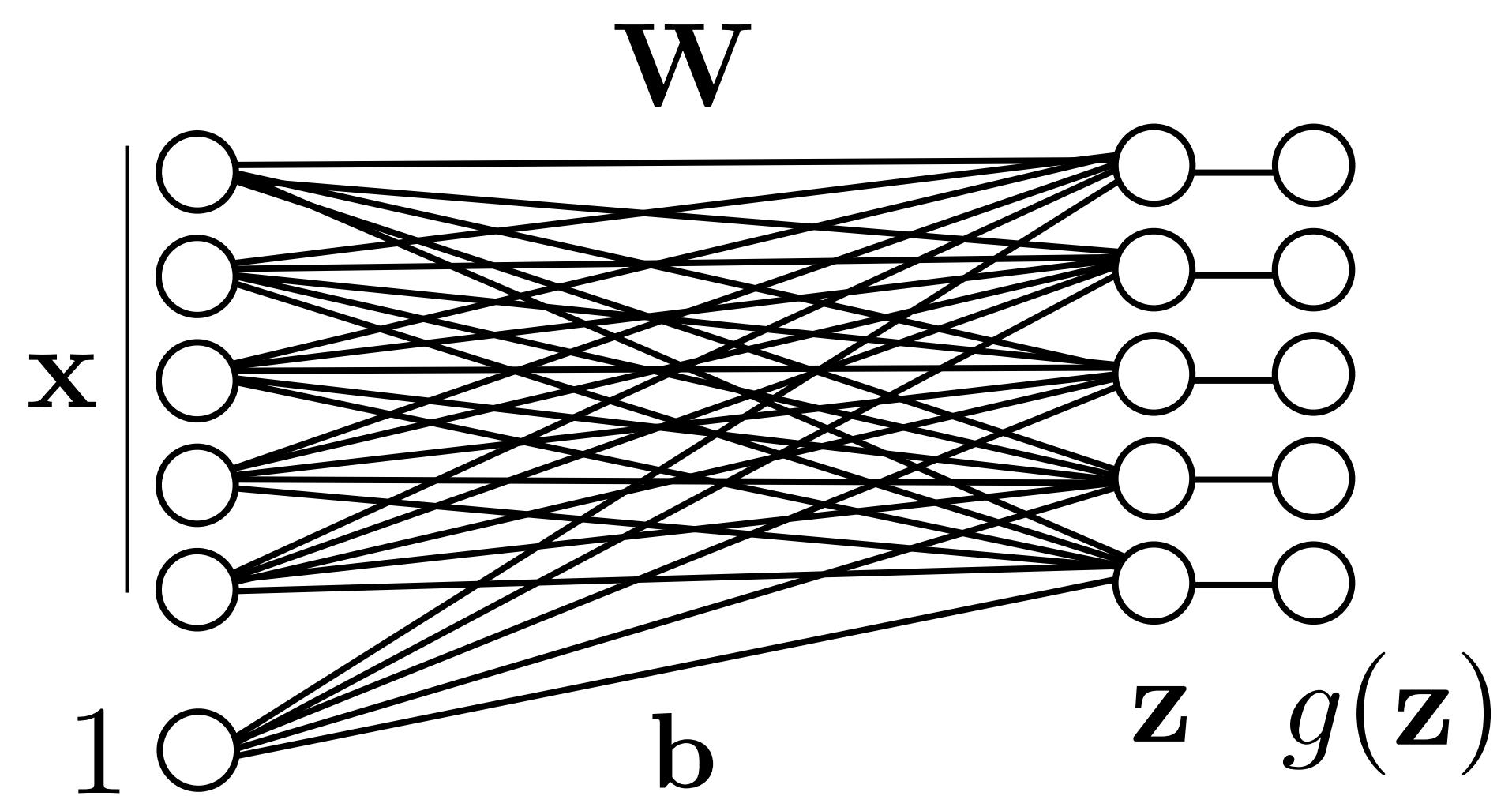
© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see
<https://ocw.mit.edu/help/faq-fair-use/>



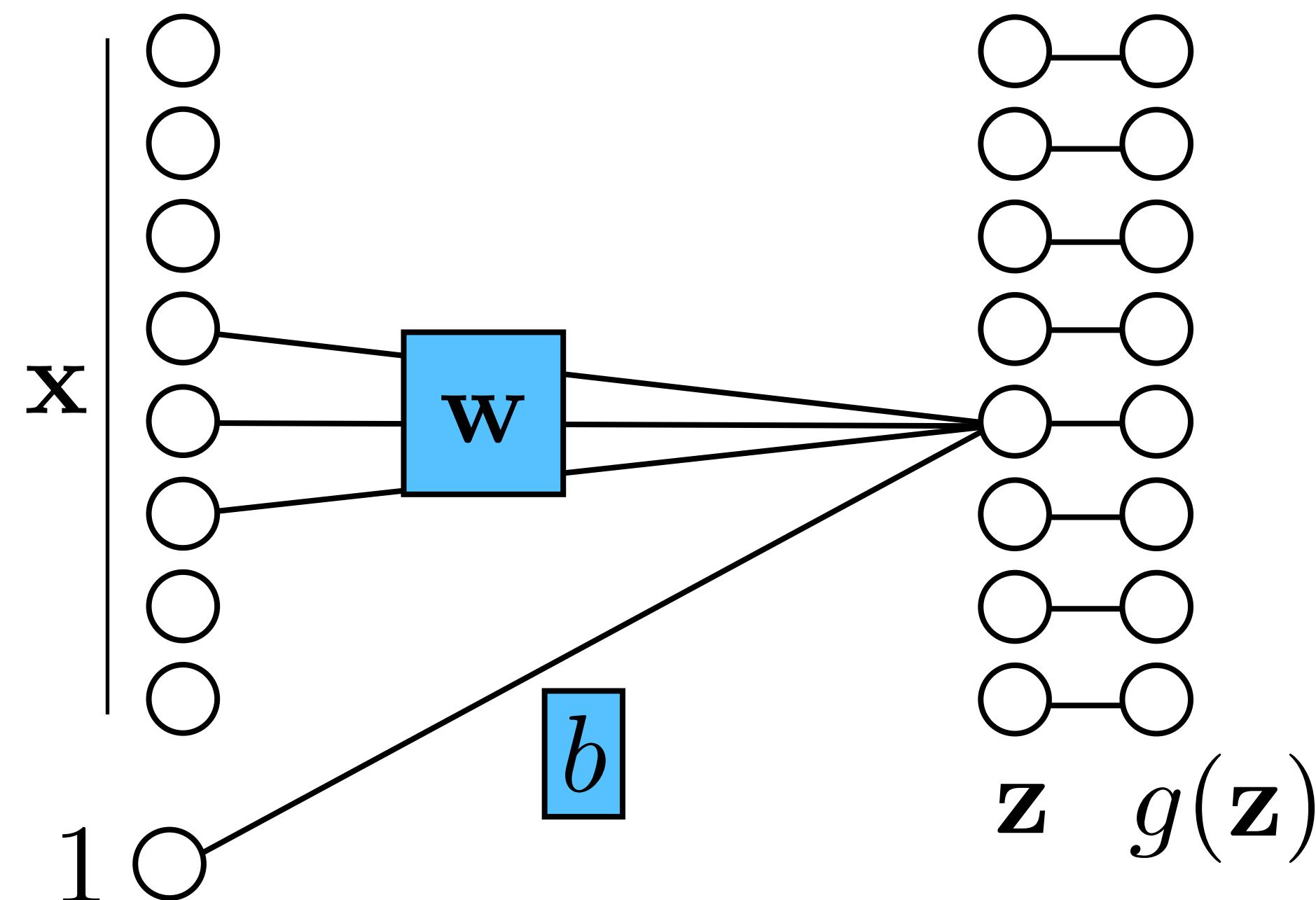
$$x_{\text{out}}[n, m] = b + \sum_{k_1, k_2 = -K}^K w[k_1, k_2] x_{\text{in}}[n + k_1, m + k_2]$$

Fully-connected network

Fully-connected (fc) layer



Locally connected network

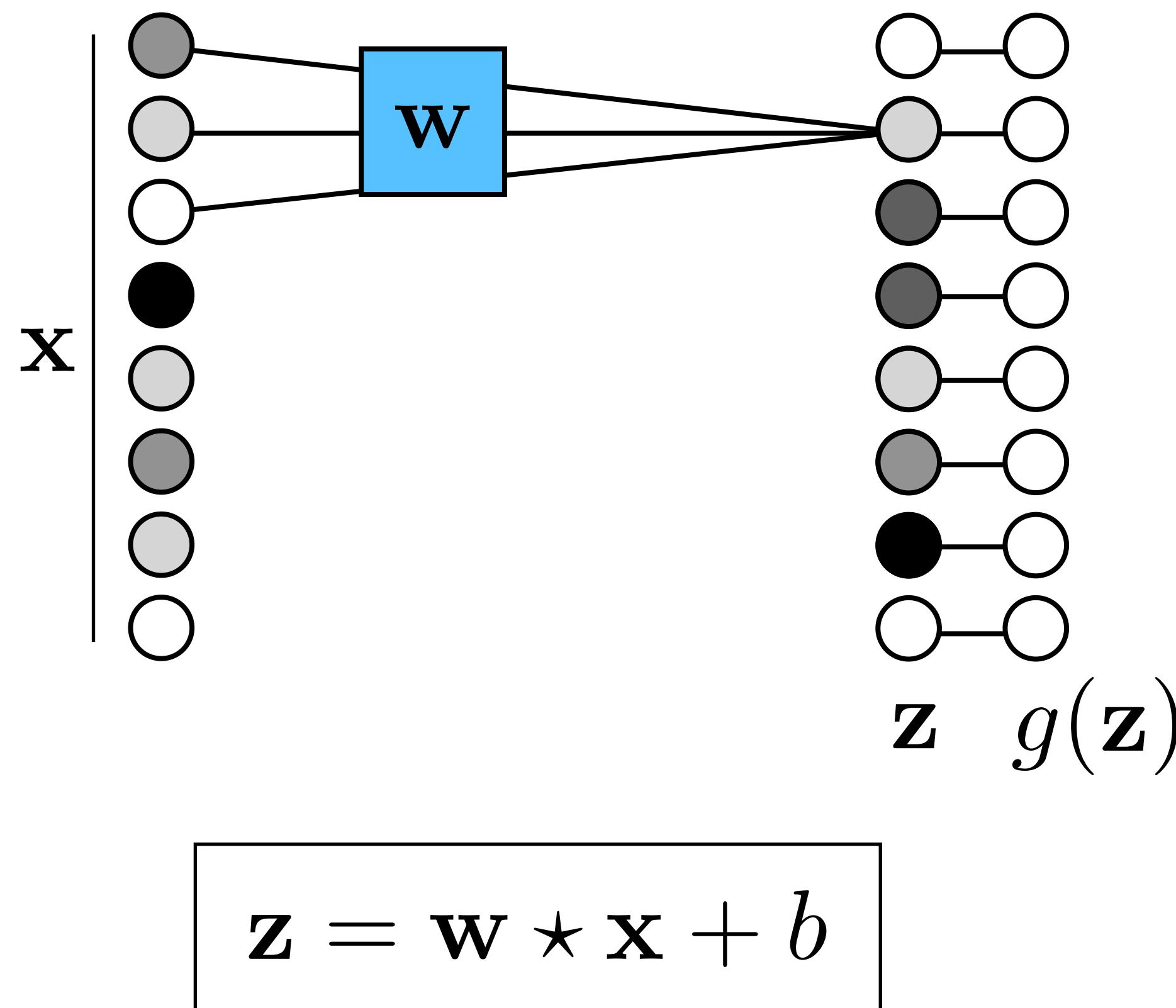


Often, we assume output is a **local** function of input.

If we use the same weights (**weight sharing**) to compute each local function, we get a convolutional neural network.

Convolutional neural network

Conv layer

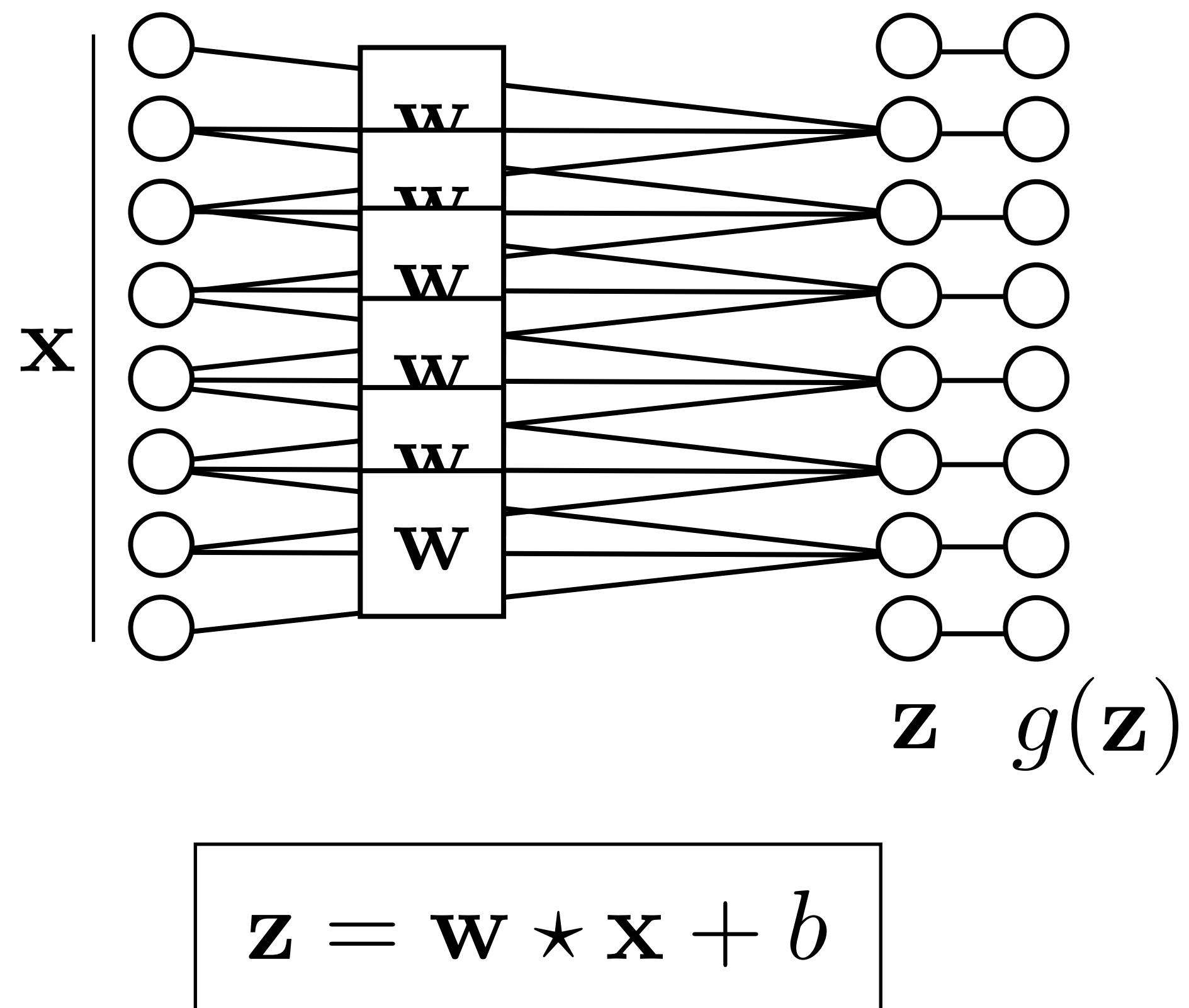


Often, we assume output is a **local** function of input.

If we use the same weights (**weight sharing**) to compute each local function, we get a convolutional neural network.

Weight sharing

Conv layer

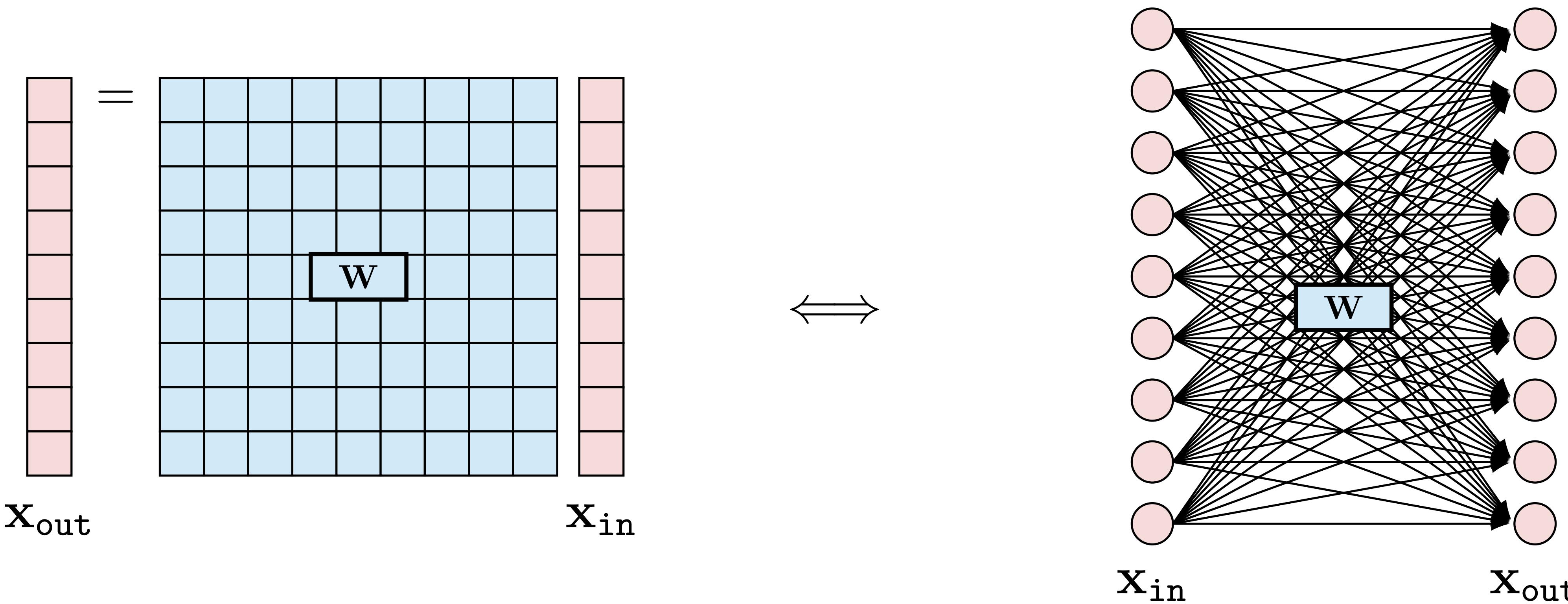


Often, we assume output is a **local** function of input.

If we use the same weights (**weight sharing**) to compute each local function, we get a convolutional neural network.

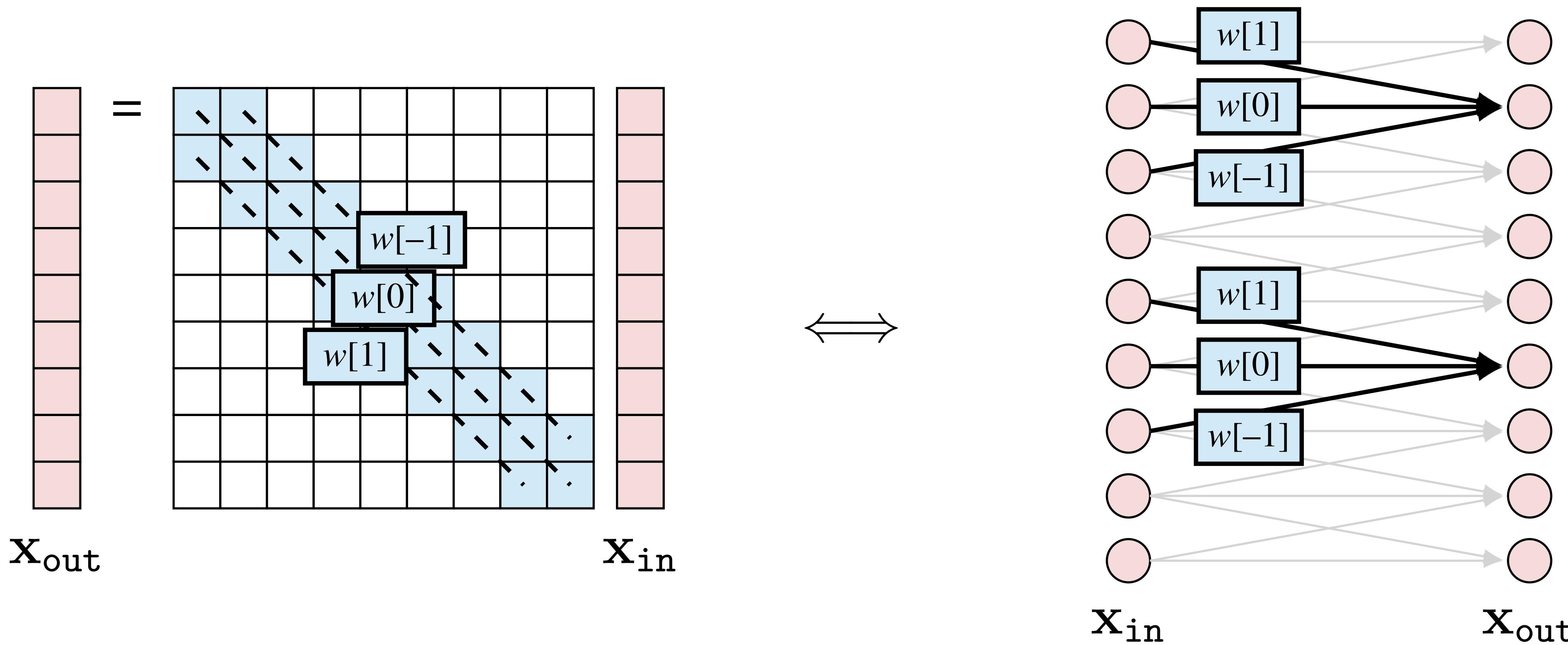
(Fully-connected) linear layer

$$\mathbf{x}_{\text{out}} = \mathbf{W}\mathbf{x}_{\text{in}} + \mathbf{b}$$



Convolutional layer

$$\mathbf{x}_{\text{out}} = \mathbf{w} \star \mathbf{x}_{\text{in}} + b$$



Toeplitz matrix

$$\begin{pmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{pmatrix}$$

$$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix} = \begin{matrix} \text{Pixel Image} \\ \text{Matrix} \end{matrix} = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

