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Today's lecture 

What class of functions can a neural net express 

neural nets are universal function approximates 

Then what architecture should I use 

three layers are enough 

stack more layers 

then what should I do in practice 
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The machine learning puzzle 

Three pieces to the puzzle 

Approximation Does there exist a neural net 
in my model family that fits the training data 

Optimization If it does exist can I find it 

Generalization Does it whell on unseen data 

This lecture will focus mainly on the first question 4
































































A motivating problem 
d A X X X X X X X X 

X X X X X X X X 

X X X X X O O O 

X X X X X O O O 

X X X X X O O O 

a 

can we classify this data with the function 
flu relulw're b 

Or what about with two layers 

flu I di rely win bi Bi 5
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Another motivating problem 
An example of a fractal curve 

se Hrothgar 

Weierstrass function is everywhere continuous 
nowhere differentiable 

can you fit it with a neural network 

If so how big should the network be 
6
































































Formalizing the approximation problem 

Given a family of curves G 4 7 109fduction 
And a family of neural networks F 

e g b layer 
rely MEPs 

For any curve g e G 
Dees there exist a neural net f e F think 

Such that error f g ET shutter 

e g ero I Max If fal g n L error 

or error fig E fdu Ifta glu C error 
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One nice family of curves G 
s 
itg.IE itEfpinitz it 
glut In gene e c lanl 

for all inputs ne IR and all In E IR 

Intuition the slope of g cannot exceed L 

It g passes through the 
origin then it can never 

stray outside tea 
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multi dimensional Extending to inputs 

itEptitisanite
glut an gene E C IlAullrms 
all me Rd and for inputs all In e IR 

size of the entries of the vector 
C it measures root mean square the average 

all rms V'aÉi 
Define the norm Rms 
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In this lecture we will prove 

I 
d dimensional hypercube 

theorem 
Let g to IR be any L Lipschitz function 
Then for any error E 0 

There exists a 3 layer rely network 

With N 4d Lie units 

such that f flu gin dm ZE 

to I d 
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Strategy for proving the result 

Stegligentetsult 
for id inputs 

via approximation with 

rectangular strips 
ie ignore rely 
networks for now 

Stegenetiigse to higher input dimension 

rein networks can 

approximate rectangularstrips 
11



Step One Approximation with rectangles 

gin 

FFFFFFFFTTFE.si eceithintenan E heightof it rectang 

a 
Given N rectangular strips what is the 

approximation error 

Lipschitz constant cameras Ei 
number of strips 
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N strips each strip has width In 

jiff 

by cipsiniteness the 
curve can't exceed 
the top side of the 
triangle 

The triangles has area I fr 
Total error Sdn Iftu gull e N x I Er 

It 
So to achieve error E we need N 1 13
































































Step two Higher input dimension 
Think approximating a surface with cuboids 

XÉH gal 

in 
N hyperre tangles each has side of EuclideanlengthIya 
total error foulfin gin E N x Fax I Et 

t ynumber of 
hyperrentangles heighto area of 

error cap error cap 

To get error E requires NefÉ hyperrectangles 14
































































Step Three Rely networks can fit rectangles 

t 
c u Inow define fatal f rely c u t 2 

a fu i 3 

CLAIM let c o and we get 
n 

I false 

0 I n 

can also translate horizontally by adjusting weights and 
biases 15

























































 






Hongenoucin

But we need d dimensional hyperrectangles 

Solve by adding l dimensional rectangles and 

thresholding appropriately 

Only exceeds d t when all rectangles are on 

so just threshold at d 1 
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Assembling the pieces 
t 
c n 

c u Irectangle fatal I I rely c u t 2 

a fu i 3 

hyperrectangle he n new II fc ni d 1 

linear combination 
of hyperreirangles flat hi hat if posgiti.gg 

Let c so and we get an approximation of an arbitrary 
Lipsmite surface glut 
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Some comments 

Égto IR be any L Lipschitz function 
Then for any error E O 

É3g 
There exists a 3 layer reunerwora 
With N 4d Cle units 

such that f flu gin dm ZE 

to I d 

General idea approximate bumps then linearly combine 

Needs exponentially many 
neurons in dimension 

Taking C 7N feels unrealistic 

Approximating rectangles feels like a trick 18
































































Imagine training the rectangle representation 

yn x 

MI 
would just get rectangles on the training points X 

regularisation weightdecay would suppress the others 

Would not generalise 
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Further reading 
More results on universal function approximation 

