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4. Architectures for Grids

Why build better architectures®
Convolutional layers

Pyramids

Architecture zoo

Neural fields and positional encodings



Multilayer Perceptron

linear comb- of neurons >

neuron-wise nonlinearity o

linear comb- of neurons >

O

O

O

+ Universal

+ Simple (elegant theory)
+ Embarassingly parallel

- Weak inductive biases
- Sample inefficient / data

hungry

- Dense (tully-connected)

inear layers take a lot of
compute



Why use other architectures?

® 'True solution

X |.ecarned solution




Why use other architectures?

® 'True solution

X |.ecarned solution

Effect of adding more data.




Why use other architectures?

F — Hypothesis space

® 'True solution

X |.ecarned solution

L ess data, better architecture.

We can pin down truth either
by adding more data, or by
using a more constrained
architecture.




y = f(z)
f: 5 layer ReLU-net

= True solution
= [Learned solution

® Training data



y = ax + sin(bz*)

= True solution
= [Learned solution

® Training data

Architectures enable us to generalize
outside the training distribution.

2 4 -4 -2 0 2 4
X
A good architecture is one that can
represent the true function and is
otherwise minimal (and is also easy to
search over via gradient-based

learning, easy to parallelize, tfast on
GPU, etc).



Preview: better architectures can approximate important
function classes more efticiently.

Goal: Fit this image
(a function x,y —> |)

RelLU-net TanH-net RelLU P.E. RBF RelLU SIREN

(Note: this result may be due to improved approximation ability but it might also be due to
improved optimization ability; these two effects are typically coupled in experiments)

© Sitzmann, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Sitzmann*, Martel*, Bergman, Lindell, Wetzstein, NeurlPS 2020]
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y = f(2)
f: 5 layer sin-net (SIREN)
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= True solution
= [Learned solution

® Training data

[Sitzmann*, Martel*, Bergman, Lindell, Wetzstein, NeurlPS 2020]
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Convolutional Neural Networks
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© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/

13



© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
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© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For

more information, see https://ocw.mit.edu/help/fag-fair-use/
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Bird

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For

more information, see https://ocw.mit.edu/help/fag-fair-use/
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© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/
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© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For

more information, see https://ocw.mit.edu/help/fag-fair-use/

Problem:
What if objects don't fit neatly into these patches?

How to increase the resolution ot the output map?
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© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For

more information, see https://ocw.mit.edu/help/fag-fair-use/

Smaller patches increase resolution, but not easy to recognize content in small

each patch

Instead: we will use large but overlapping patches
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What's the object class of the center pixel?

Bird

Bird

- i‘

Sky

=

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/

Sky

N N
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¥ What's the object class of the center pixel?

Training data !-\ jl> Bird
X
y k flj> Bird
{ !\ Bird } !«\
7 !ﬂ\ jf> sky
A ' -y
{ N 7 Bird } ~ j}> =

Sky }
)

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/ 21




© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For (CO | O rS re p re S e n t O n e - h Ot CO d eS)

more information, see https://ocw.mit.edu/help/fag-fair-use/

This problem is called semantic segmentation
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What's the object class of the center pixel?

Bird
Bird
© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/ S ky

Translation invariance: process

each patch in the same way.

An equivariant mapping:
f(translate(z)) = translate(f(z))
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W computes a weighted sum of all pixels in the patch

(}
O—1w —0
O

j\ W e
B

W

— (O Wi is a convolutional kernel applied to the full image!

P

_>O

© Fredo Durand. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/
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Convolution

Linear, shift-invariant transformation

© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,

S
https://ocw.mit.edu/help/faq-fair-use/

K
filter Xout [11, m] =b + Z wlky, ka2 [xin[n+ ki, m+k;]
ki,kh=—K
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~ully-connected network

Fully-connected (fc) layer
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| ocally connected network

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
(z) each local function, we get a

convolutional neural network.

00000000

< 66555068
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Convolutional neural network

Conv layer
O- OO0
O W =O—0
O @O
| @O
O Om®
O OO
O O
O OO0
z g(z)

Z=WxX-+0b

28

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.