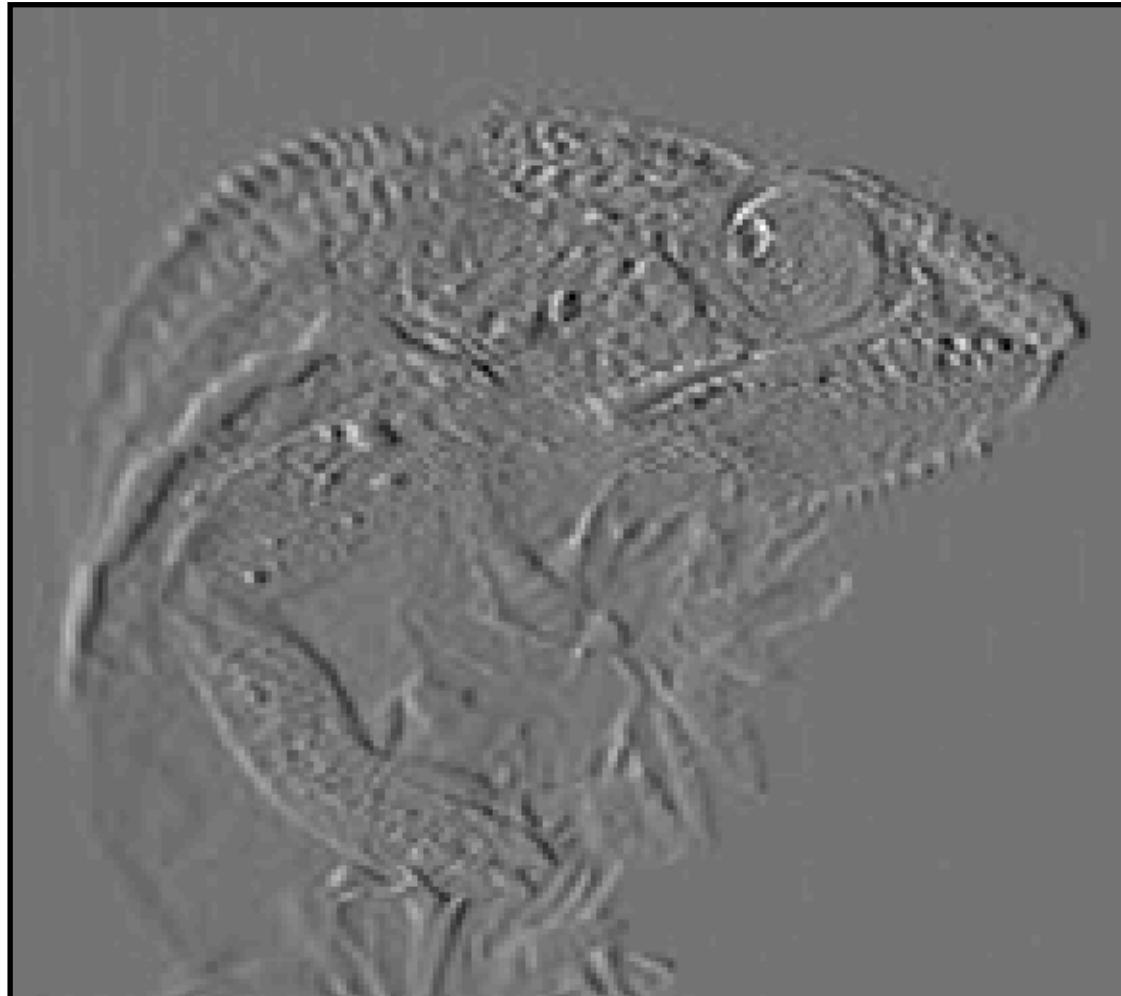
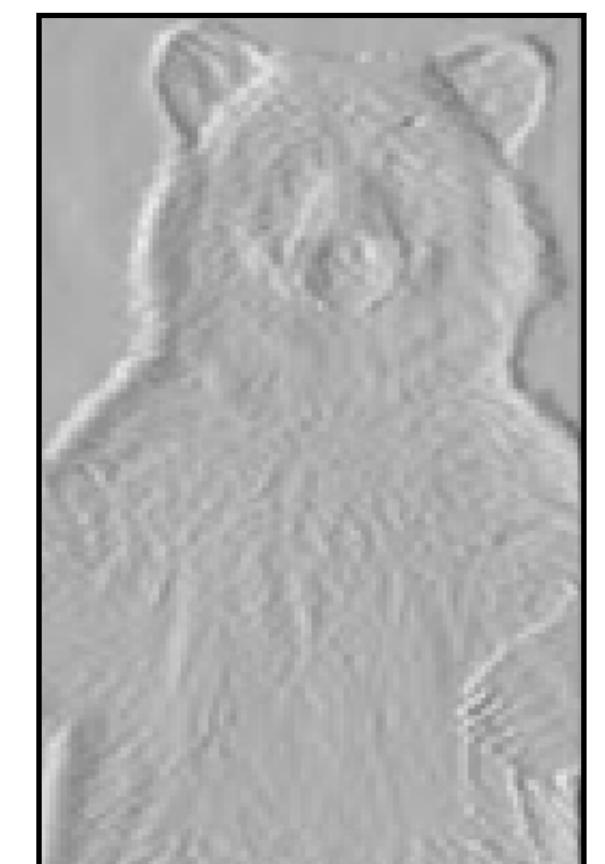
e.g., pixel image

- Constrained linear layer
- Fewer parameters —> easier to learn, less overfitting

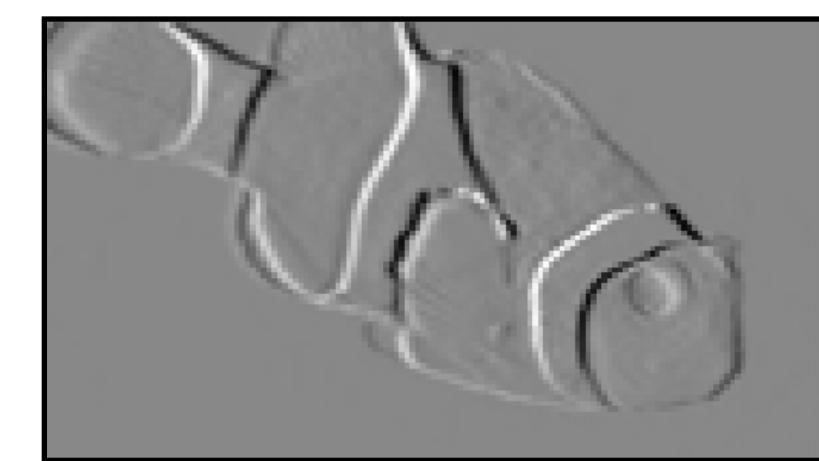
$$\boxed{y} = \boxed{x}$$

$$y = \text{conv}(x)$$

Conv layers can be applied to arbitrarily-sized inputs
(generalizes beyond the training data due to an architectural structure!)



Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



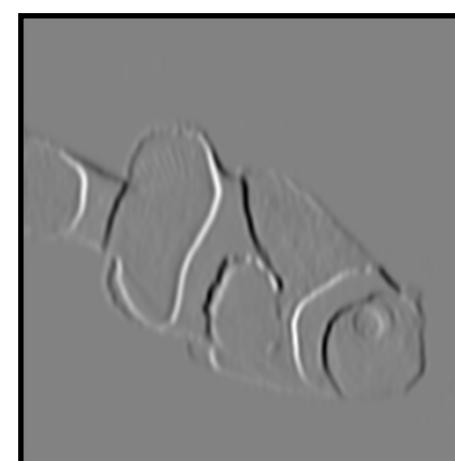
Five views on convolutional layers

1. Equivariant with translation

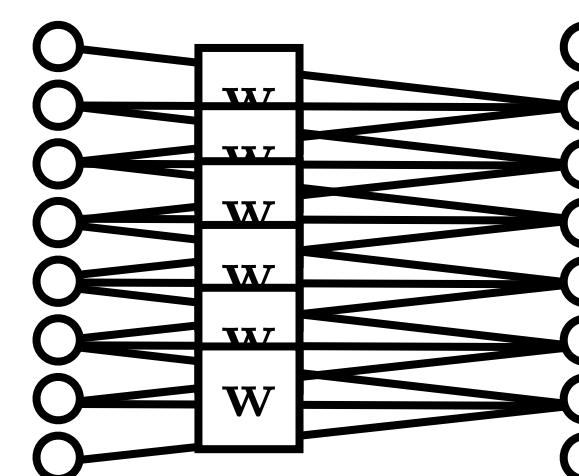
$$f(\text{translate}(x)) = \text{translate}(f(x))$$

2. Patch processing

3. Image filter

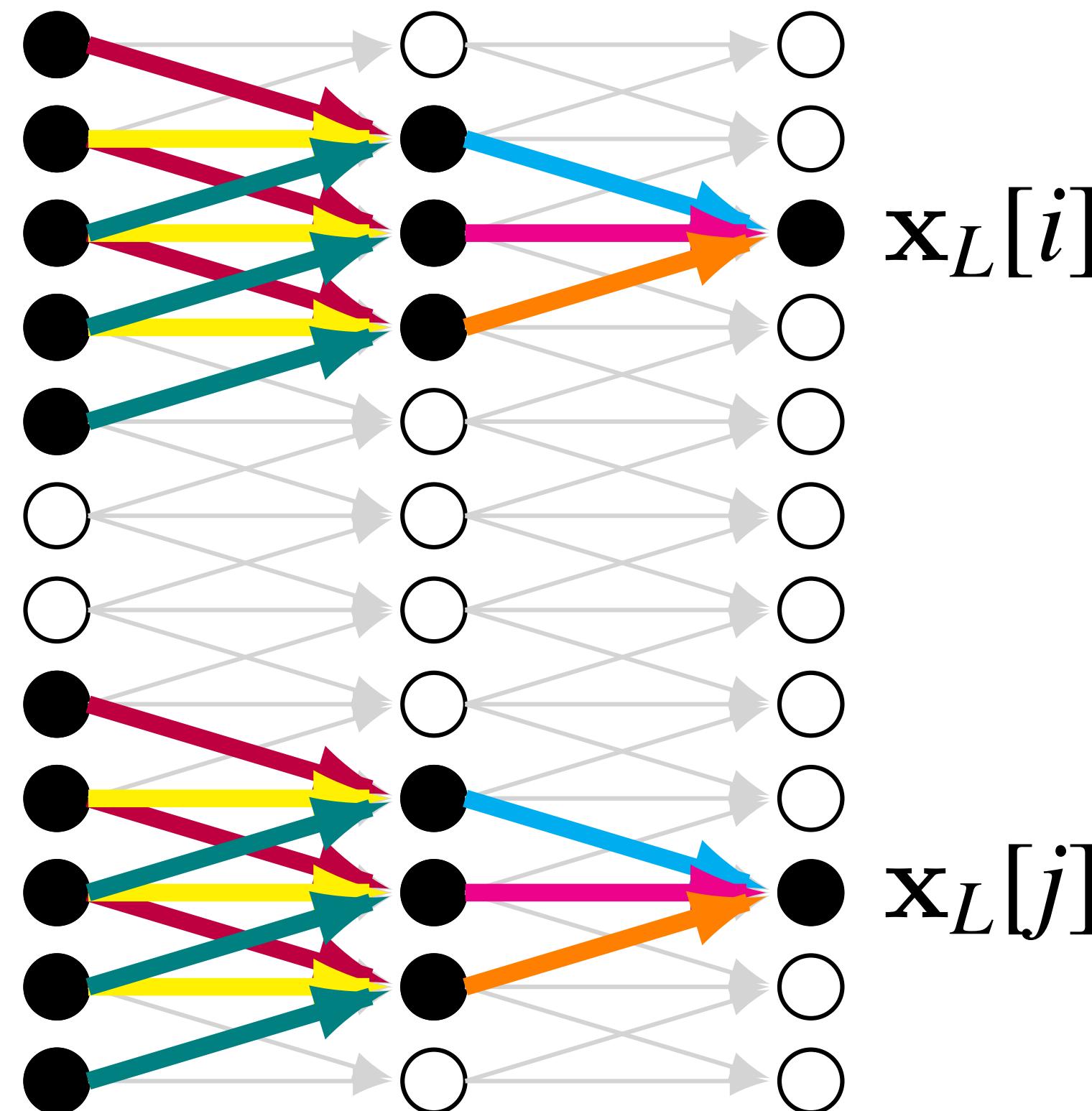
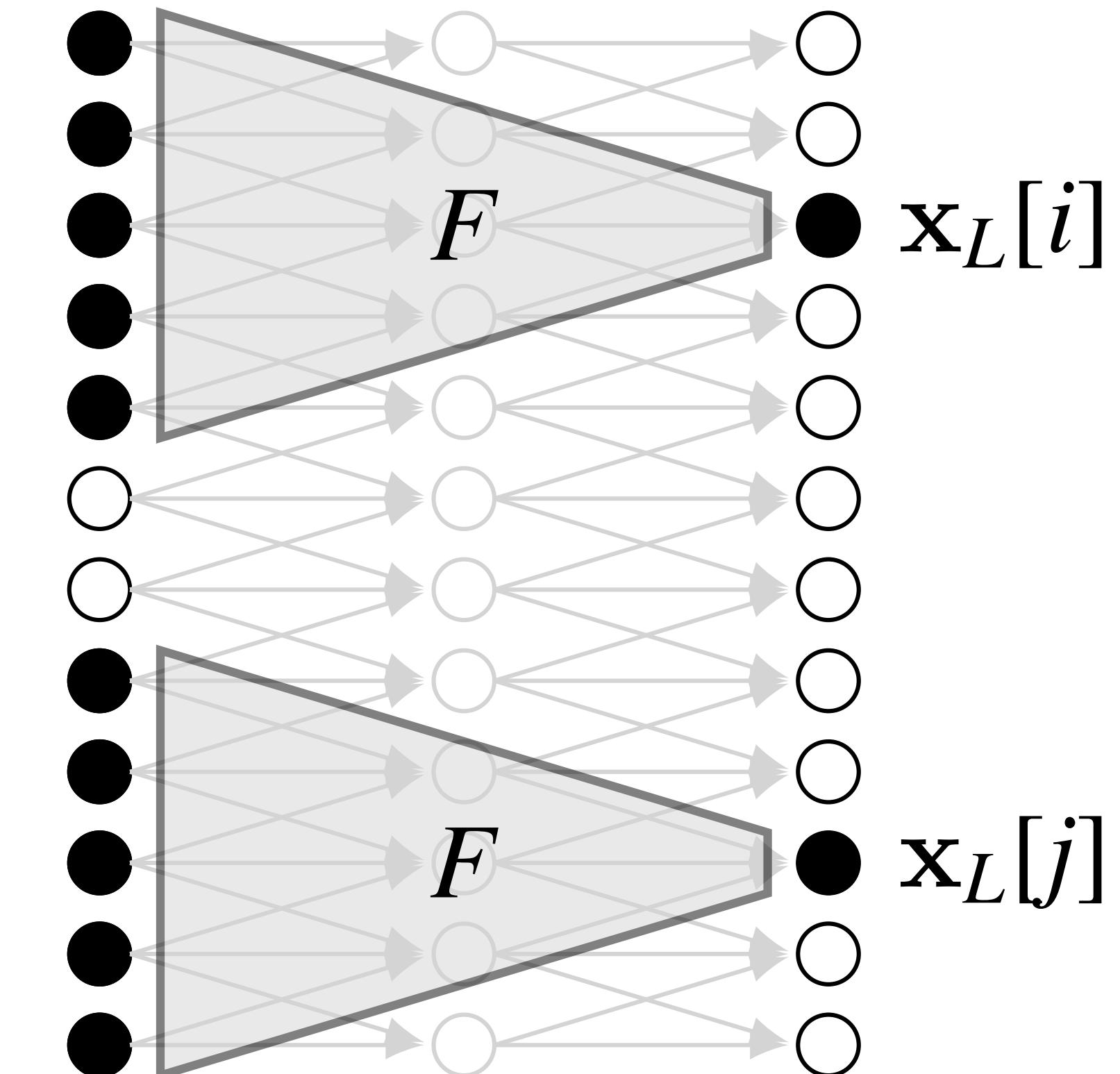


4. Parameter sharing



5. A way to process variable-sized tensors

What happens when you stack convolutional layers?



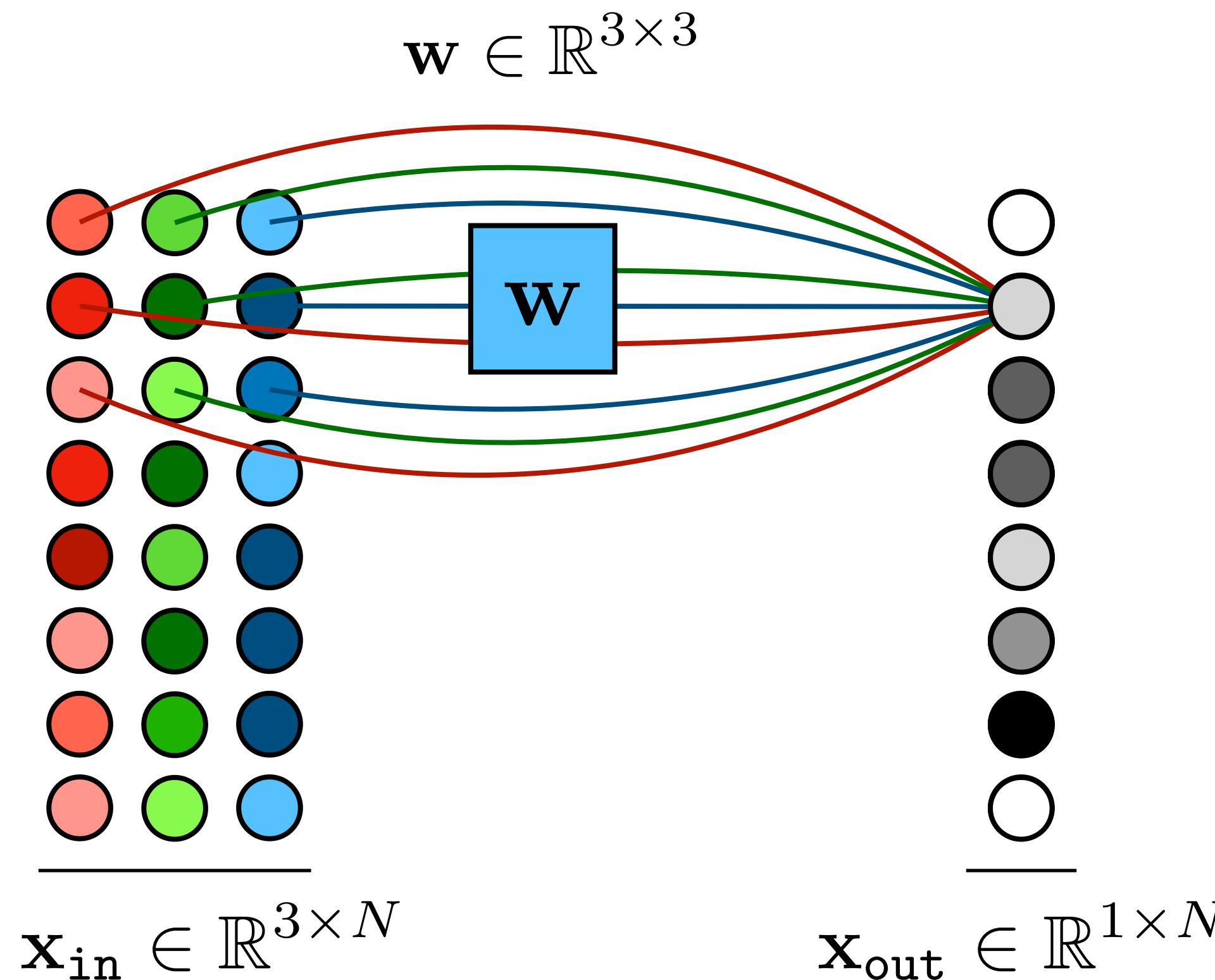
The whole CNN acts like a (nonlinear) convolutional filter!

What if we have color?

(aka multiple input channels?)

