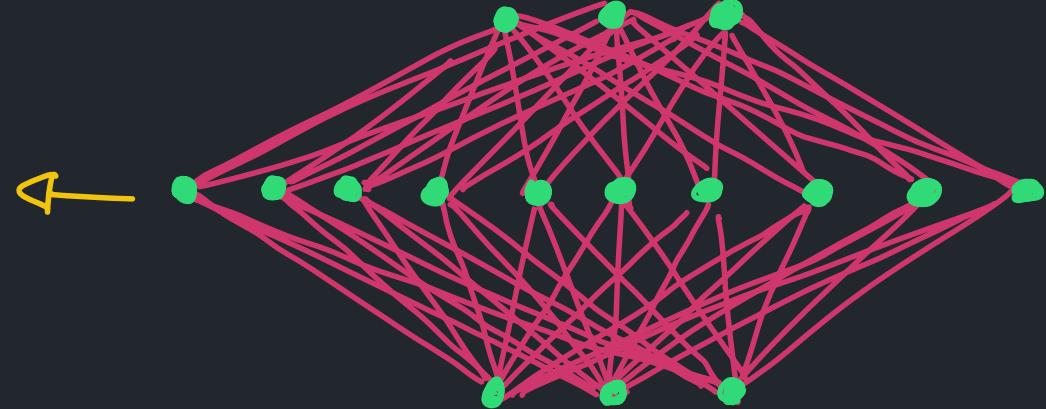
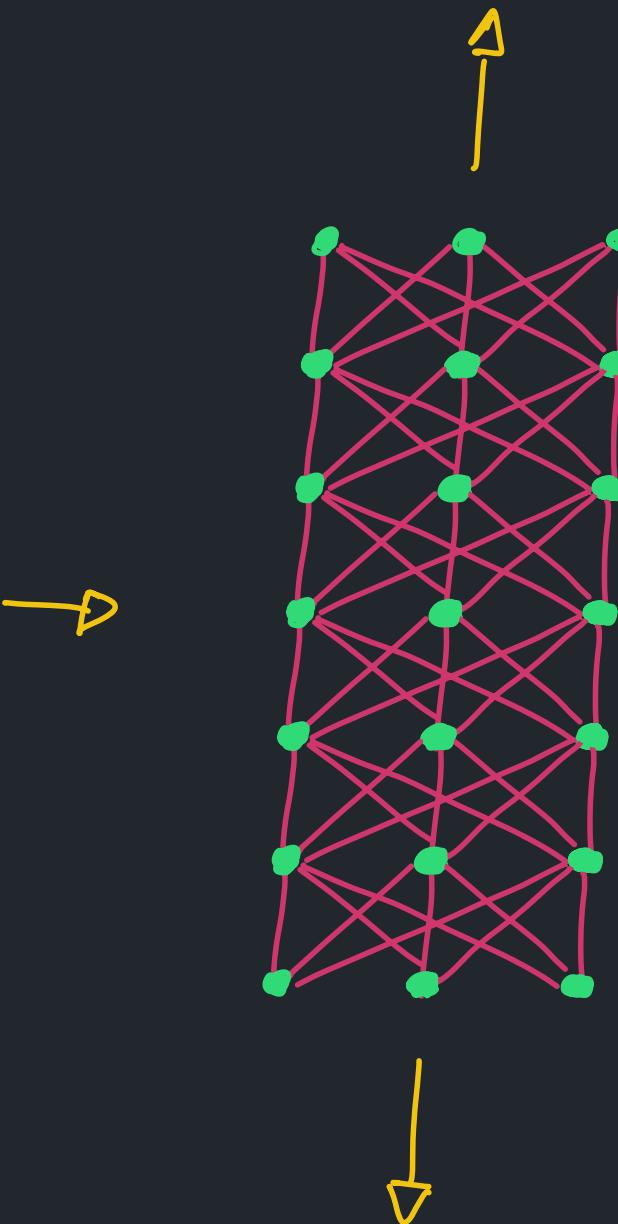


Approximation Theory

Jeremy Bernstein

jbernstein@mit.edu

Would you rather...