Conv layer

QO ?f?@
R

Z=WxX-+0b

Weight sharing

{53

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

29



Xout

Fully-connected) linear layer

Xout — WXin + b
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Convolutional layer

Xout = W *x Xin + b

Xout Xin

OOO000000O0

Xin Xout
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Toeplitz matrix

<~ QR Y~ &
> S Q
- Q O &
S T O & D

Q ~ 2 T O

e

X

e.g., pixel image

e Constrained linear layer

 Fewer parameters —> easier to learn, less overfitting
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y X
Conv layers can be applied to arbitrarily-sized inputs

(generalizes beyond the training data due to an architectural structure!)
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Images © source unknown. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see
https://ocw.mit.edu/help/faq-fair-use/
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Five views on convolutional layers

. Equivariant with translation f(translate(s)) = translate(f(z))

. Patch processing

. Image filter

=

. Parameter sharing %é
O=}w
O
O—4—w

O

. A way to process variable-sized tensors
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What happens when you stack convolutional layers?

O O ® O

' :: o ¢ O

' @ x;|i1] o ® xX;|i]
> @ O o O
O O o O
O O O O O
O O O O O
O O o O

' O | o O |

‘ :>‘ ® x|/ e ® x.|/]
> @ O o O
Q/O O ® O

The whole CNN acts like a (nonlinear) convolutional filter!
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What it we have color?

(aka multiple input channels?)



O00@®

Multichannel inputs

Conv layer

w € R3%3

n10000®

=

3IXN

g
oooooo\%

RlXN

e
o
c
(—|-

M
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Multichannel outputs

Conv layer

Filter bank of C filters

Xout |0, :] = W0, :] * xin + b[0]

Xout |C, )| = W|C' — 1,:] * x4 + b|C — 1]
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General Convolutional Layer Form: Multi-Input, Multi-Output

W Xin Xout

Cin Cin Cout

() > y

>

E * = > N
E

O }K )

\ N\ 4
X M

Cin
Xout [C29 ‘s :] — Z W[Cla Co, ., :] 7‘(}(in[cla ‘s :] T b[CQ]

-/ \

Input channel Output channel



2-dimensional output
INnput features A bank of 2 filters feature maps

Cio X HXxW Cout X HXW
Xln 6 R % Xout 6 R out
[Figure modified from Andrea Vedaldi]
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-eature maps

conv1 (after flrst conv layer)

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/

e Fach layer can be thought of as a set of C feature maps aka channels

* Each feature map is an NxM image



Multiple channels: Example

Xin € R3x128><128 X ot c R96><128><128
128
128
I:{> Filter Bank with I:{>
3x3 filters
128
128
3 06

How many parameters does each filter have?

(@) 9 (o) 27 (c) 96 (d) 864
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Multiple channels: Example

Xin € R3x128><128 X ot c R96><128><128
128
128
I:{> Filter Bank with I:{>
3x3 filters
128
128
3 06

How many filters are in the bank?

(a) 3 (o) 27 (c) 96 (d) can't say
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Fllter sizes

When mapping from

X &

%CZXNXM

— X(l_|_1) -

%C(l—l—l) X N X M

using an filter of spatial extent K X K>

Number of parameters per filter: K1 X Ko X (]

Number of filters: C'(;4 1)
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Input image (RGB)
H x W x 3]

3 channels

Laver 1 feature maps
H/4 x W/4 x C4]

Laver 2 feature maps
(H/8 x W/8 x (5]
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(7 filters
Layer 1
filters
(4x zoom)

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Pooling

Filter Pool
O O—0O O Max pooling
O O—0O O
O O—0O O Y; = Imax hj
O- O— O JEN (5)
O max =)
O O—O O
O Om®. O
O O—0O O
Z h y
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Pooling

Filter Pool
O OO O Max pooling
O O—0 O
O O—0 O y; = Inax h
O- O—C- O JEN(7)
O N—0
O O—Or O ,
O O—0O O Mean poolmg
O O—0 O
Z h y

Zh

JEN(J)
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Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax

50




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

51

large response

regard
pOSItIo

ess of exact

N of edge



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:
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Pooling across channels — Why?