Multichannel inputs

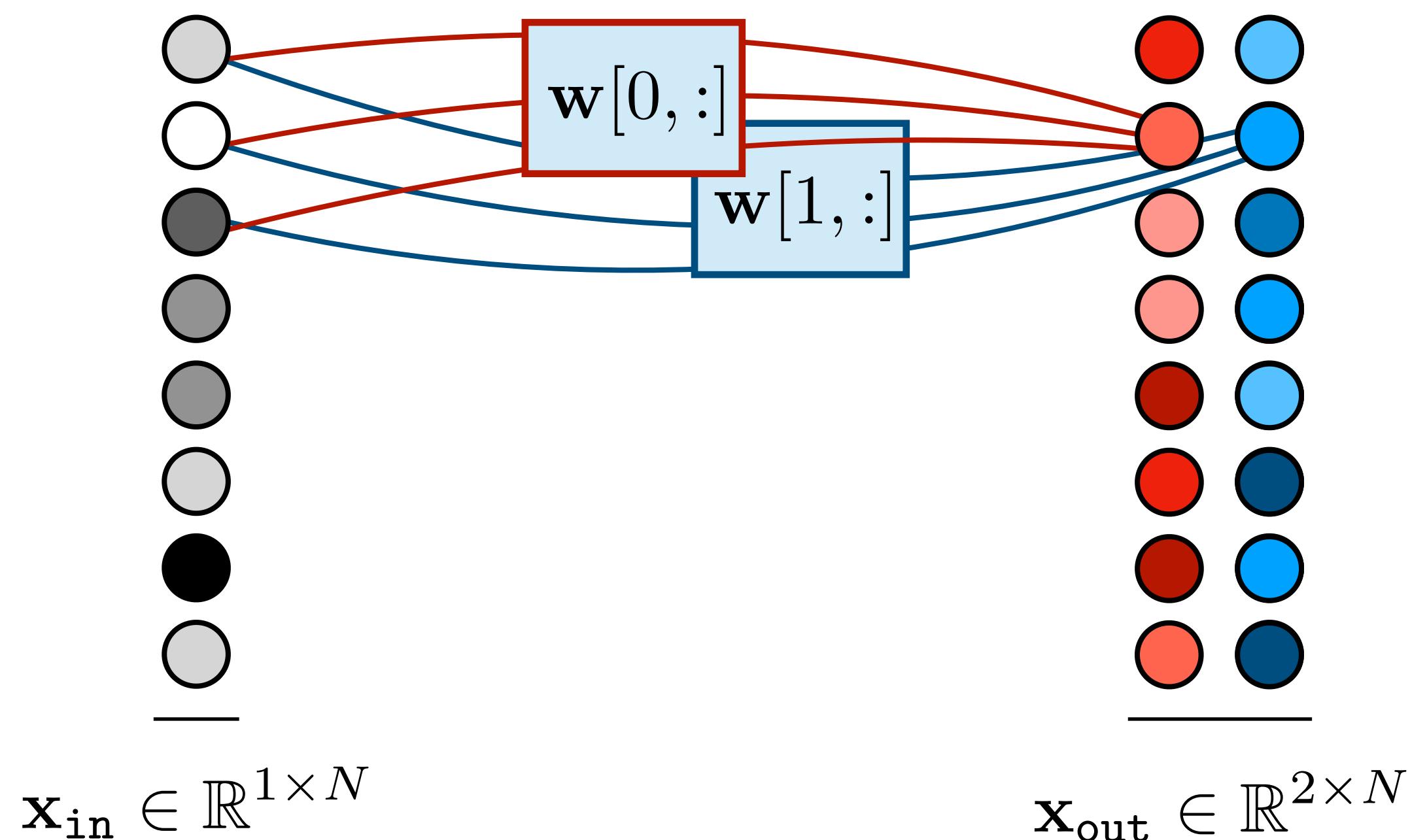
Conv layer



$$\mathbf{x}_{\text{out}} = \sum_c \mathbf{w}[c, :] \star \mathbf{x}_{\text{in}}[c, :] + b[c]$$

Multichannel outputs

Conv layer



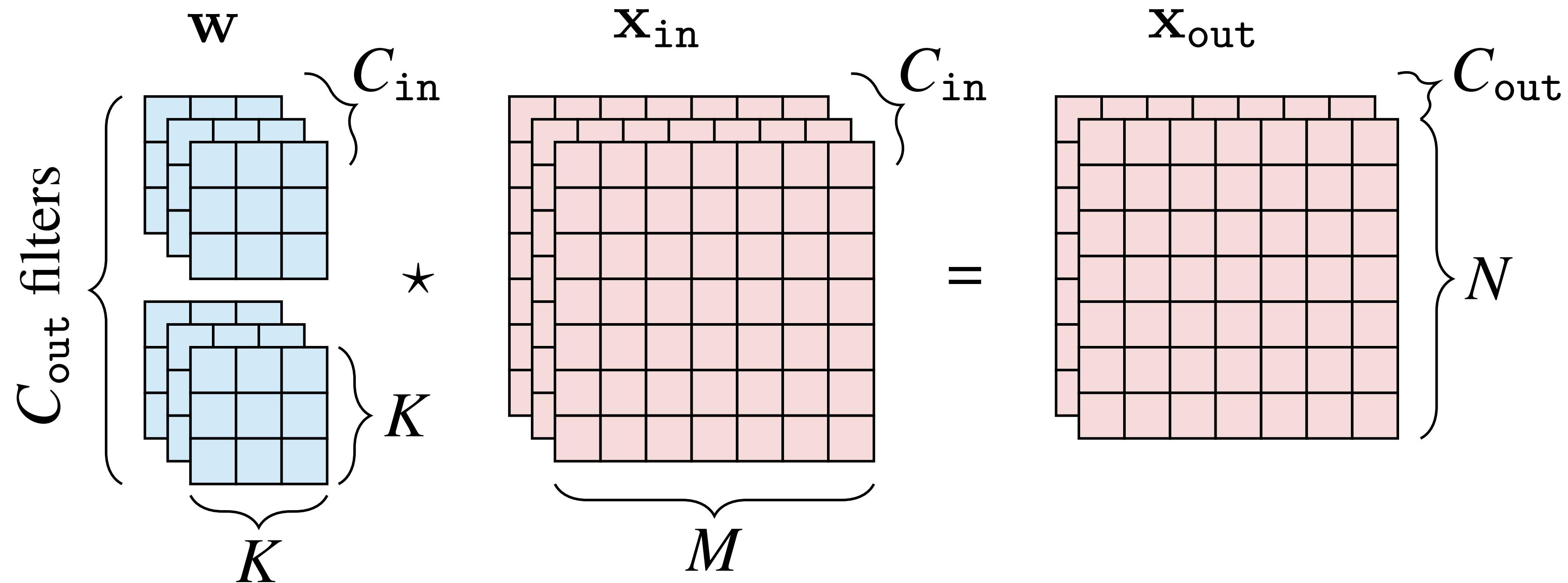
Filter bank of C filters

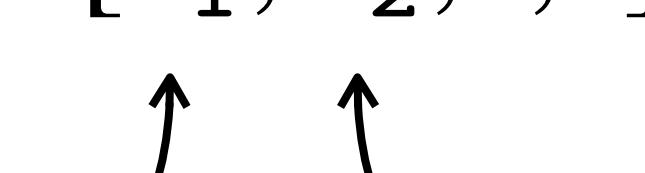
$$\mathbf{x}_{\text{out}}[0, :] = \mathbf{w}[0, :] \star \mathbf{x}_{\text{in}} + b[0]$$

⋮

$$\mathbf{x}_{\text{out}}[C, :] = \mathbf{w}[C - 1, :] \star \mathbf{x}_{\text{in}} + b[C - 1]$$

General Convolutional Layer Form: Multi-Input, Multi-Output

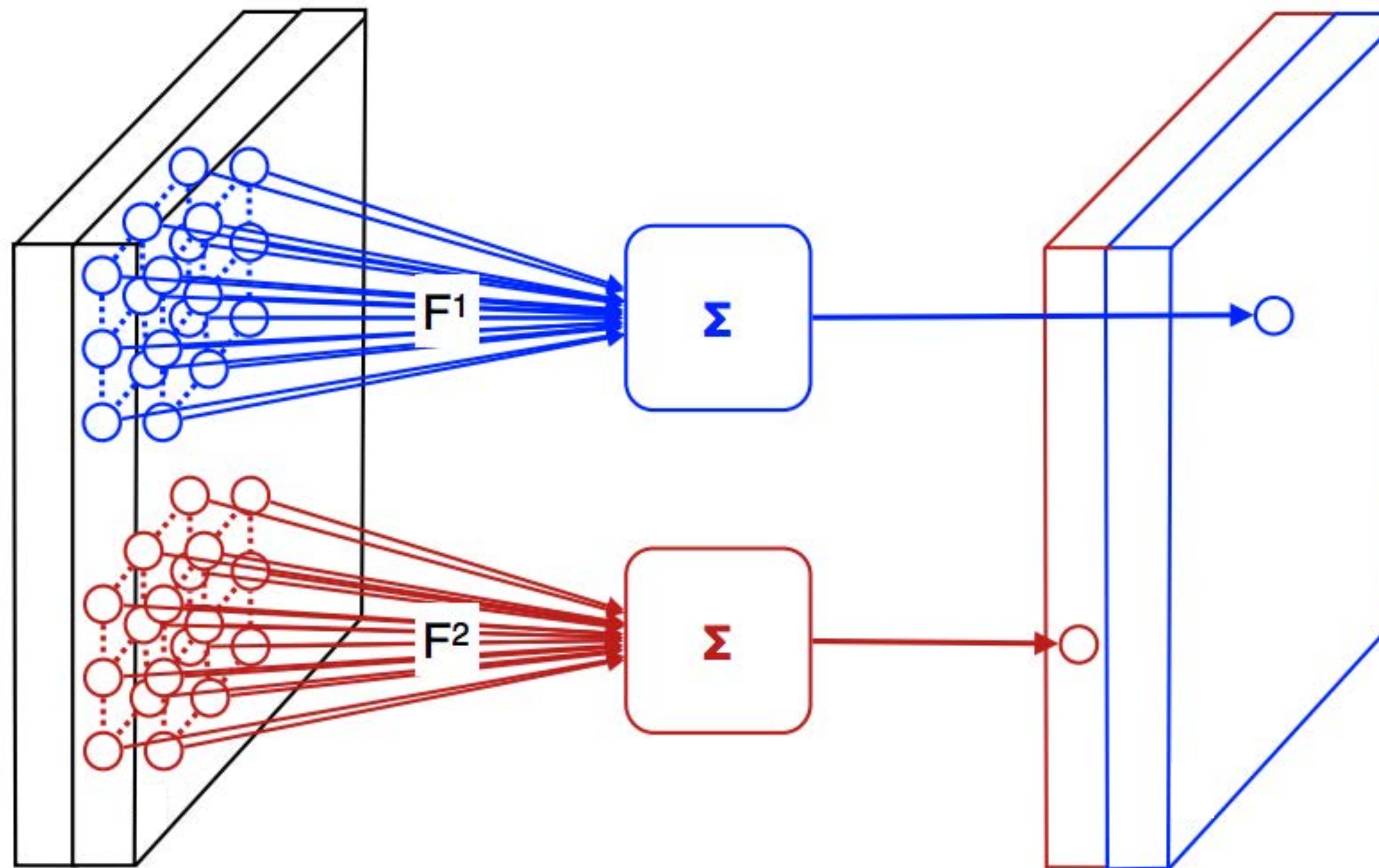


$$\mathbf{x}_{\text{out}}[c_2, :, :] = \sum_{c_1=1}^{C_{\text{in}}} \mathbf{w}[c_1, c_2, :, :] \star \mathbf{x}_{\text{in}}[c_1, :, :] + b[c_2]$$


Input features

A bank of 2 filters

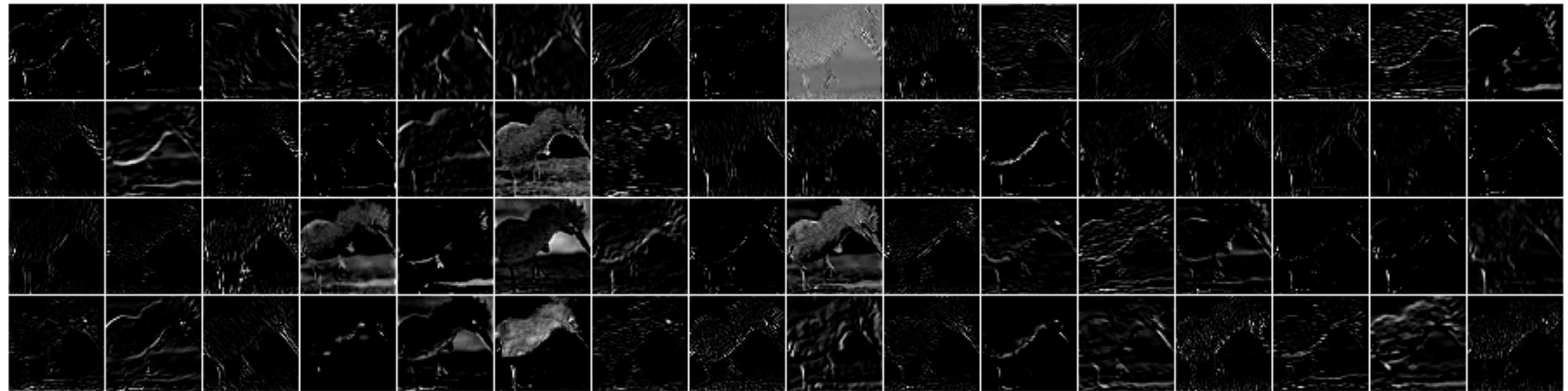
2-dimensional output
feature maps



$$\mathbf{x}_{\text{in}} \in \mathbb{R}^{C_{\text{in}} \times H \times W} \rightarrow \mathbf{x}_{\text{out}} \in \mathbb{R}^{C_{\text{out}} \times H \times W}$$

Feature maps

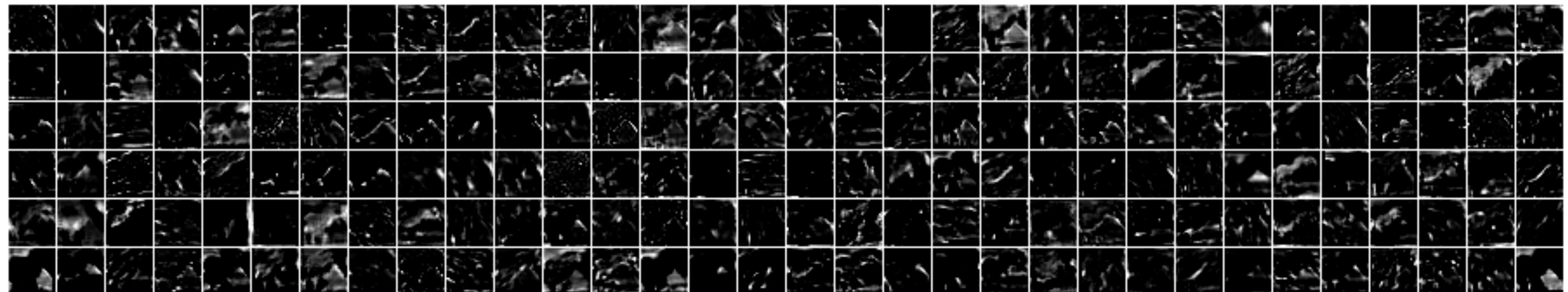
conv1 (after first conv layer)



Input

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

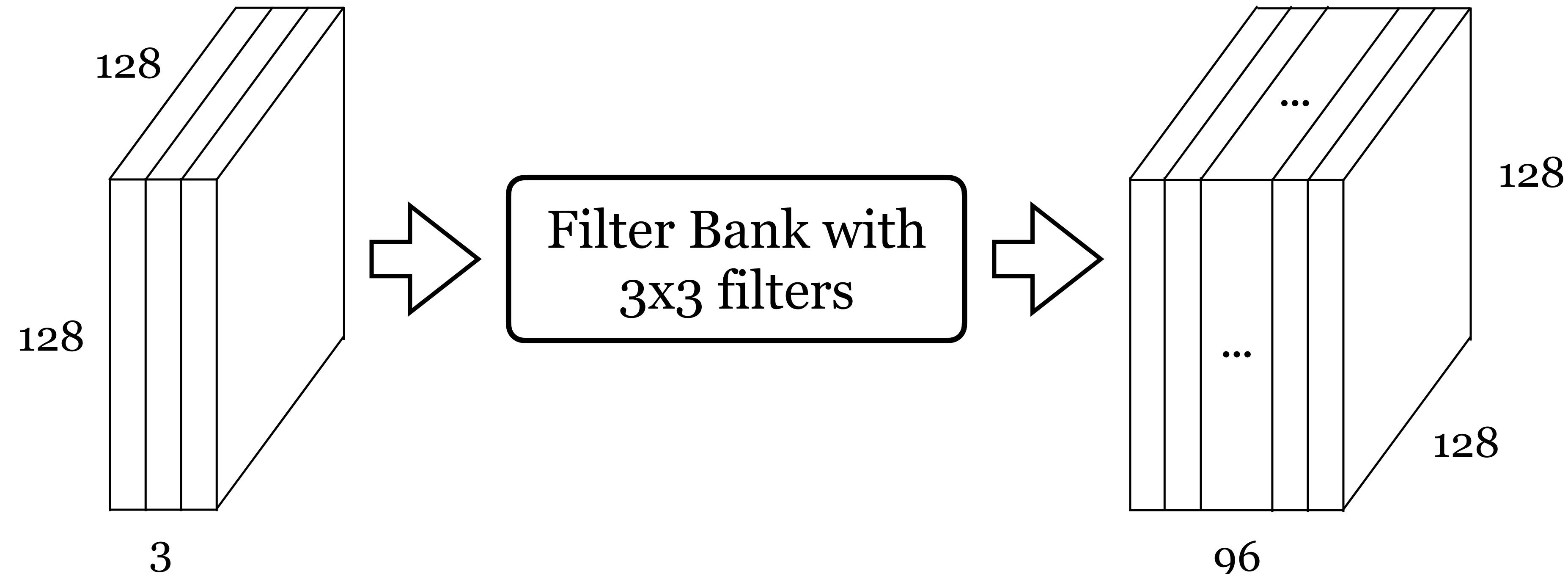
conv2 (after second conv layer)



- Each layer can be thought of as a set of **C feature maps aka channels**
- Each feature map is an $N \times M$ image

Multiple channels: Example

$$\mathbf{x}_{\text{in}} \in \mathbb{R}^{3 \times 128 \times 128}$$

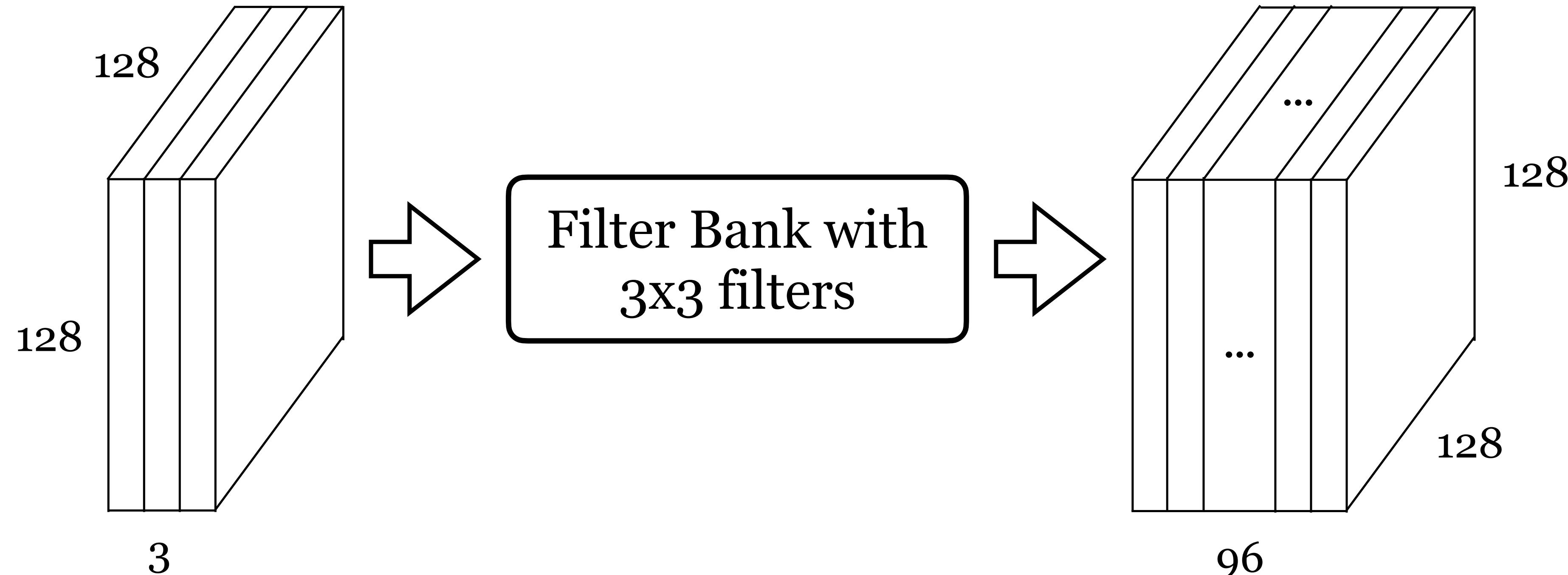


How many parameters does each *filter* have?

- (a) 9
- (b) 27
- (c) 96
- (d) 864

Multiple channels: Example

$$\mathbf{x}_{\text{in}} \in \mathbb{R}^{3 \times 128 \times 128}$$



How many filters are in the bank?