Today's Lecture

What class of functions can a neural net express?

"neural nets are universal function approximators"

Then what architecture should I use?

"three layers are enough"

"stack more layers!!!"

...then what should I do in practice?

The machine learning puzzle

Three pieces to the puzzle:

① Approximation Does there exist a neural net in my model family that fits the training data?

② Optimization If it does exist, can I find it?

③ Generalization Does it work well on unseen data?

This lecture will focus mainly on the first question.

A motivating problem



Can we classify this data with the function:

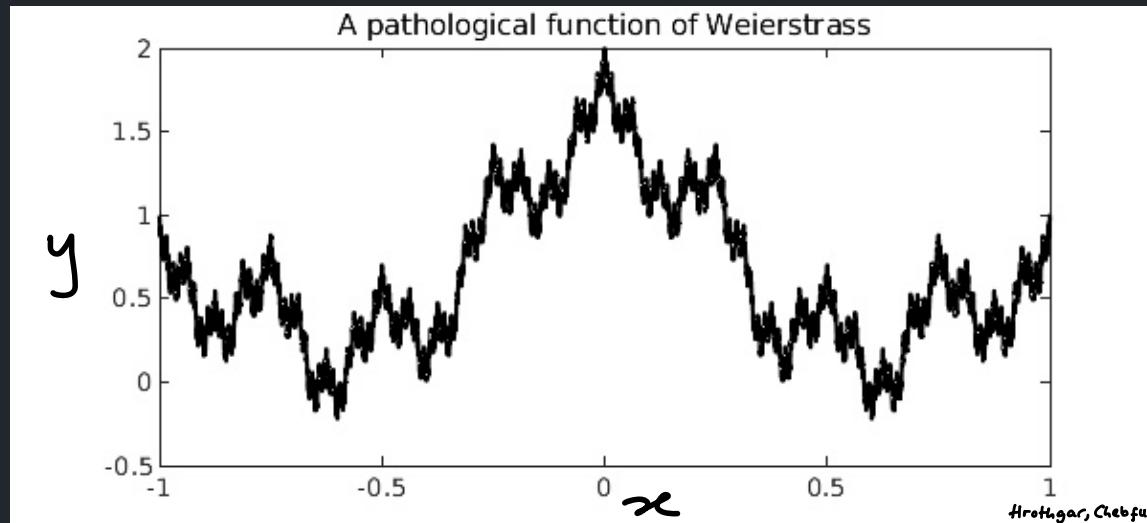
$$f(x) = \text{relu}(w^T x + b) \quad ?$$

Or what about with "two layers":

$$f(x) = \sum_i \alpha_i \text{relu}(w_i^T x + b_i) + \beta_i \quad ?$$

Another motivating problem

An example of a "fractal curve"



Weierstrass' function is everywhere continuous
nowhere differentiable

→ Can you fit it with a neural network?

If so, how big should the network be?

Formalizing the approximation problem

Given a family of curves G — exclude pathological functions
And a family of neural networks F — e.g. 5 layer relu MLPs

For any curve $g \in G$

Does there exist a neural net $f \in F$ think: small number
Such that $\text{error}(f, g) < \epsilon$?

e.g. $\text{error}(f, g) \triangleq \max_x |f(x) - g(x)|$ "L_∞ error"

or $\text{error}(f, g) \triangleq \int dx |f(x) - g(x)|$ "L₁ error"