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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max

large response
for any edge,
regardless of its
orientation



Computation in a neural net

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Computation in a neural net

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Downsampling

Filter Pool and downsample

O—0
O—0O
O—0O
O—O-
O—CO
O—0O
O—0

00000000
000O0000

z g(z)
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Downsampling

Filter Downsample
O OO O
O O—0
O O—0 O
O- O—0O
O O
O O—O
O O—0O O
O O—-—0
z g(z)
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Strided operations

Conv layer

o Stride 2 Strided operations combine a
@O given operation (convolution or
@

pooling) and downsampling

into a single operation.

0000000
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Strided operations (2D)

stride

Xout

59



Dilated filter

dilation

Xin Xout

Covers a large receptive tield with fewer parameters.
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Receptive fields

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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conv

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative

Commons license. For more in formation,
see https://ocw.mit.edu/help/fag-fair-use/

relu

O O

O
O

conv

Receptive fields

OCOO0@O0OO0
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input image

alexnet

conv1lO convl3

block2 block4 block6 block8

resnetlS8

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/




Implementing conv

Basic implementation:

1. im2col: NxMxC —> Npatches x (K x K x C)
2. bmm: batch matmul with kernel

3. col2im: Npatches x (K x K x C) —> NxMxC

or: fft signal processing stuft...

Usetul library:
timm: https://github.com/rwightman/pytorch-image-
models
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Popular CNN Architectures



Computation in a neural net

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Encoder
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Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Image-to-image

Skip connection >
> >
2|2
— S| g|— —> — — —
— glzs|— — .. — — —
— T 21— — — — —
=
:2 7p)

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Image-to-image

conv relu conv softmax

Yy vy Yy vy vy v vy v Y
Yy vy vy Yy vy vy vy v°Y

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/

U-net

L
Skip connection /
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ResNet

— — — —
— — —> —
— — — —

Image © Fredo Durand. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/

Residual connection: x,,« = F(Xi,) + Xin

Or, it you want to change dimensionality: Xout = F(Xin) + WXy
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Image-to-image

conv relu conv softmax

Yy vy Yy vy vy v vy v Y
Yy vy vy Yy vy vy vy v°Y

Image © Fredo Durand. All rights reserved.

This content is excluded from our Creative

Commons license. For more information,

see https://ocw.mit.edu/help/fag-fair-use/ 79




Convolutions in time

1OI®] I JVIO1 1O 1 OI0I0]®

0000000000000 ®

time
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What it you don’t want to be shitt invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this Is
called positional encoding
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What it you don’t want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this Is
called positional encoding

pos  signal

i

OO000@OO
OQQOQQ!}O
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Neural Fields

Coordinates Field

d:R° R

[ = P(x,y)

© Sitzmann, et al. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/
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Neural Fields — SIREN

CNN applied per-pixel to map from a coordinate grid to a color

Coordinates -ield

O L ! Eg /I:I
—
[ = (I)(xay)

© Sitzmann, et al. All rights reserved. This content is excluded from our Creative Commons license. For more

Can ta ke Conti n u Ou S COO r d i n ates a S i n P u t! ilnlformation, see https:,/;ocw.mit..edu/help/faq—fair—use/
[“SIREN", Sitzmann, Martel et al. 2020]
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Neural Fields — NeRF

Conv net applied to map from 5-D coordinate grid to a color + volumetric density

5D Input Output
Position + Direction Color + Density

. f» (x,y,Z,Q(b)—’[]I][I_’(RGB 0) \ Ray 1

A

© Mildenhall, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[”NeREO”, Mildenhall, Srinivasan, Tancik et al., ECCV 2020)]




© Yen-Chen Lin. All rights reserved. This
content is excluded from our Creative
Commons license. For more information,
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Concluding remarks

Convolution is a fundamental operation for image processing.

't just means: chop up the image into patches and apply the same
function to each patch.

This concept appears in almost all modern architectures, such as CNNs,
transformers, NeRFs, and more.
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4. Architectures for Grids

Why build better architectures®
Convolutional layers

Pyramids

Architecture zoo

Neural fields and positional encodings
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