- (a) 3
- (b) 27
- (c) 96
- (d) can't say

Filter sizes

When mapping from

$$\mathbf{x}_l \in \mathbb{R}^{C_l \times N \times M} \rightarrow \mathbf{x}_{(l+1)} \in \mathbb{R}^{C_{(l+1)} \times N \times M}$$

using an filter of spatial extent $K_1 \times K_2$

Number of parameters per filter: $K_1 \times K_2 \times C_l$

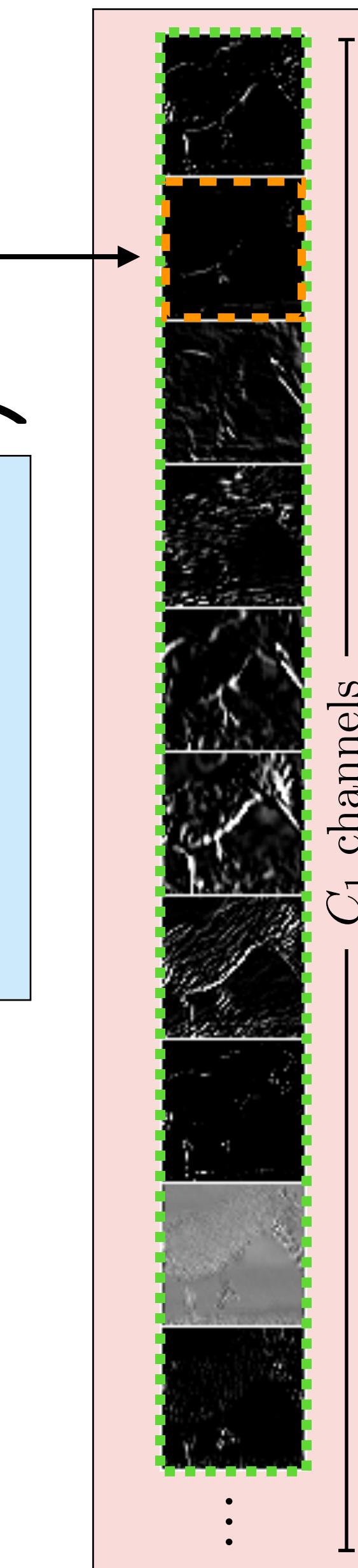
Number of filters: $C_{(l+1)}$

Input image (RGB)

$[H \times W \times 3]$

Layer 1 feature maps

$[H/4 \times W/4 \times C_1]$

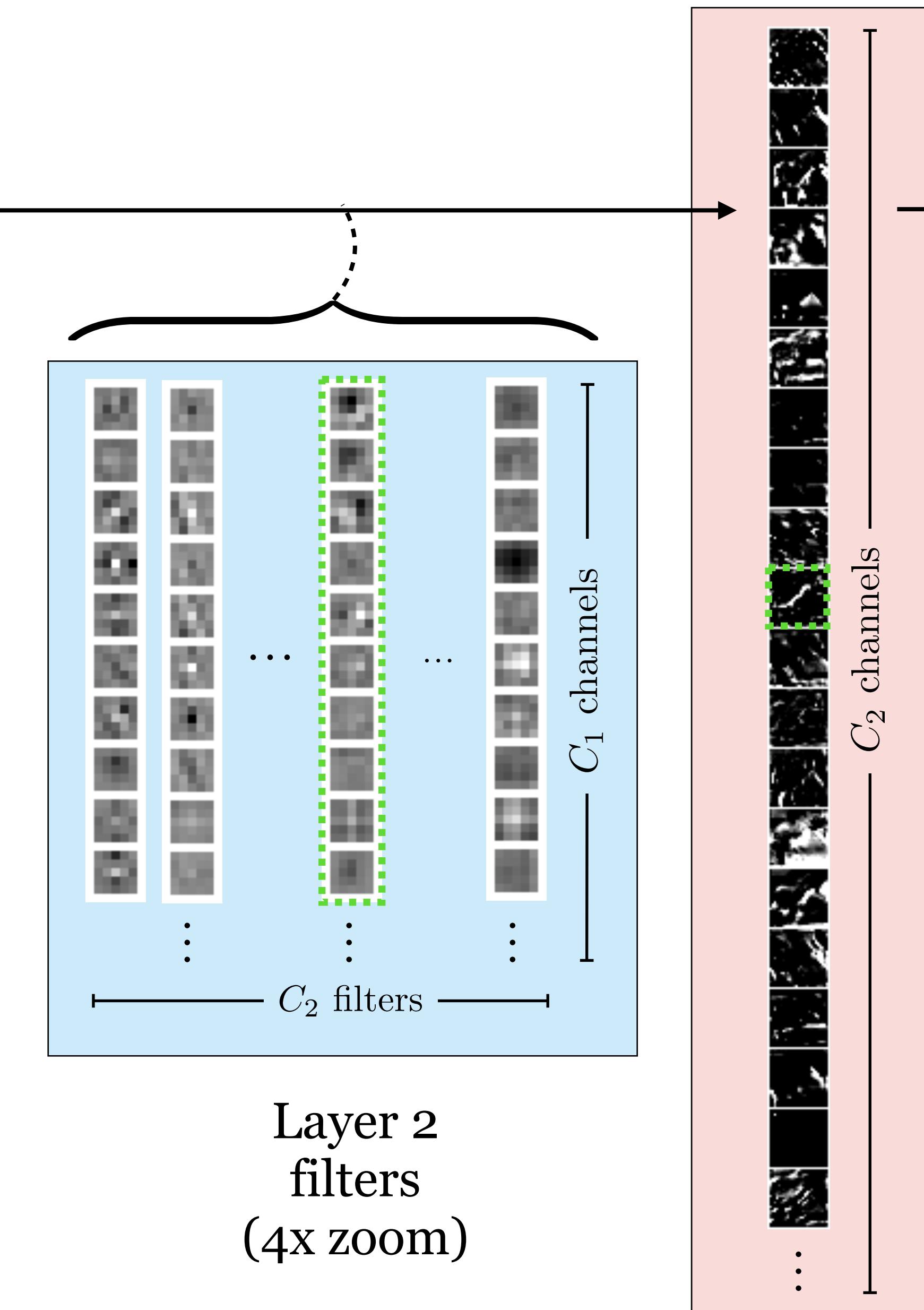


Layer 1
filters
(4x zoom)

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

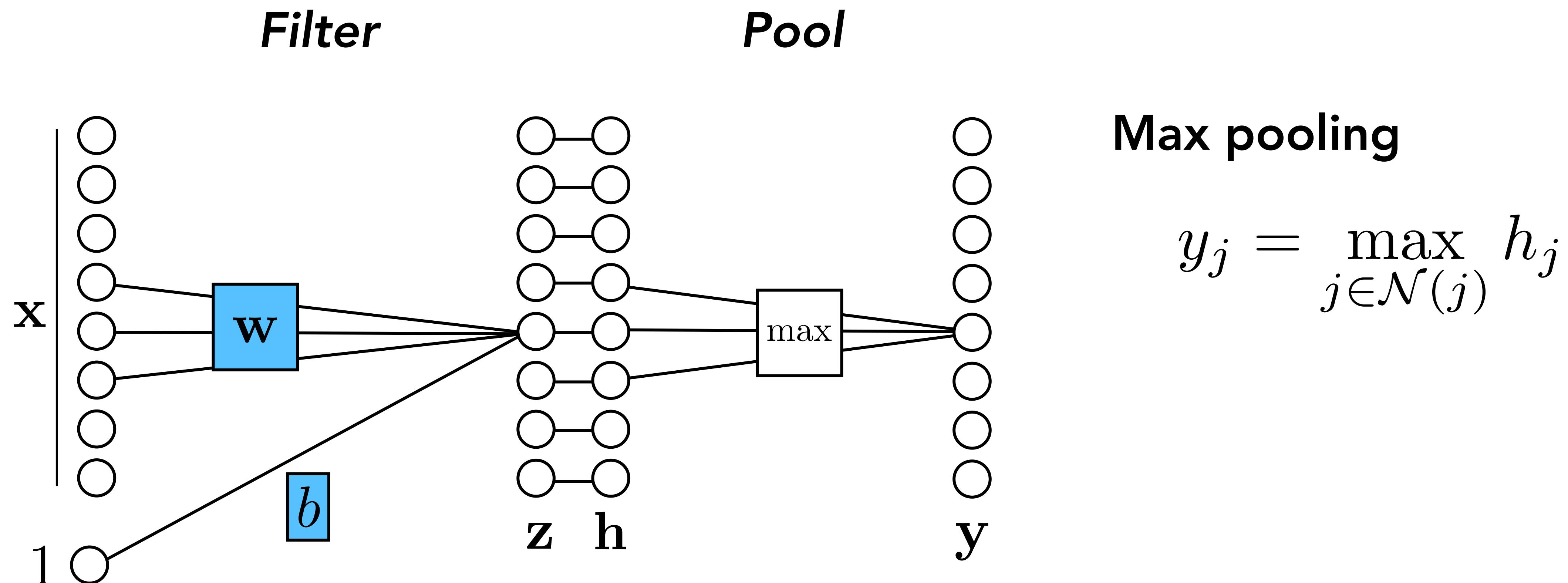
Layer 2 feature maps

$[H/8 \times W/8 \times C_2]$

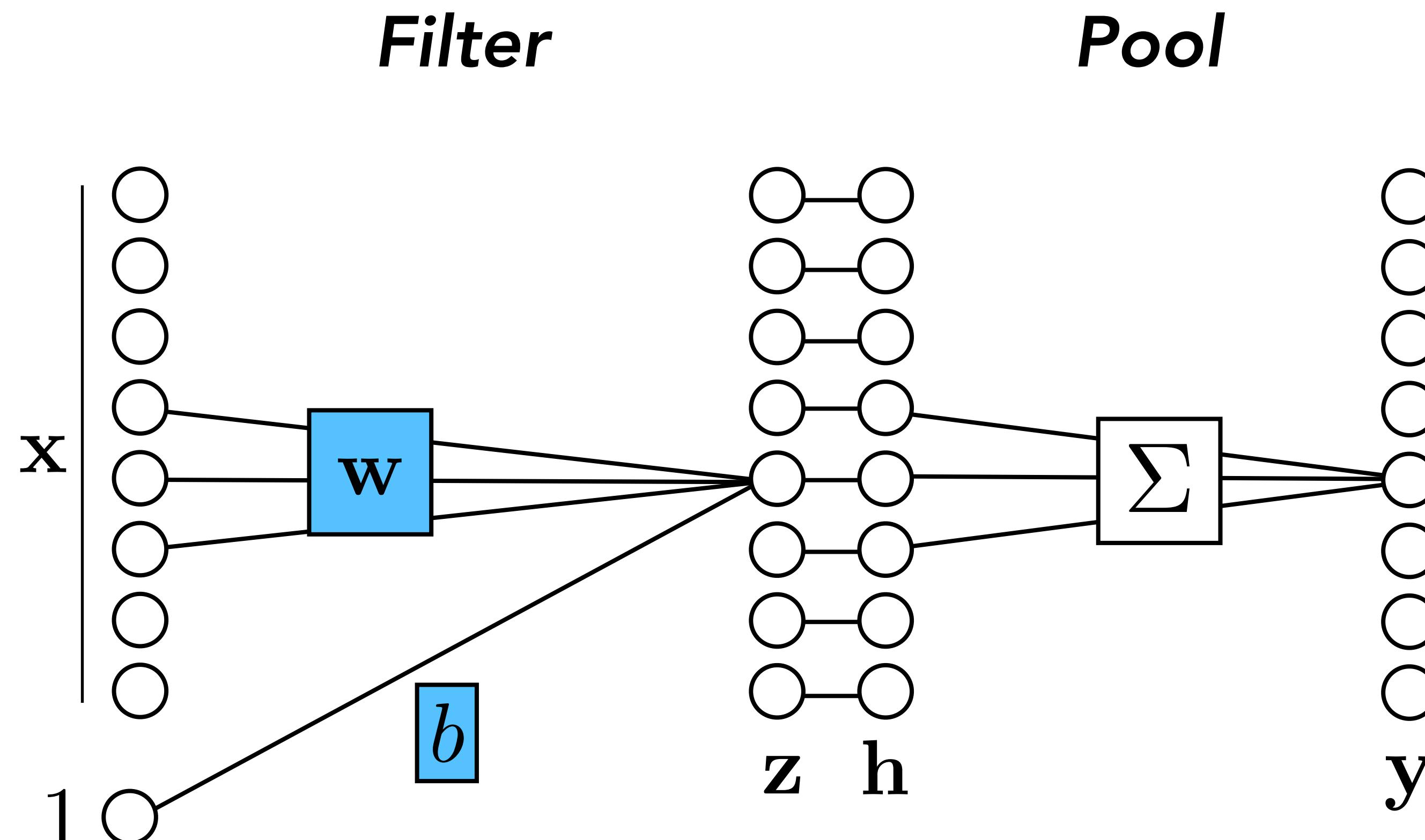


Layer 2
filters
(4x zoom)

Pooling



Pooling



Max pooling

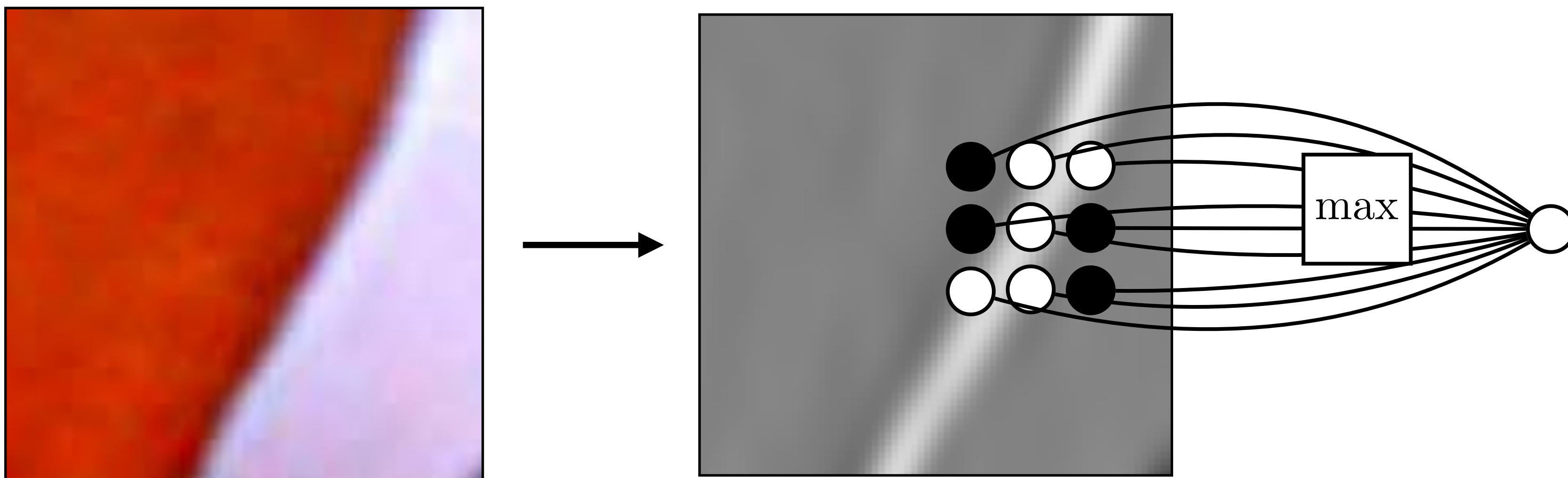
$$y_j = \max_{j \in \mathcal{N}(j)} h_j$$

Mean pooling

$$y_j = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} h_j$$

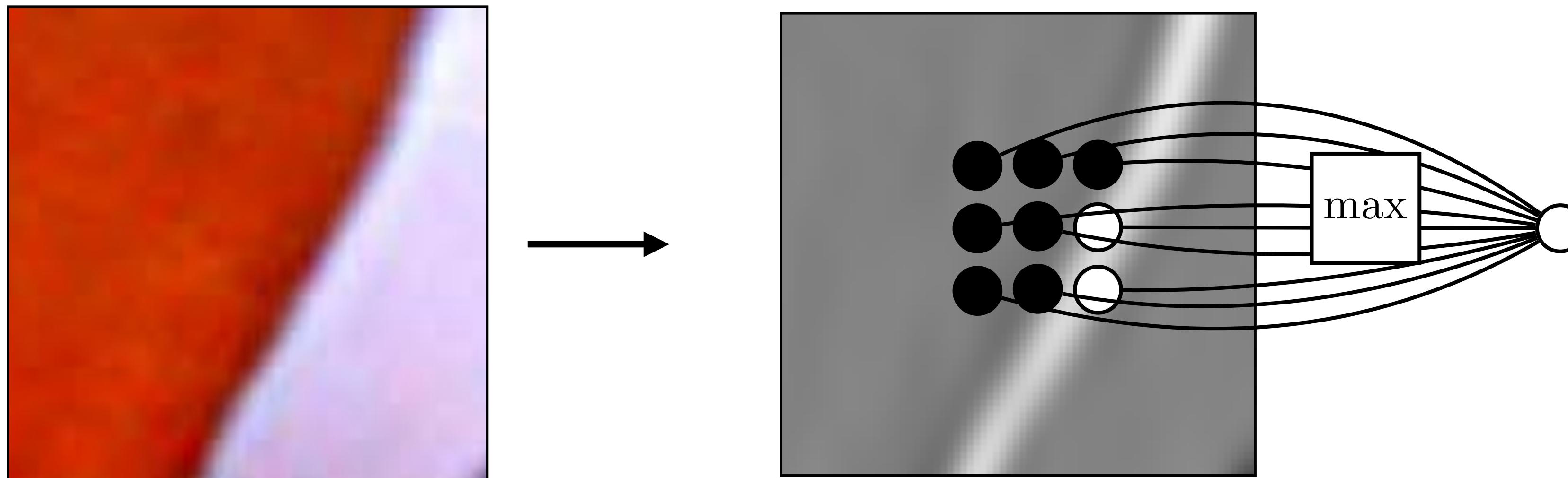
Pooling — Why?

Pooling across spatial locations achieves stability w.r.t. small translations:



Pooling — Why?

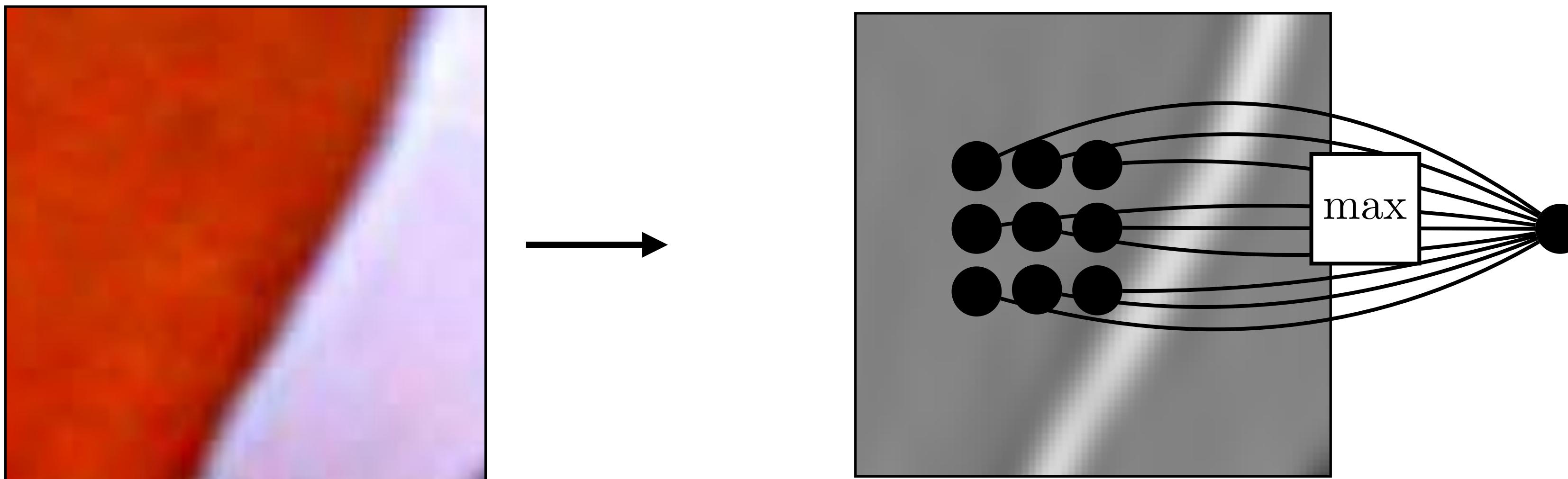
Pooling across spatial locations achieves stability w.r.t. small translations:



large response
regardless of exact
position of edge

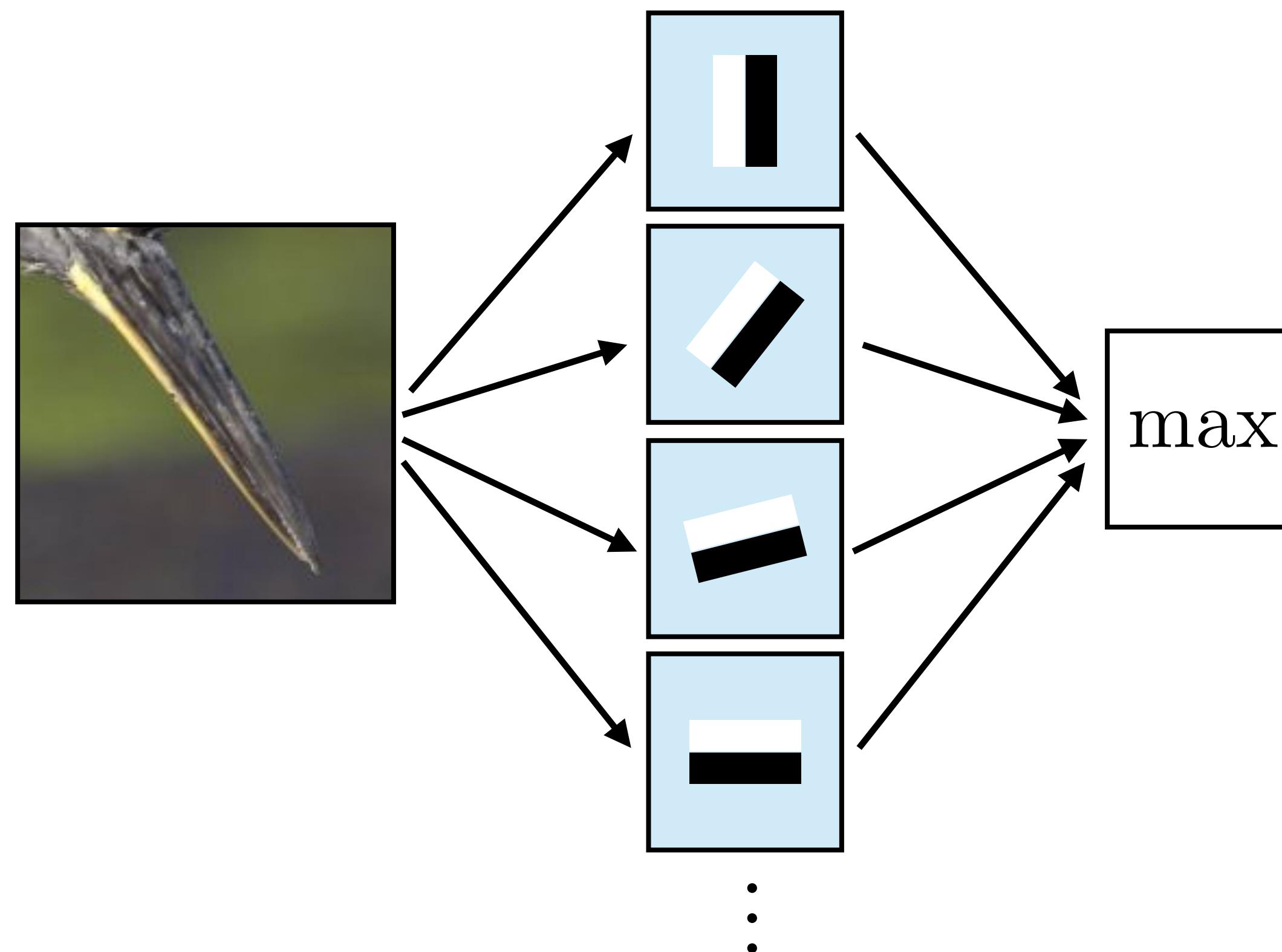
Pooling — Why?

Pooling across spatial locations achieves stability w.r.t. small translations:



Pooling across channels — Why?