One nice family of curves G

Lipschitz continuous functions

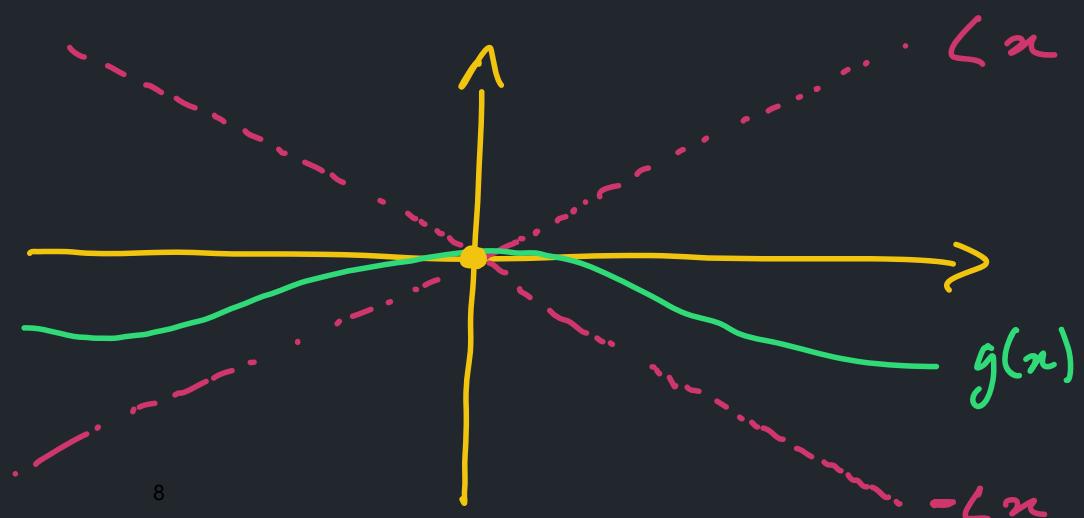
$g: \mathbb{R} \rightarrow \mathbb{R}$ is " L - Lipschitz" if

$$|g(x + \Delta x) - g(x)| \leq L |\Delta x|$$

for all inputs $x \in \mathbb{R}$ and all $\Delta x \in \mathbb{R}$.

Intuition: the slope of g cannot exceed L .

If g passes through the origin then it can never stray outside $\pm Lx$.



Extending to multi-dimensional inputs

Lipschitz continuous functions

$g : \mathbb{R}^d \rightarrow \mathbb{R}$ is " L -Lipschitz" if

$$|g(x + \Delta x) - g(x)| \leq L \|\Delta x\|_{\text{RMS}}$$

for all inputs $x \in \mathbb{R}^d$ and all $\Delta x \in \mathbb{R}^d$.

Define the "RMS-norm"

$$\|x\|_{\text{RMS}} \triangleq \sqrt{\frac{1}{d} \sum_{i=1}^d x_i^2}$$

L , it measures the average (root-mean-square) size of the entries of the vector.

In this lecture, we will prove...

d-dimensional hypercube.

Theorem:

Let $g: [0,1]^d \rightarrow \mathbb{R}$ be any L -Lipschitz function.

Then for any error $\epsilon > 0$

There exists a 3-layer relu network

With $N = 4d(L/\epsilon)^d$ units

such that $\int_{[0,1]^d} |f(x) - g(x)| dx < 2\epsilon$

Strategy for proving the result

Step one:

derive result for 1d inputs

via approximation with

"rectangular strips"

ie ignore relu
networks for now.