Barron's theorem 

smoothfunctions can be approximated with fewer neurons 
leverages Fourier representation 

2 layers are enough 

e g Hornik Stinchcombe and White 1989 

uses StoneWeierstrasstheaen_ 
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Is universal function approximation important 
Is UFA sufficient for learning to work 

No there are many UFAs that we usuallydon't do ML with 

Examples Fourier series 

polynomials 
the space of Python programs 

Is UFA necessary for learning to work 
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Width versus depth 

22
































































iIÉÉ 

i 

s i a le wi dth 

t 
scale depth 23
































































Width versus depth 

Iiieitistittin a 
union 
function 
approxinators 

width is inherently parallelicable depth is sequential 

width is easier to train depth leads to compound problems 

So scaling width is odiously better 
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Or is it Depth separations 
Universal function approximation results suggest needing 
exponentially many hidden units at small width 

depth separation results construct deep networks 
that require exponentially more units to fit with 
a shallow network 
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The shape of a result 

To prove a depth separation of linear 

pick a property of a function 
regions 

construct a deep network that has this property 

prove that a shallow network would need 

exponentially more units to also have this 
property 
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Piecewise linear functions 
A flat we will define a kink 

to be a place where the 

gradient changes 
R E Here Rinks 4 

Claim relu networks are piecewise linear PWL 

Why rein is PWL 

fig both PWL ft g PWL 

fig both PWL fog PWL 

f PWL a f PWL for LE IR 

Okay let's construct a depth separation based on kinks 
27
































































Intuition Effect of adding width 

É di fila 
fi f 

Y 

fi 
when we add functions at most we add the kinks 

997 fila film 3Kinks 

2 Kinks i tin 
film I kink 

x 28
































































Intuition Effect of applying rel a 

result 
yea rely flu 

When we appfrely at most we double the kinks 
d 

41142 results 9 kink 

flu 5 Kinks 

Because linear pieces can be split in two 
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More formally o o 

der my 
files realm it tIj 

ve in112 Inmatrix 
Let KINKS denote the max number of Kinks over the 

n coordinates of film 
Then it holds that Kinks E 2 n kink So 

Since Kinks I this implies tK s 
30
































































Interpreting the result 

we showed that thinks 
KINKS Kinks in the function at layer L 

n width 

depth 

upper bound grows at best pedonially in width 

but expantilly in depth 

Need to ask is the bound ever attained 
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Short answer Yes 

Define g n rely 2 relate 4 rely u t 

in 
gla 

to Me 
Each time we iterate g ie compose with self 

we docile the number of linear regions 

I Ah MAL 
g gag g g g 32
































































Depth separation 

go go o g 500 times has 2 I kinds 

it has 1000 layers of width 2 

to get the same number of Kinks with a 

3 layer network we would need a width n of 

KINKS E Zn 

N I L KINKS 

I 12500 1 
3 

7 10 94n 
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What does this not say 

It does not mean that 

very deep networks are easy to train 
OPTIMICATION 

very deep networks would generalise well 
GENERALISATION 

In our machine teaming puzzle it only tells 
us something about Approximation 
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Further reading 

Tel garsky 2015 2016 

our depth separation 

Safran and Shamir 2017 
a different depth separation 

Lu Pu Wang Hu and Wang 12017 
results on minimum width needed 
to be a universal function approximate 
even at largedepth 
relates to rank of the weight matrices 35
































































Practical considerations 
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Let's consider the whole puzzle 

APPROXIMATION 

OPTIMISATION 

GENERALISATION 

Pretend you work at an CLM startup 
You want to train the most efficient Lem possible 
You really care about the optimal width ve depth 
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Scaling laws 

From Kaplan Mccandlish et al 12020 
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The importance of confounders 

mensch et al 2020 

question some results in Kaplan et al 
suggest a different learning rate s the date 
changes certain scaling results 

to really answer 
what is the optimal width versus depth 
need to obsess over minor details of the 

training pipeline 
39
































































Wrapping up 
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Summary 

Very wide shallow neural nets are universal 
function approximators 

Deeper networks can fit certain kinds of function 
with many fewer neurons depth separations 

Unclear how these results interact with training 
and generalisation 
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Preview Inductive biases 

Suppose we want to solve two different 
machine learning problems 

whither MEt 
hello hitman 

In both cases we could flatten the inputs 
into vectors and just apply an MLP 

Hey it's a universal function approximator 
But is this a good idea 
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