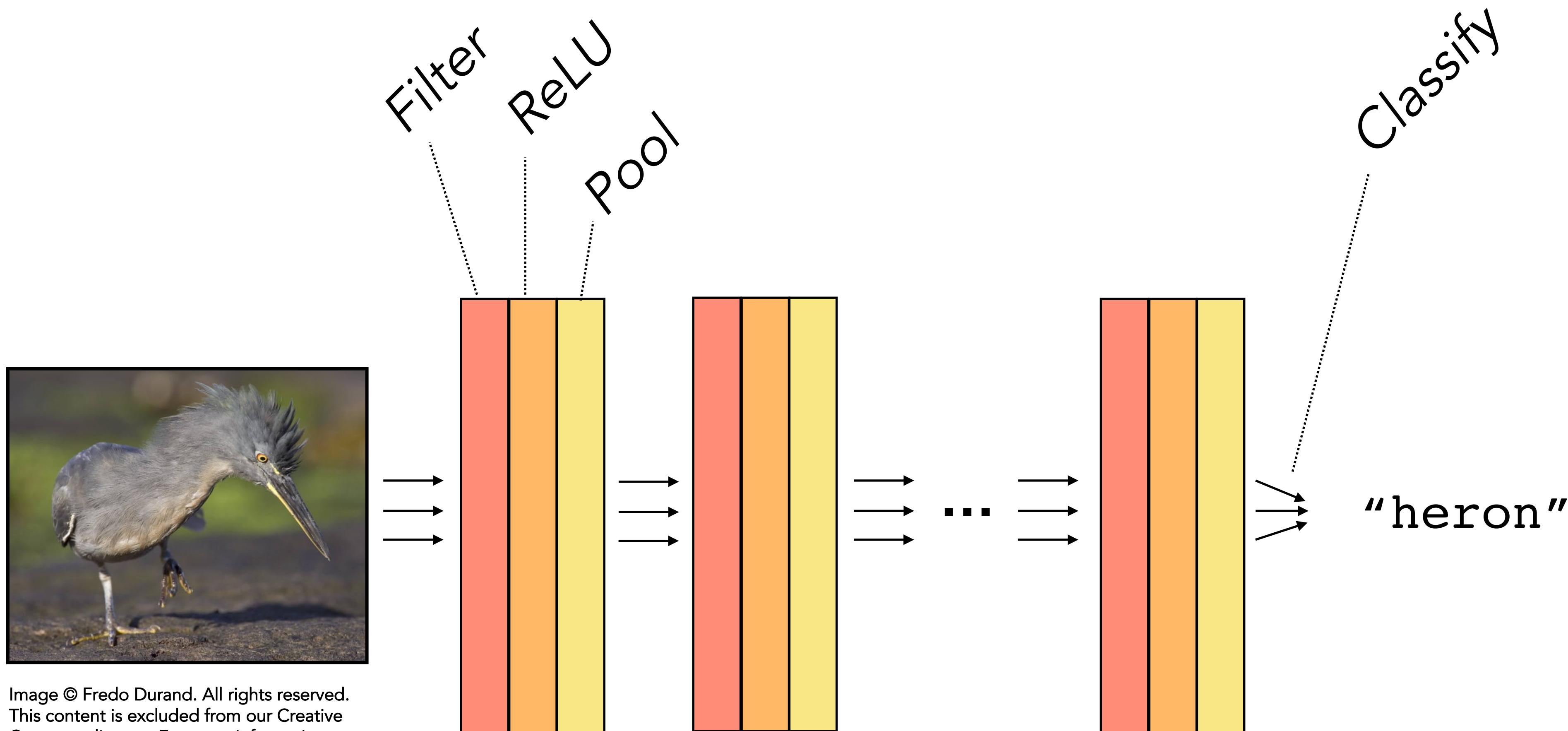
Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:



large response
for any edge,
regardless of its
orientation

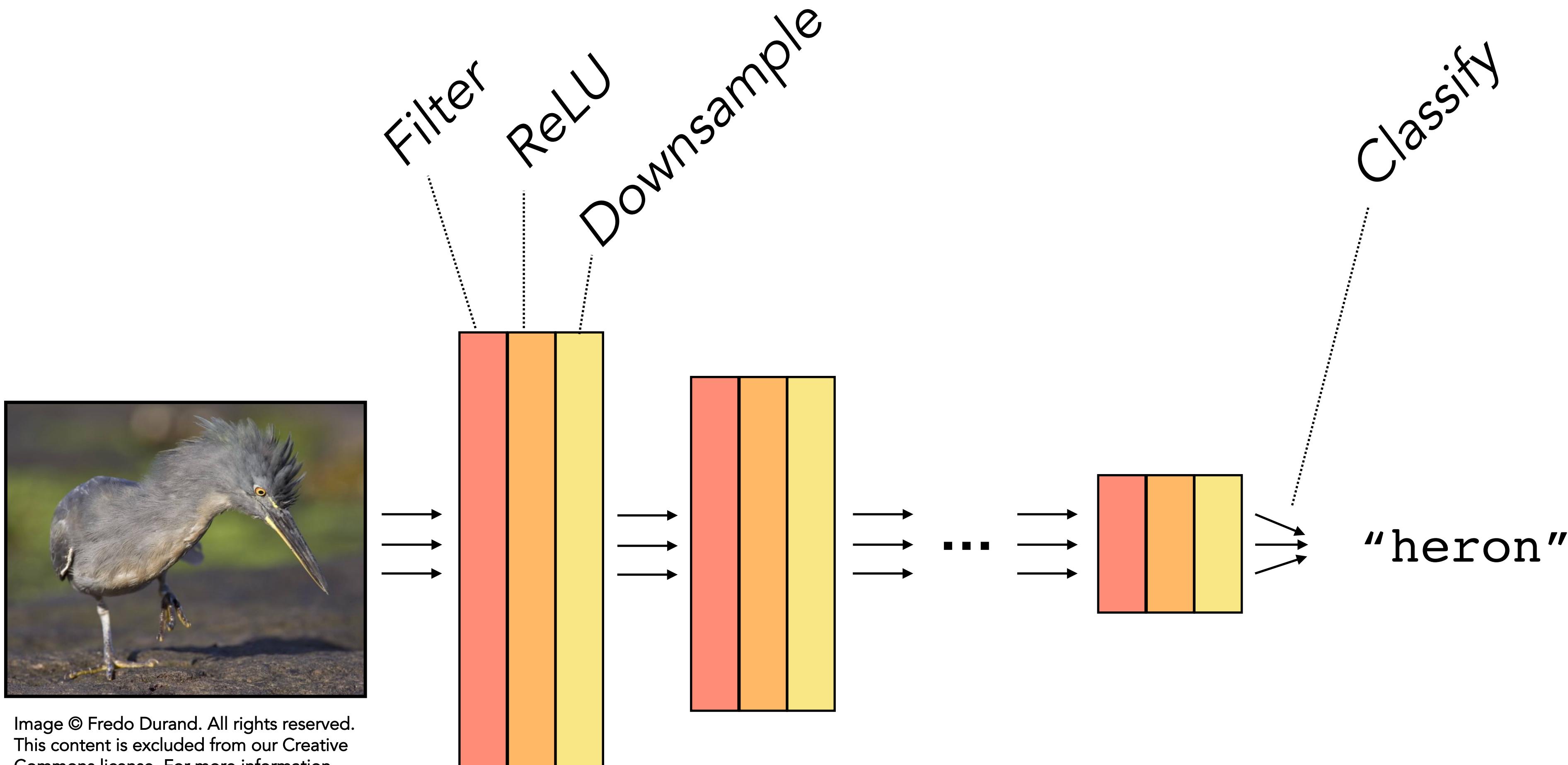
Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

Computation in a neural net



$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

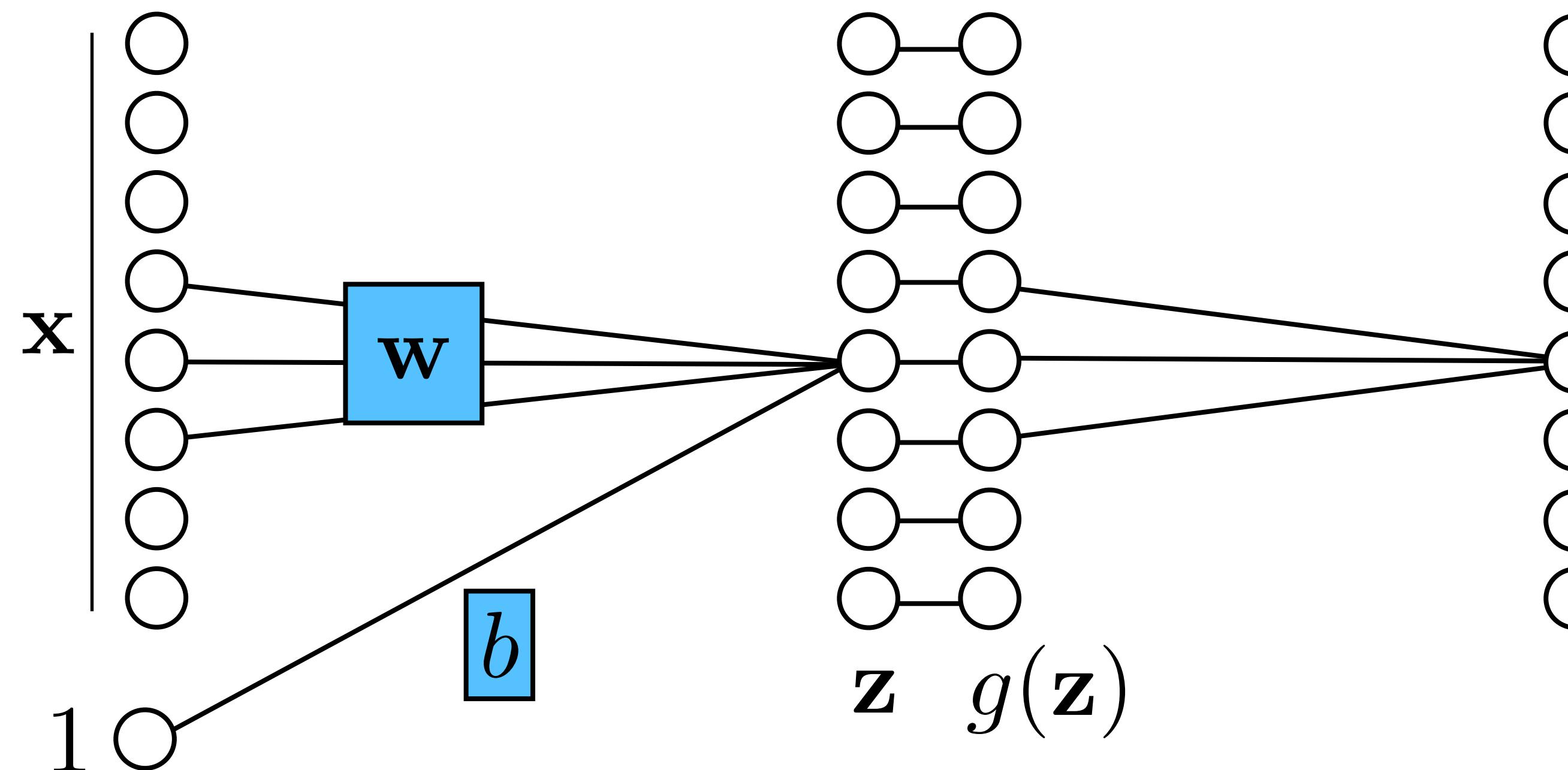
Computation in a neural net



$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

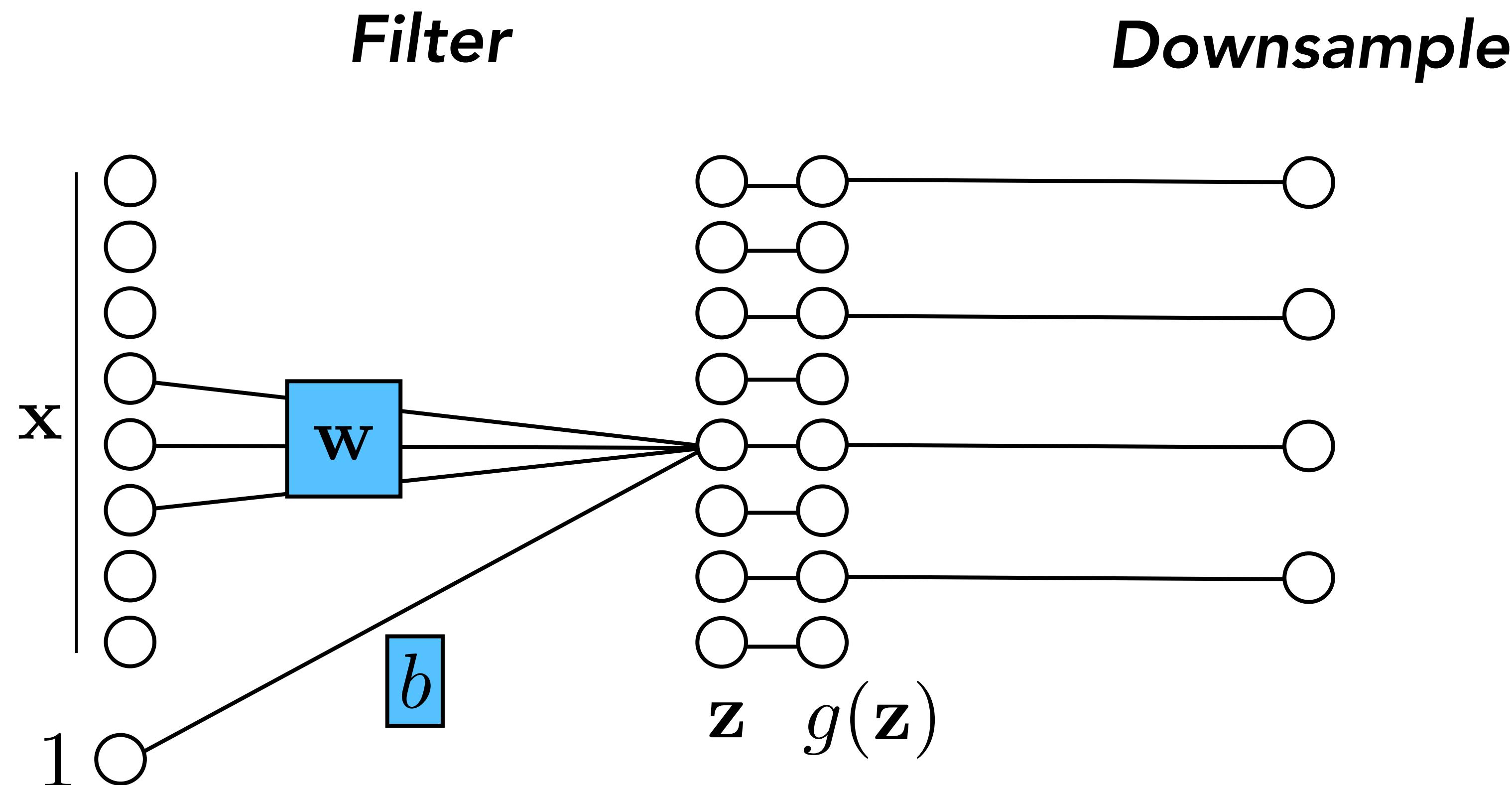
Downsampling

Filter

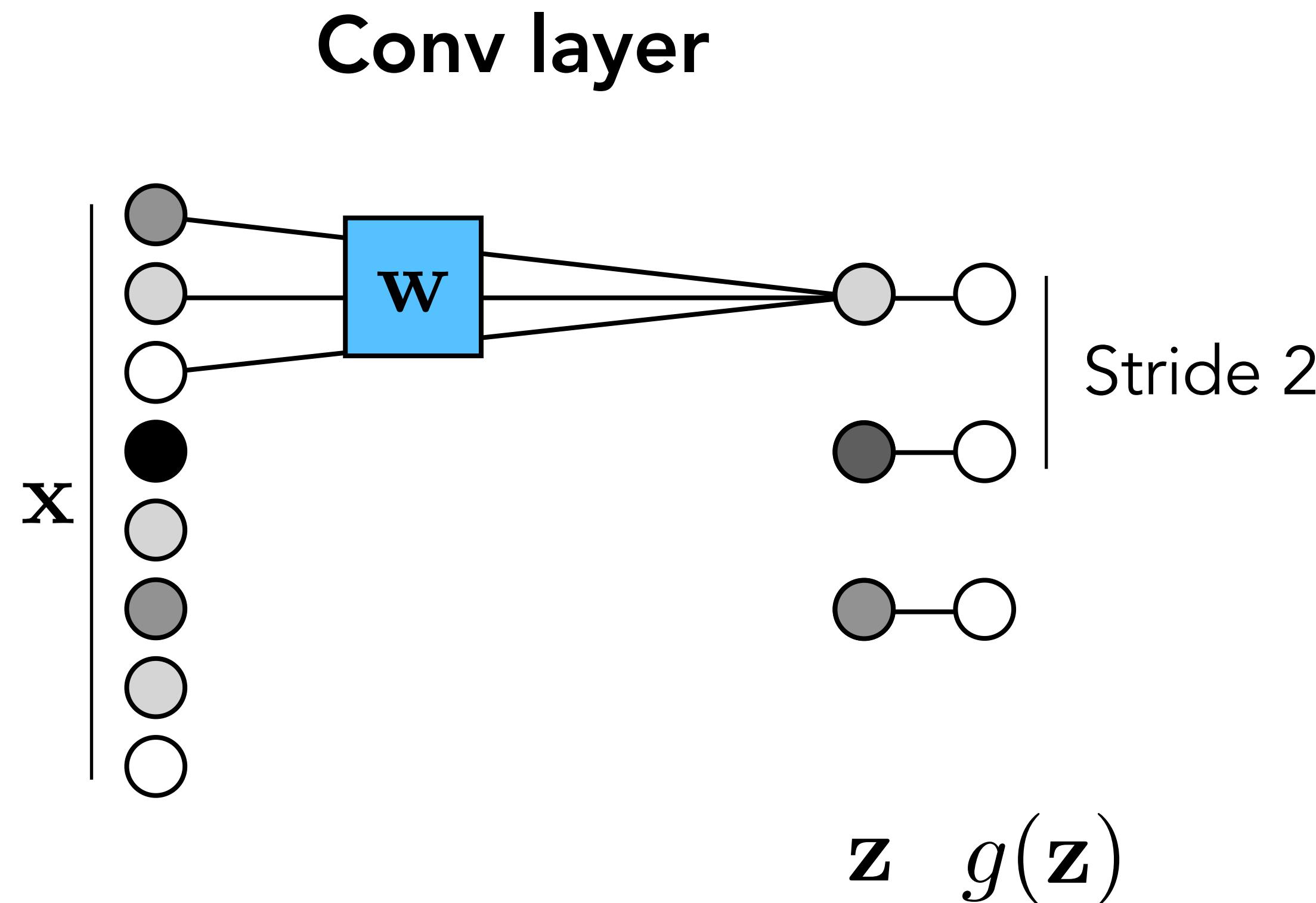


Pool and downsample

Downsampling

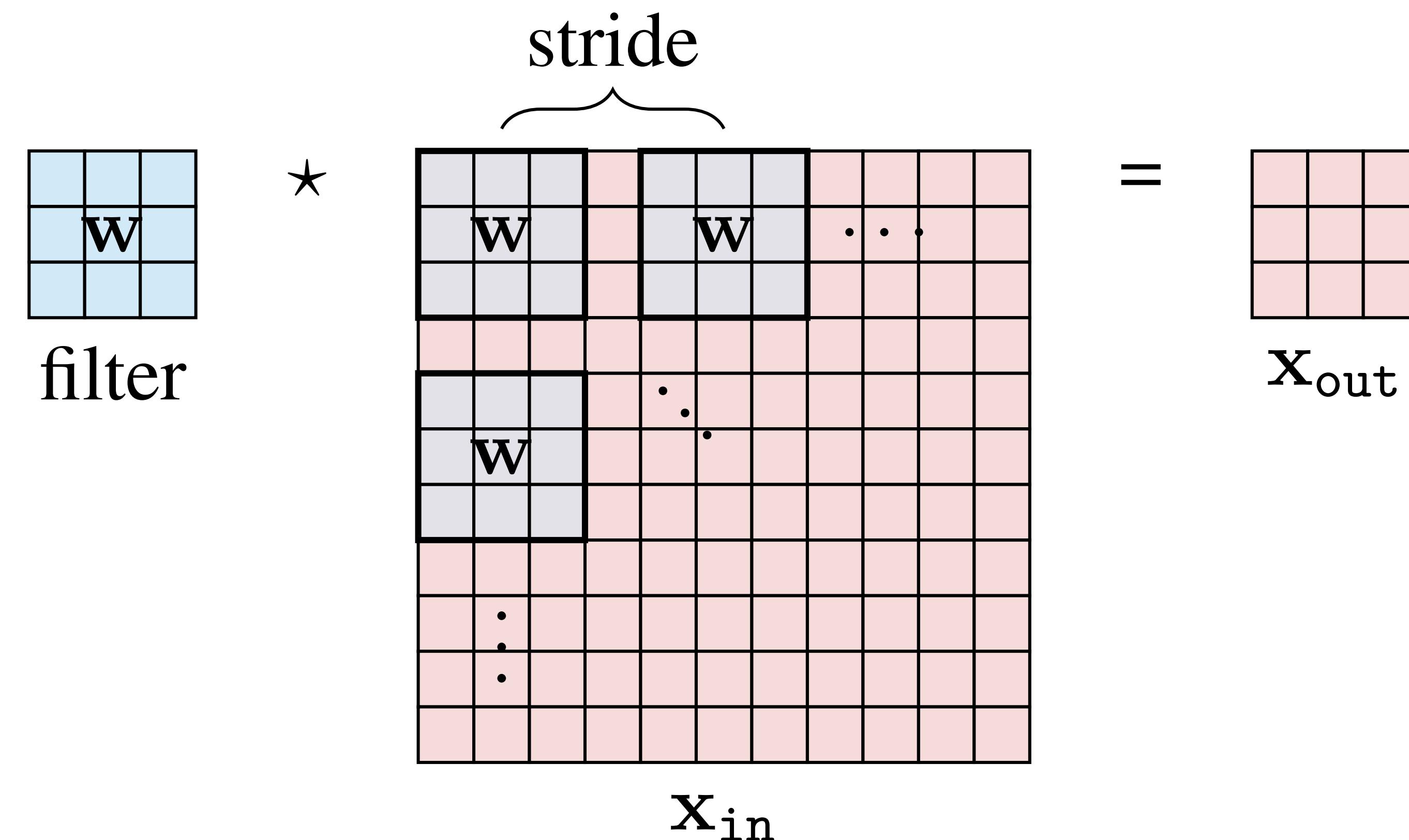


Strided operations

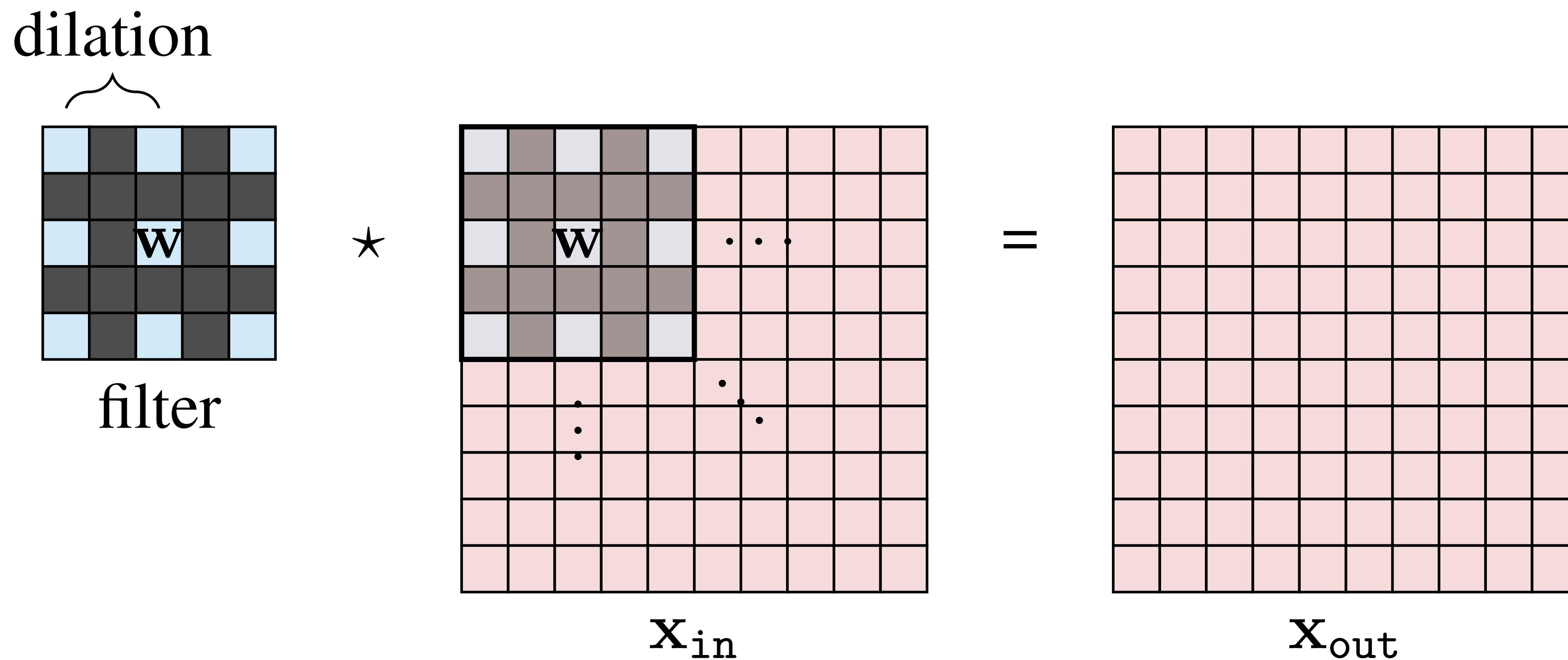


Strided operations combine a given operation (convolution or pooling) and downsampling into a single operation.

Strided operations (2D)



Dilated filter



Covers a large receptive field with fewer parameters.

Receptive fields

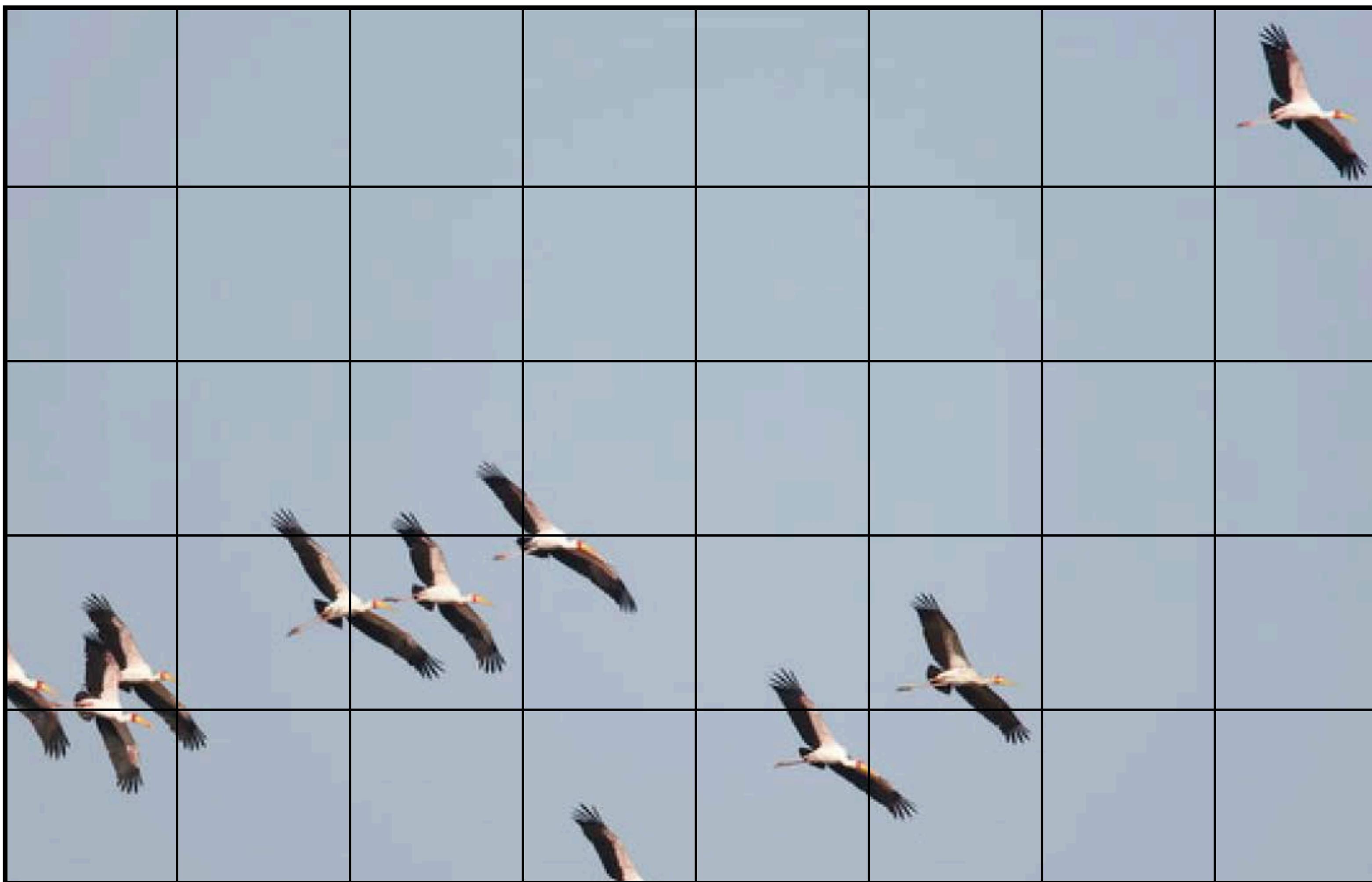


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

Receptive fields

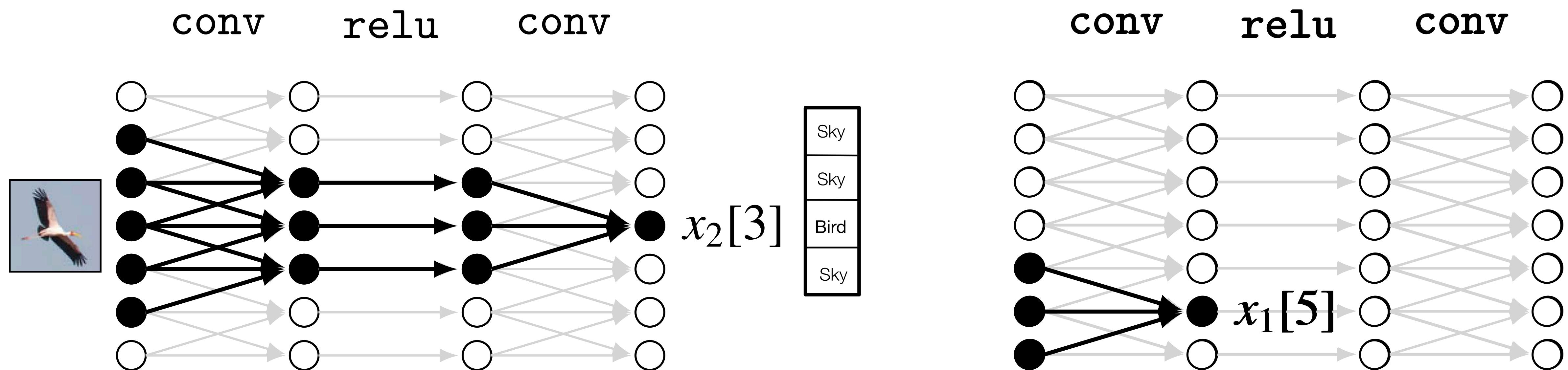


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

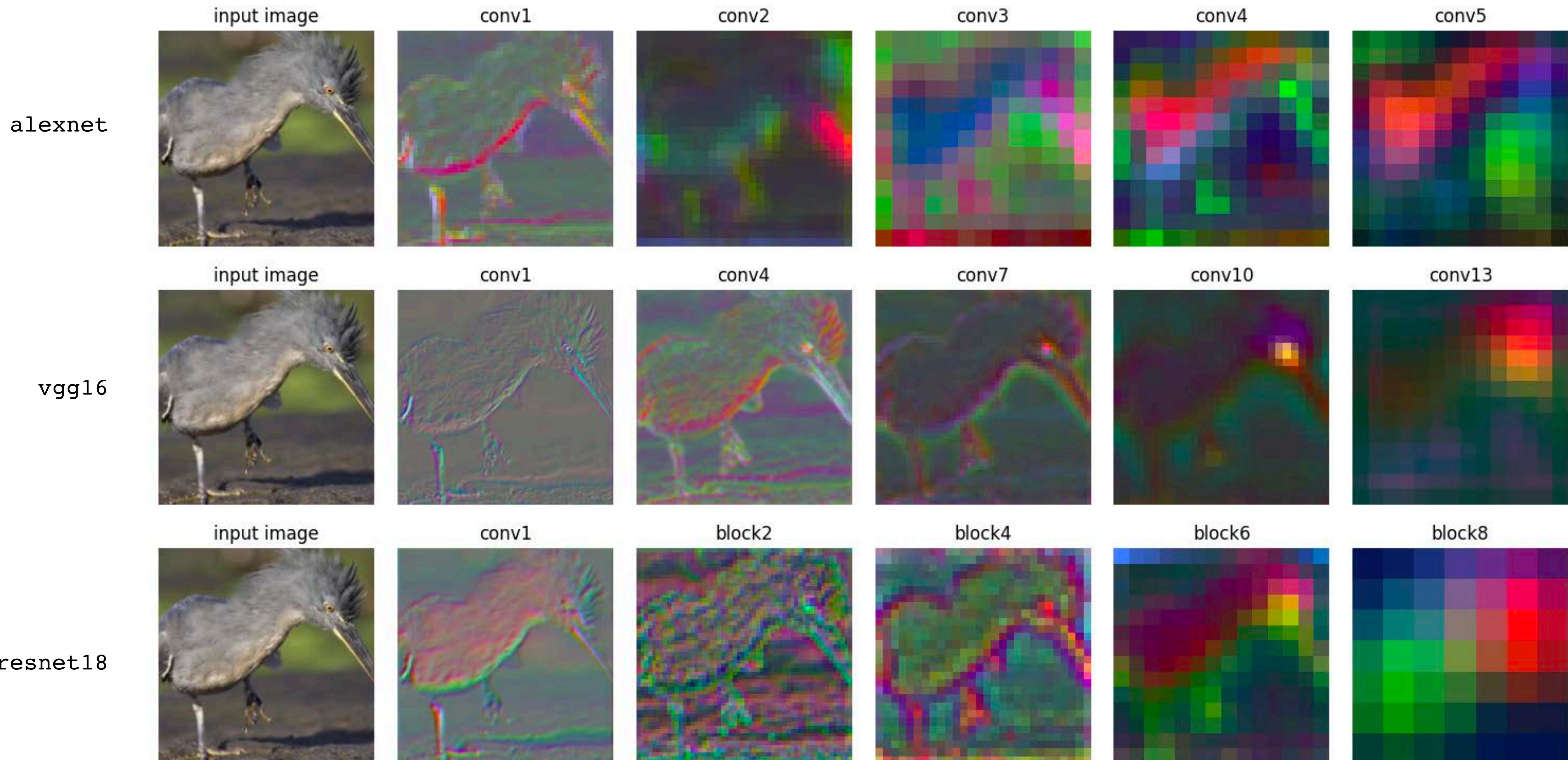


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

Implementing conv

Basic implementation:

1. `im2col`: $N \times M \times C \rightarrow \text{Npatches} \times (K \times K \times C)$
2. `bmm`: batch `matmul` with kernel
3. `col2im`: $\text{Npatches} \times (K \times K \times C) \rightarrow N \times M \times C$

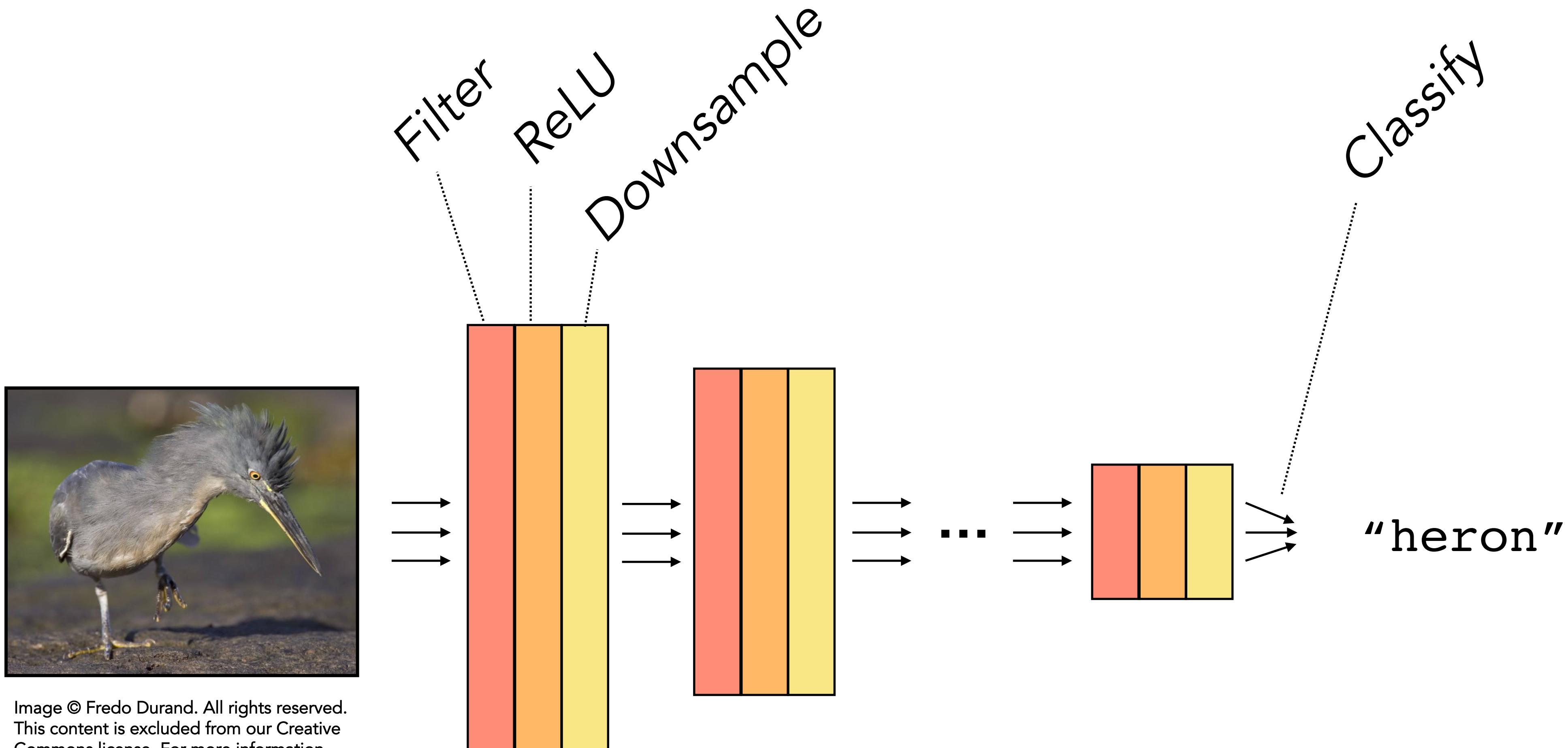
or: fft signal processing stuff...

Useful library:

`timm`: <https://github.com/rwightman/pytorch-image-models>

Popular CNN Architectures

Computation in a neural net



$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

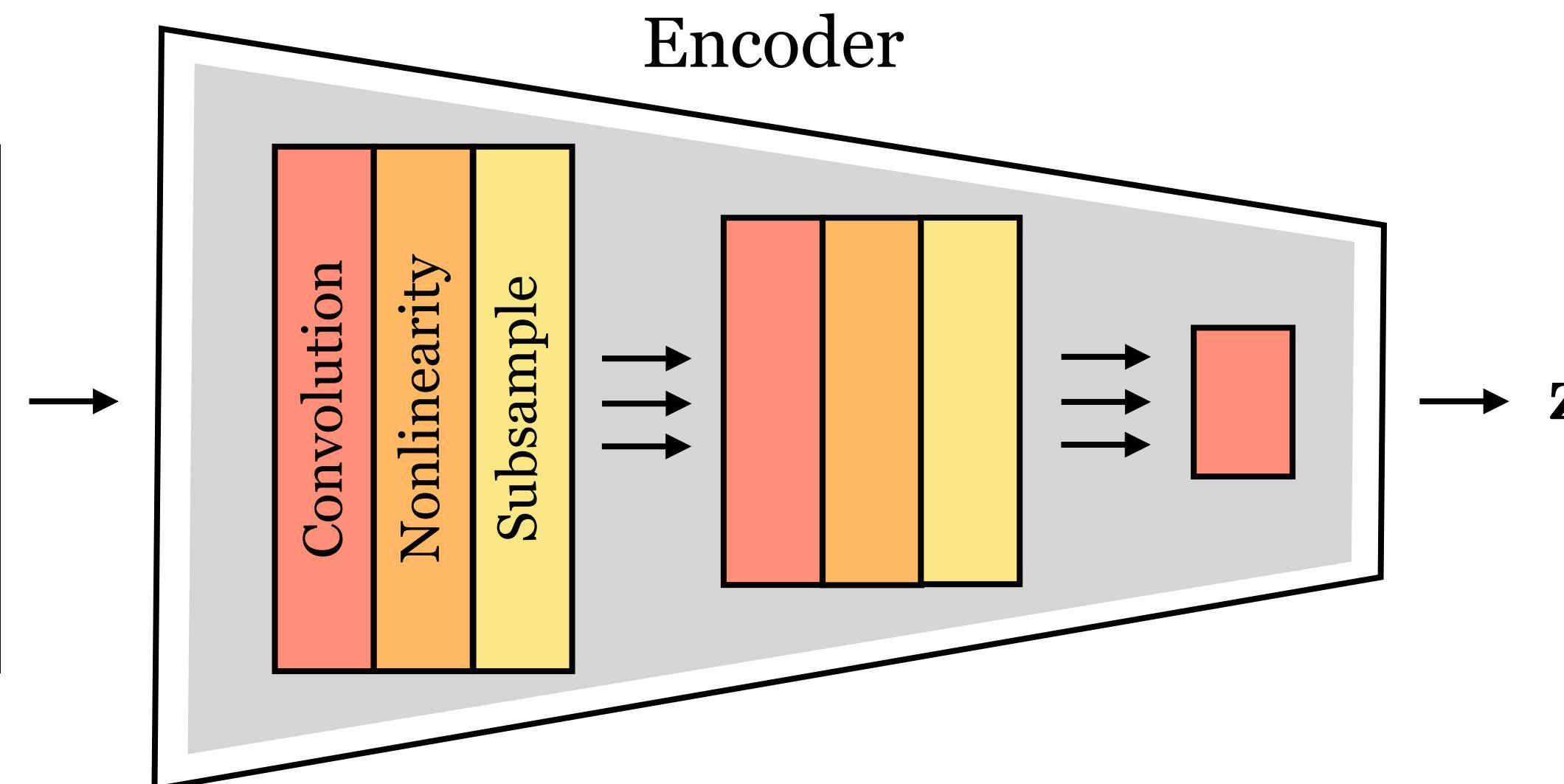


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

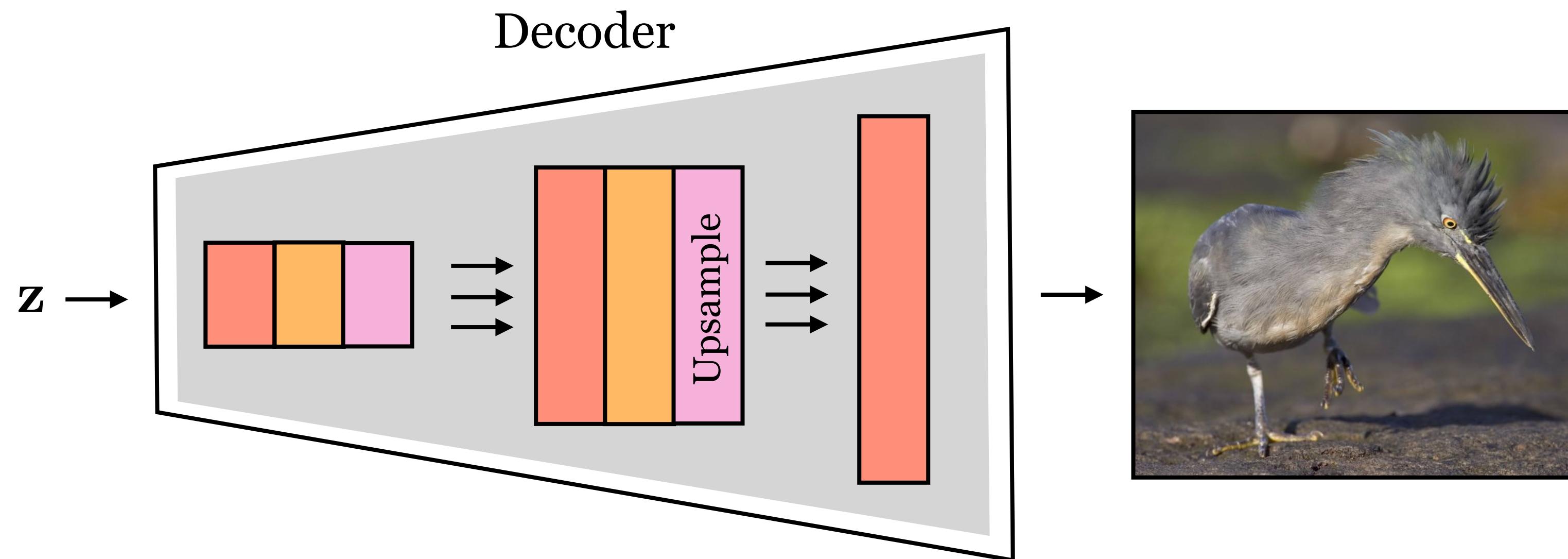


Image-to-image

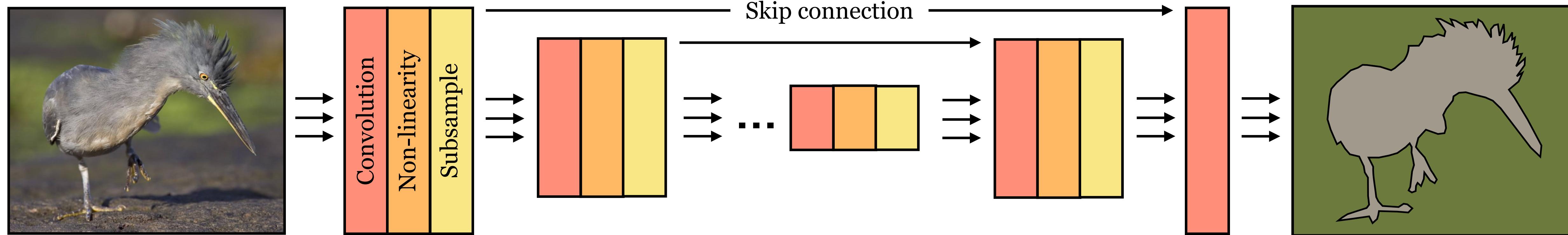


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

Image-to-image

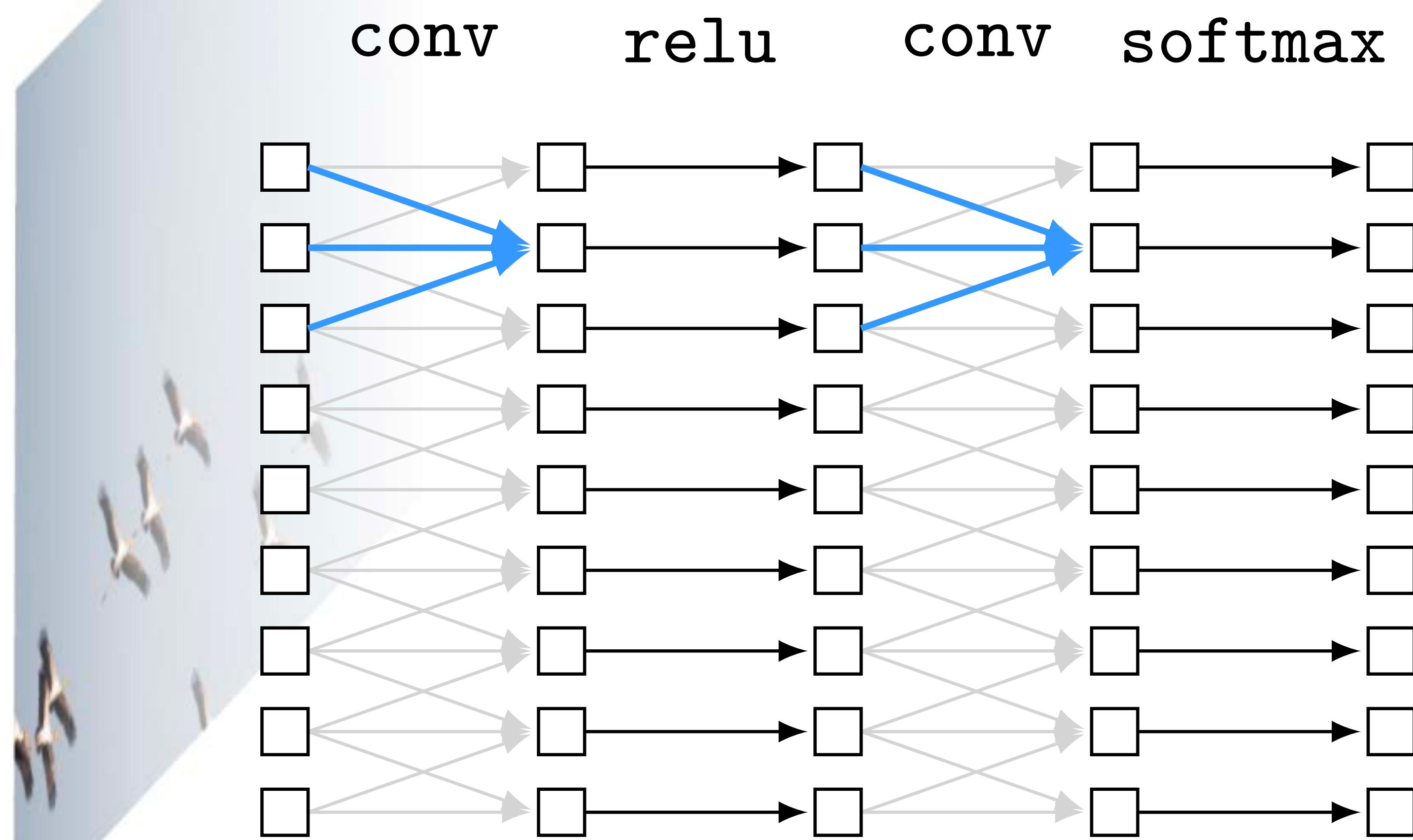
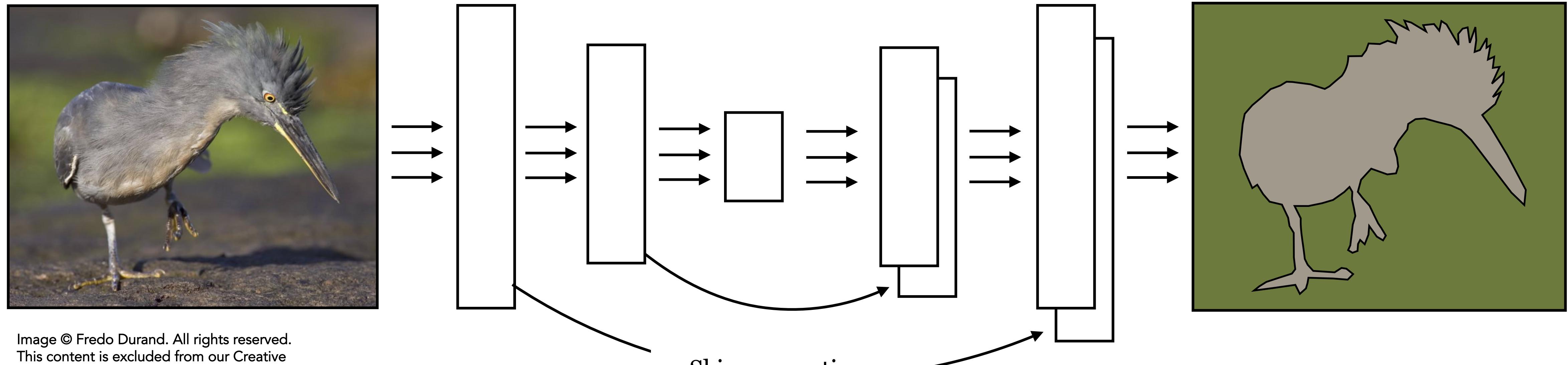


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

U-net



ResNet

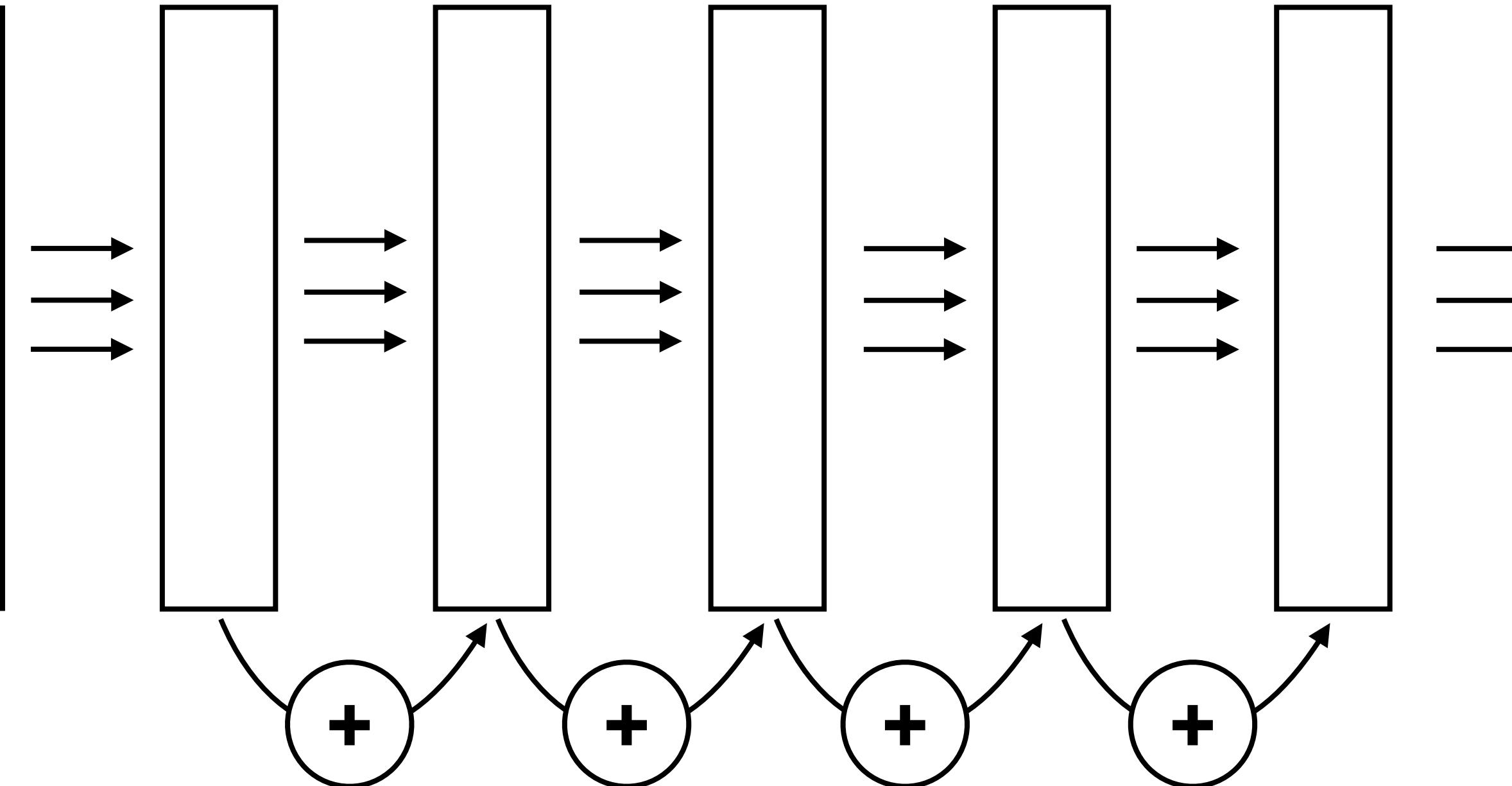
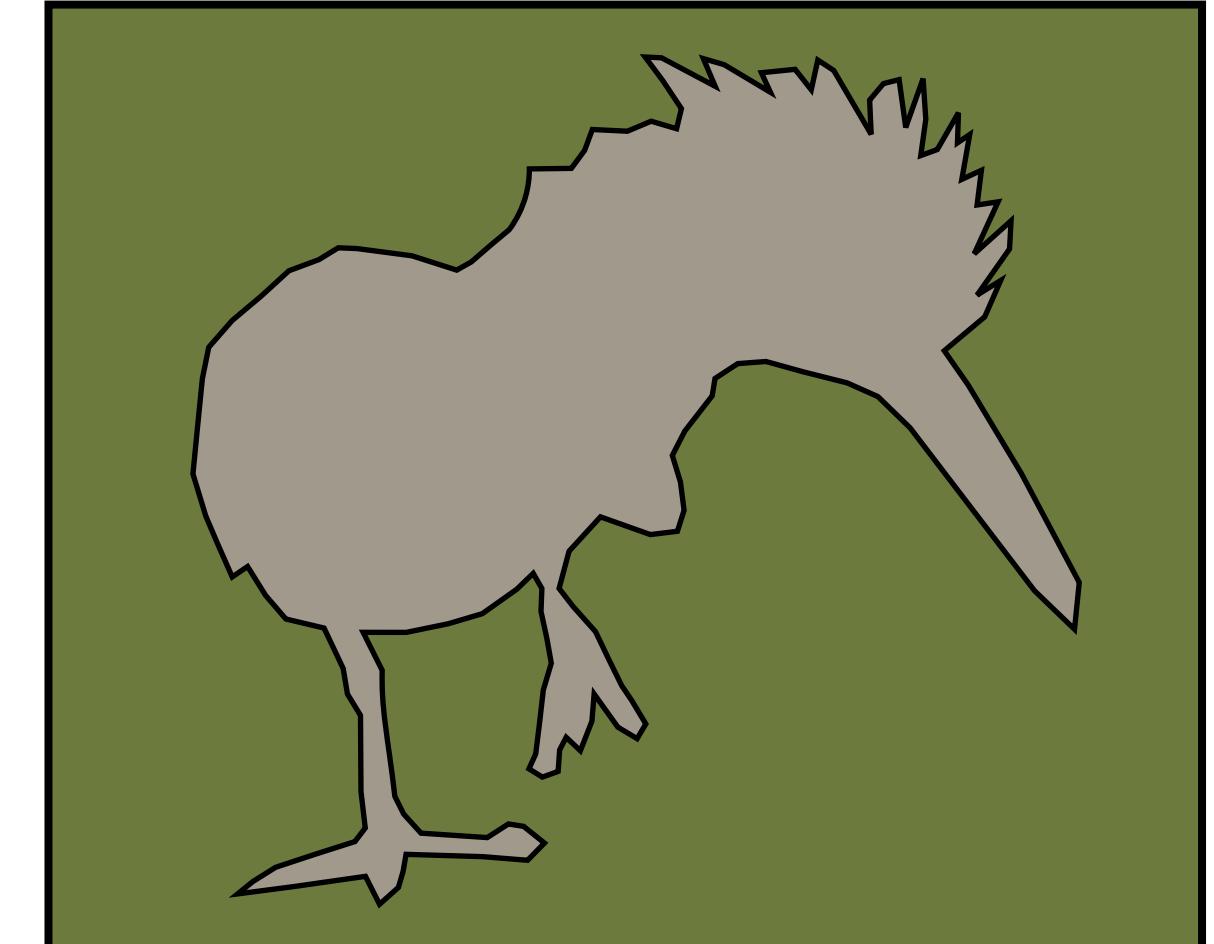
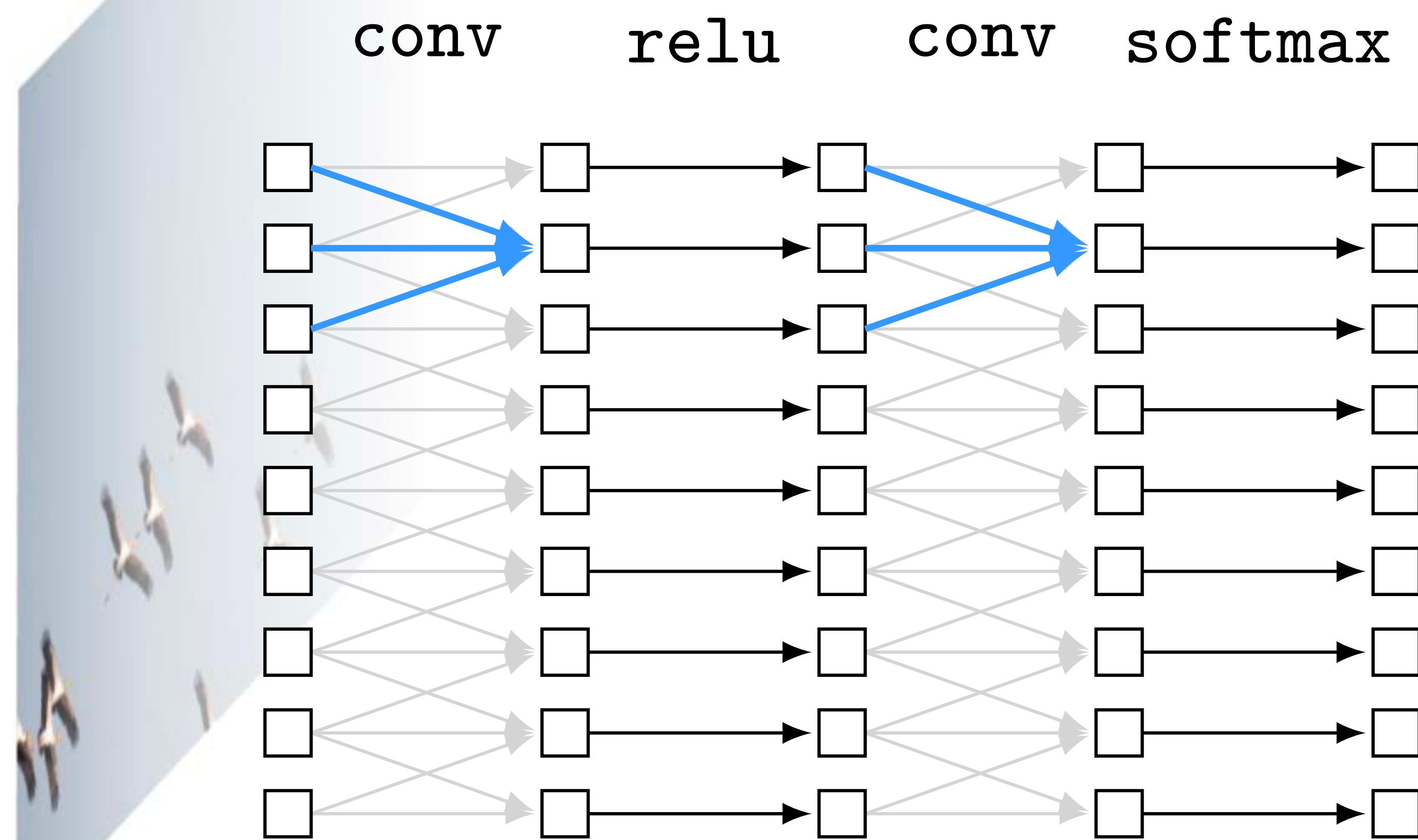


Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see <https://ocw.mit.edu/help/faq-fair-use/>

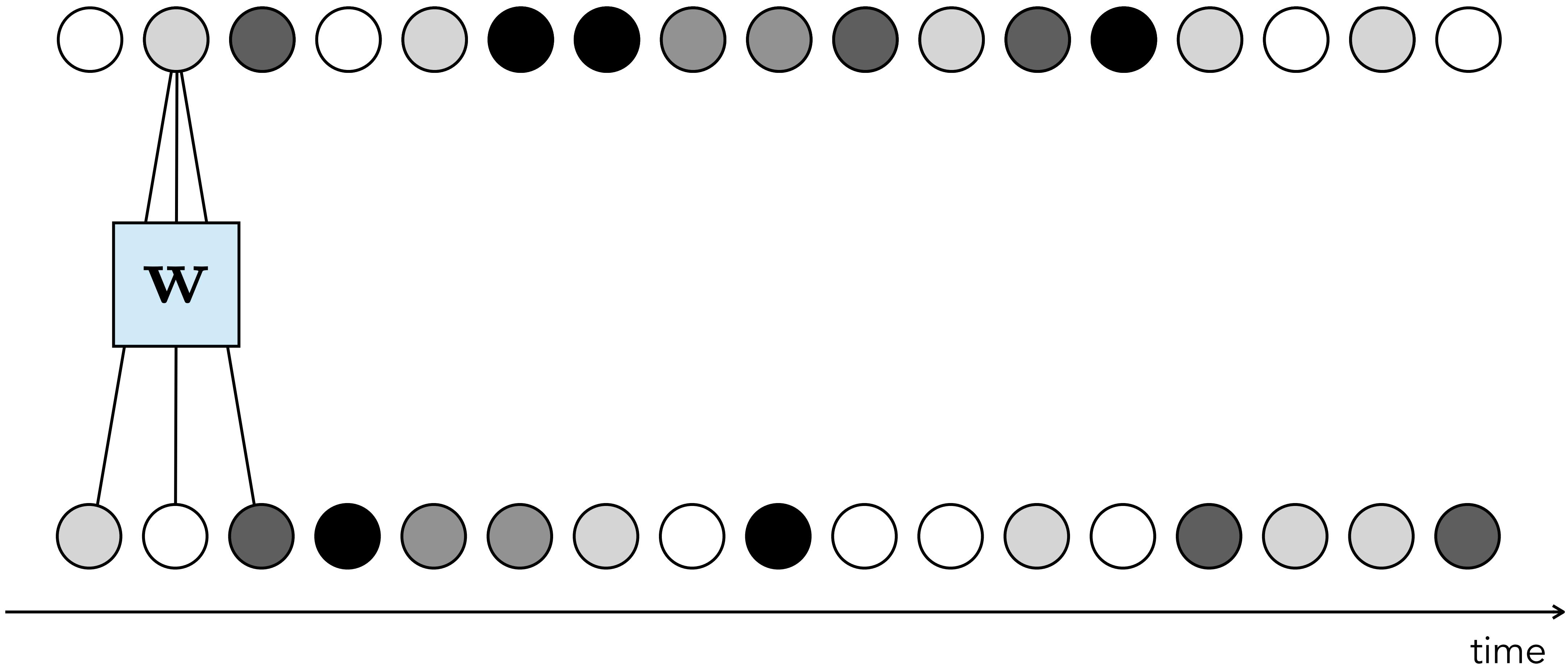
Residual connection: $\mathbf{x}_{\text{out}} = F(\mathbf{x}_{\text{in}}) + \mathbf{x}_{\text{in}}$

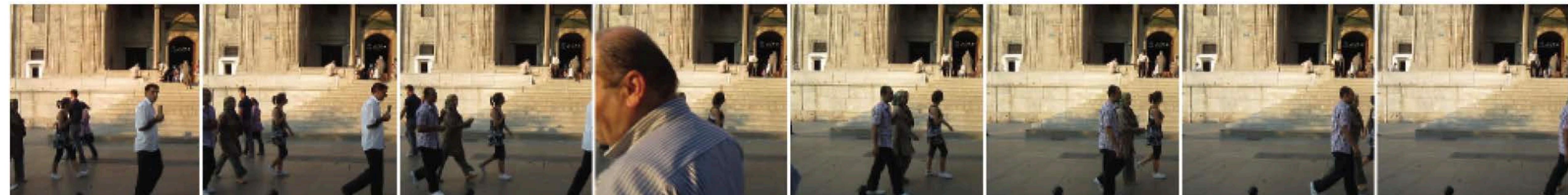
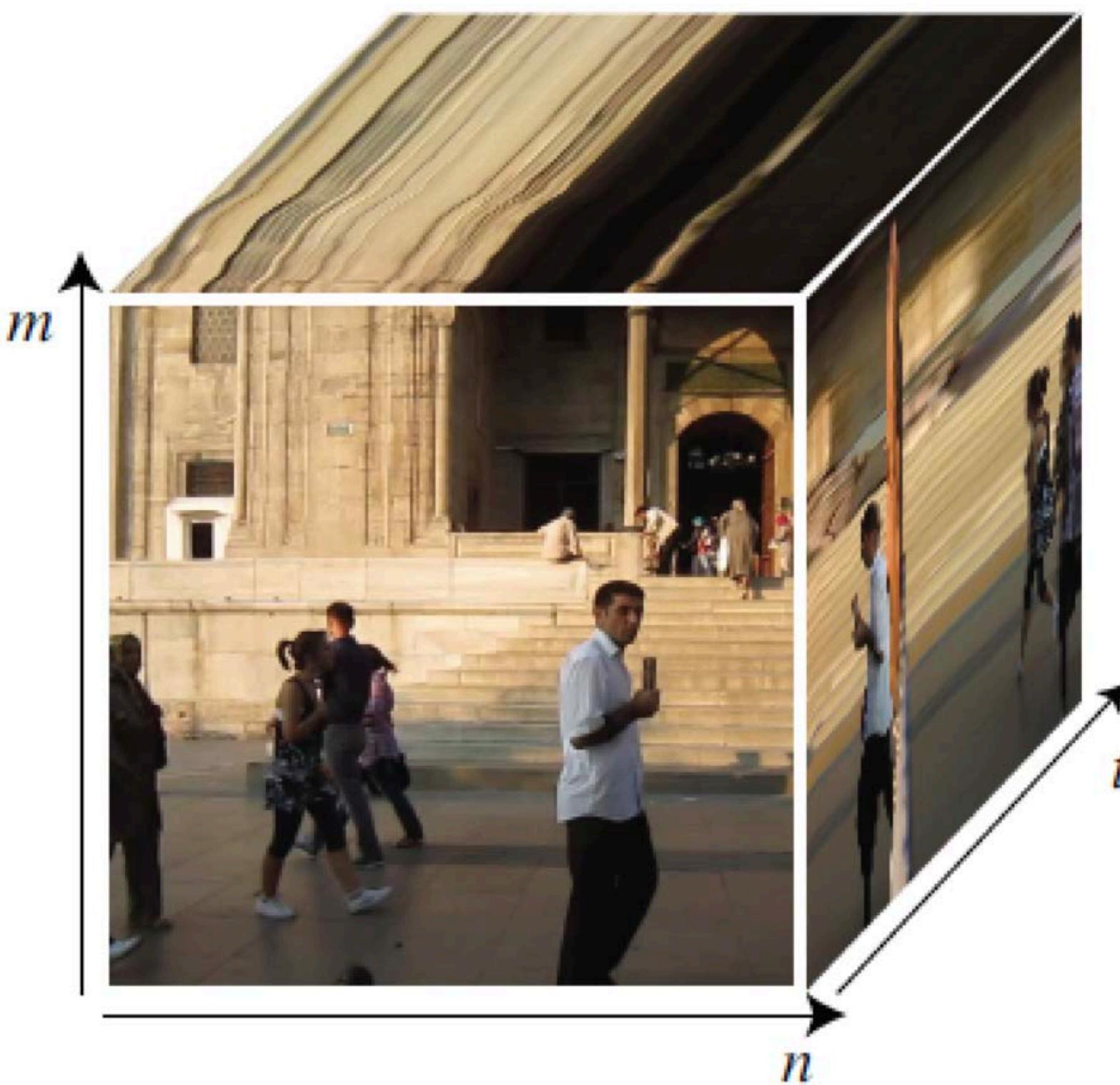
Or, if you want to change dimensionality: $\mathbf{x}_{\text{out}} = F(\mathbf{x}_{\text{in}}) + \mathbf{W}\mathbf{x}_{\text{in}}$

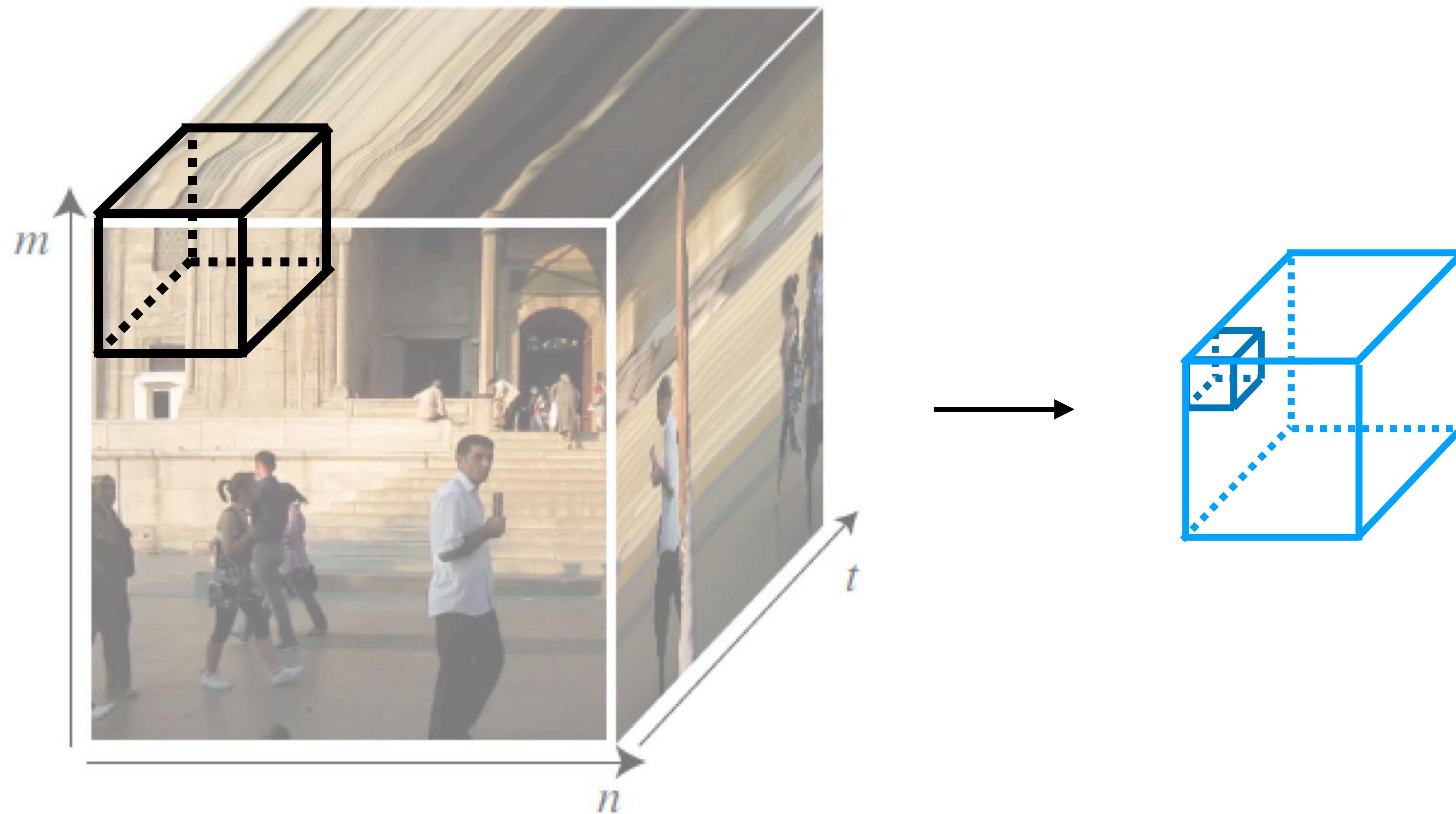
Image-to-image



Convolutions in time





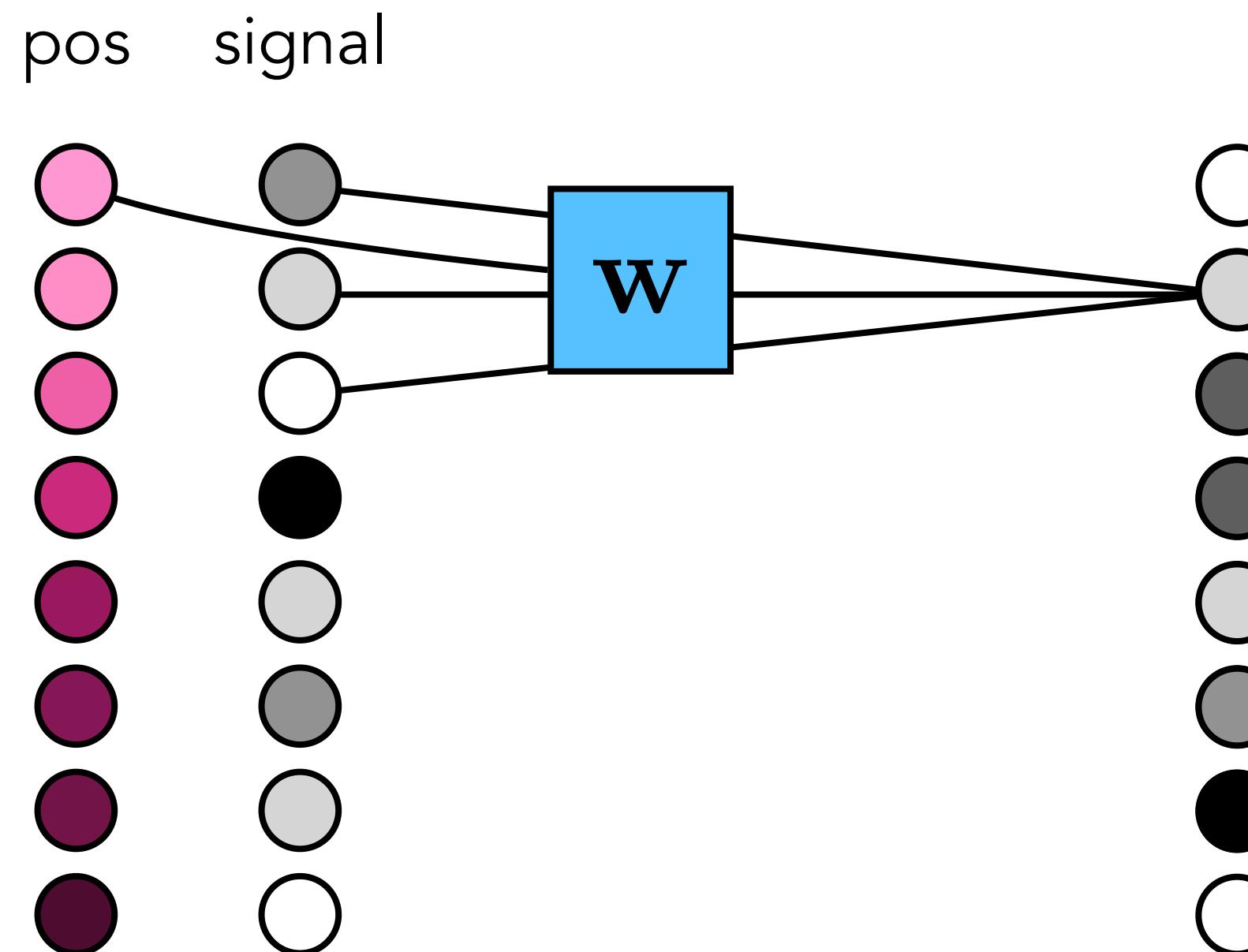


What if you *don't* want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)
2. Add location information to the *input* to the convolutional filters – this is called **positional encoding**

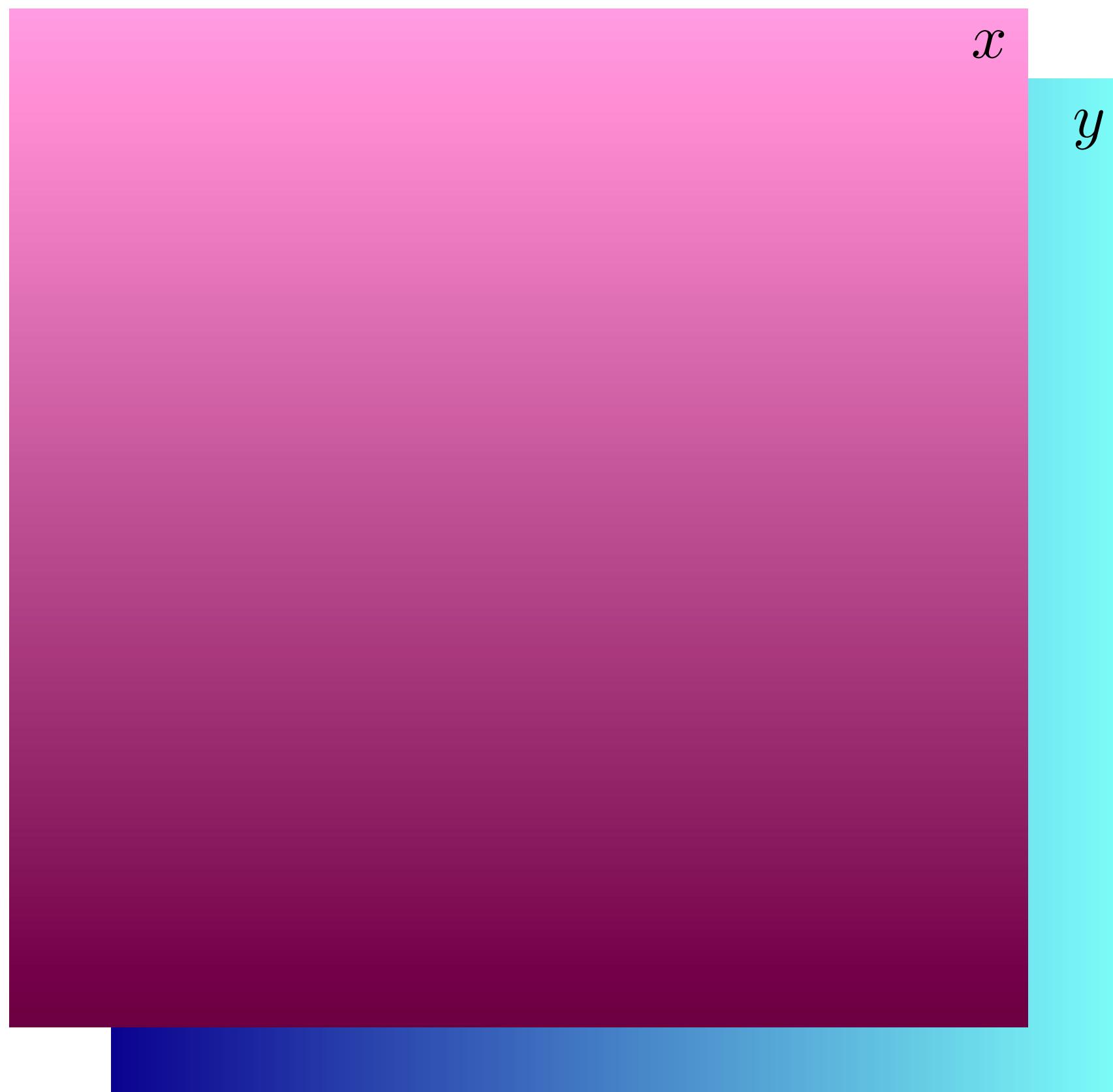
What if you *don't* want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)
2. Add location information to the *input* to the convolutional filters – this is called **positional encoding**



Neural Fields

Coordinates



$$\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}$$

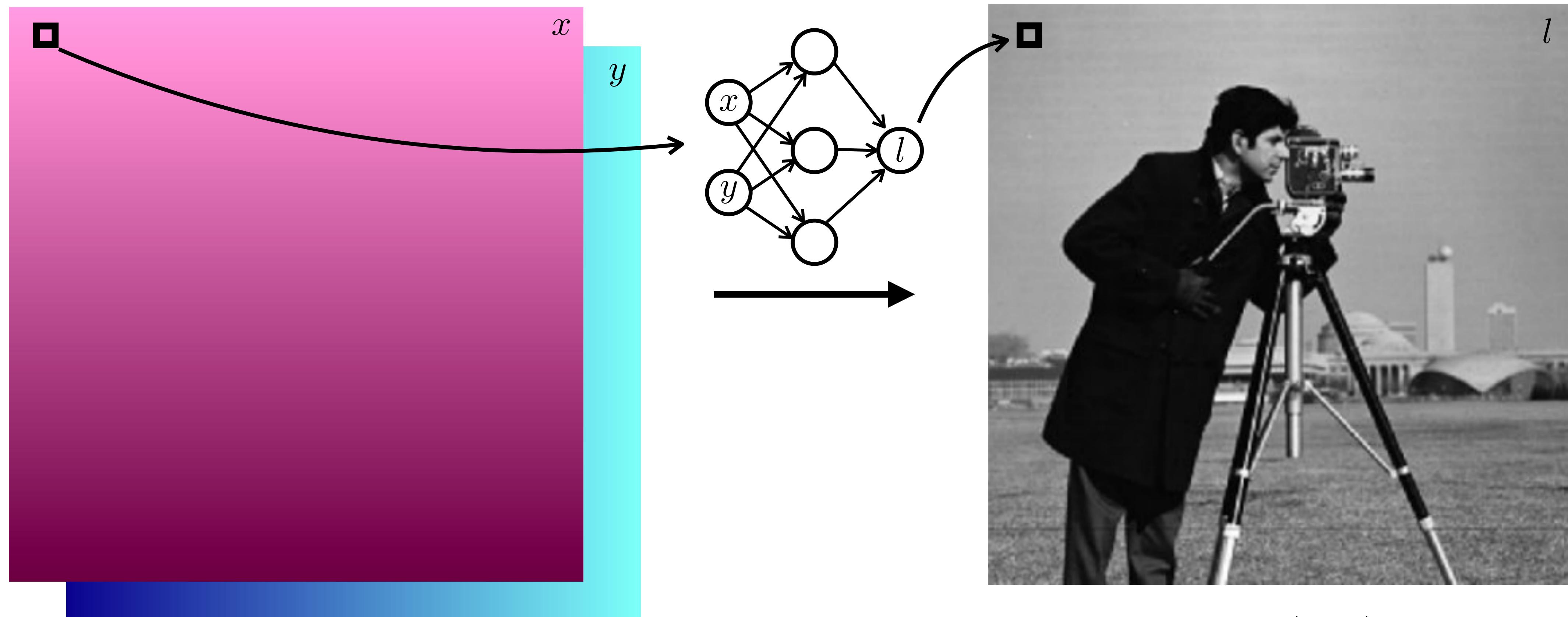
→

Field

$$l = \Phi(x, y)$$

Neural Fields — SIREN

CNN applied *per-pixel* to map from a coordinate grid to a color
Coordinates Field



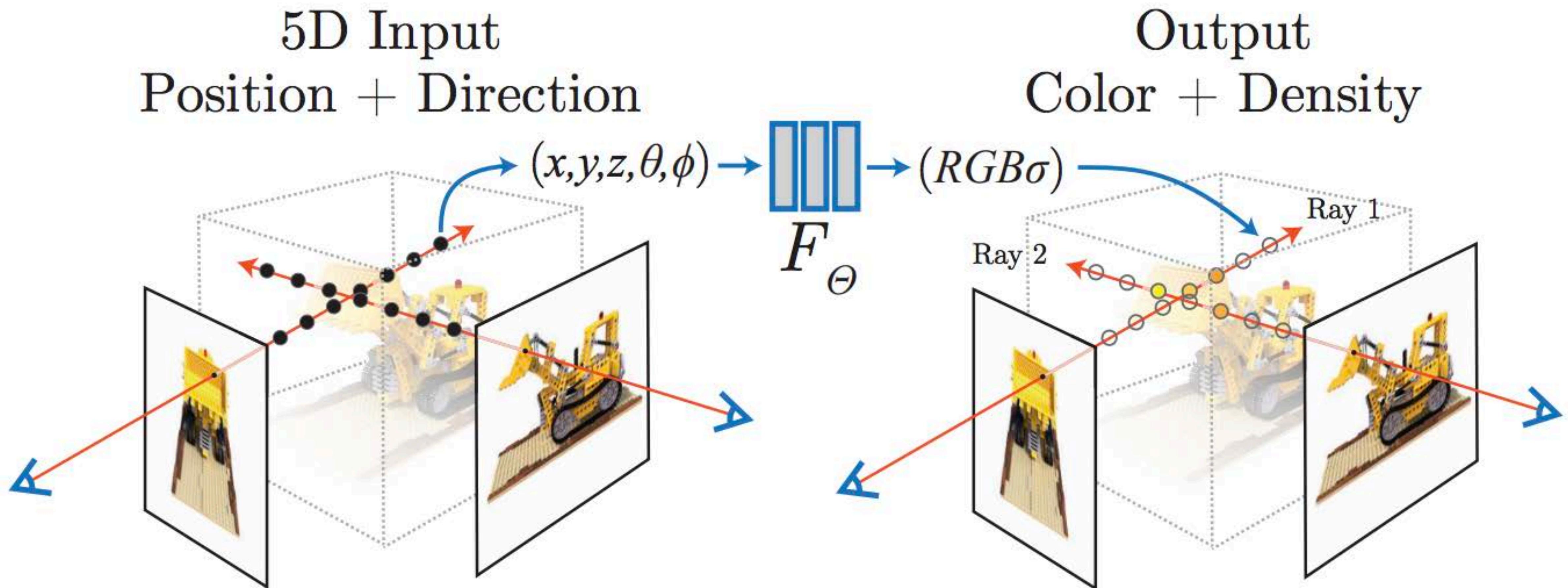
$$l = \Phi(x, y)$$

Can take continuous coordinates as input!

© Sitzmann, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>
["SIREN", Sitzmann, Martel et al. 2020]

Neural Fields — NeRF

Conv net applied to map from 5-D coordinate grid to a color + volumetric density



© Mildenhall, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

© Yen-Chen Lin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

made by Yen-Chen Lin

Concluding remarks

Convolution is a fundamental operation for image processing.

It just means: chop up the image into patches and apply the same function to each patch.

This concept appears in almost all modern architectures, such as CNNs, transformers, NeRFs, and more.

4. Architectures for Grids

- Why build better architectures?
- Convolutional layers
- Pyramids
- Architecture zoo
- Neural fields and positional encodings

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>