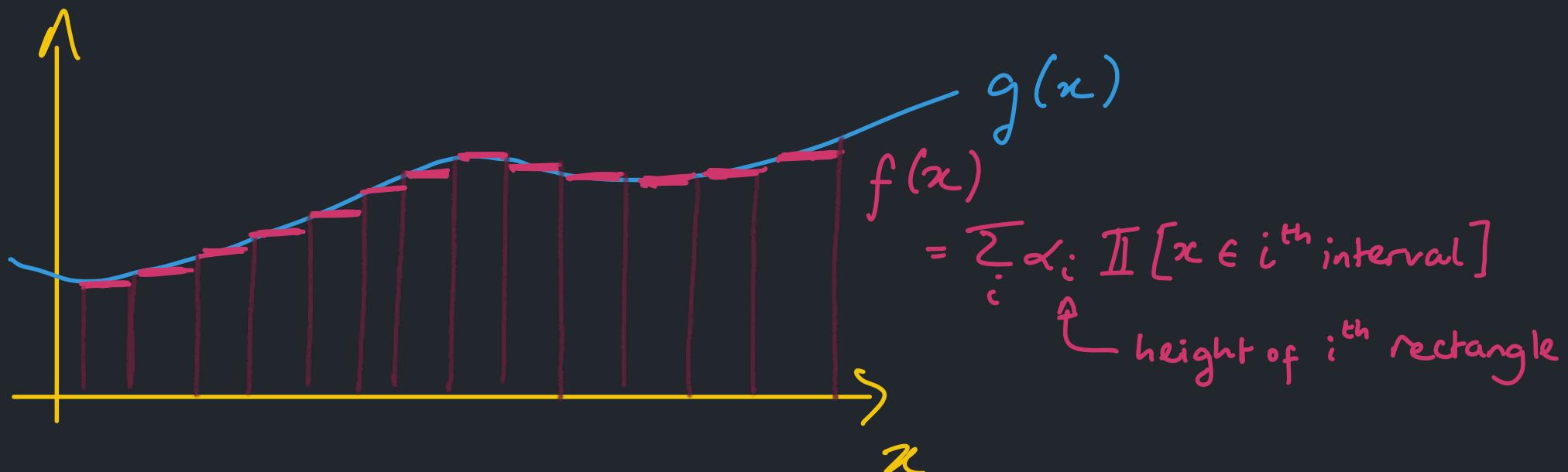
Step two:

generalise to higher input
dimension

Step three:

Show that relu networks can
approximate rectangular strips

Step One: Approximation with rectangles



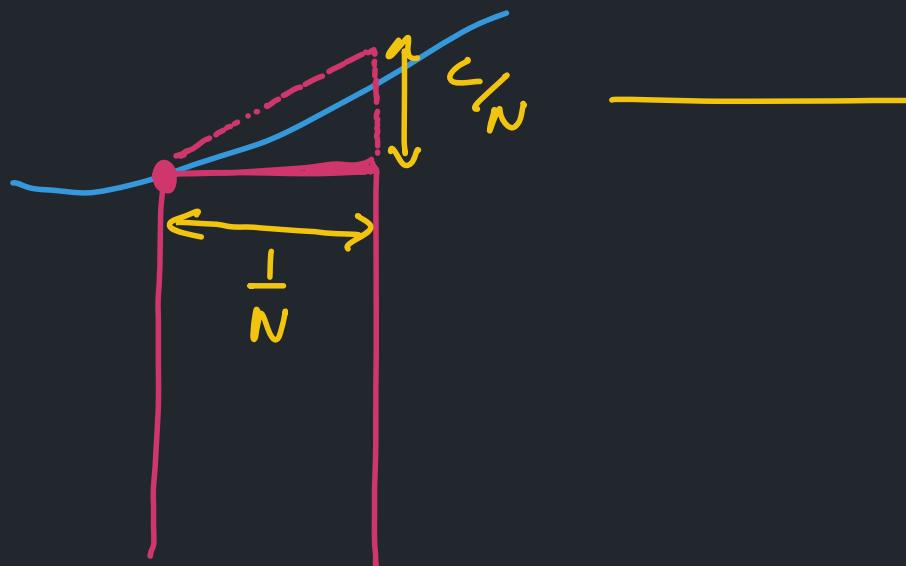
Given N rectangular strips, what is the approximation error?

CLAIM: error $\leq \frac{L}{2N}$

increases with Lipschitz constant

decreases with number of strips

N strips \Rightarrow each strip has width $\frac{1}{N}$



by Lipschitzness the curve can't exceed the top side of the triangle

The triangle has area $\frac{1}{2} \frac{L}{N^2}$

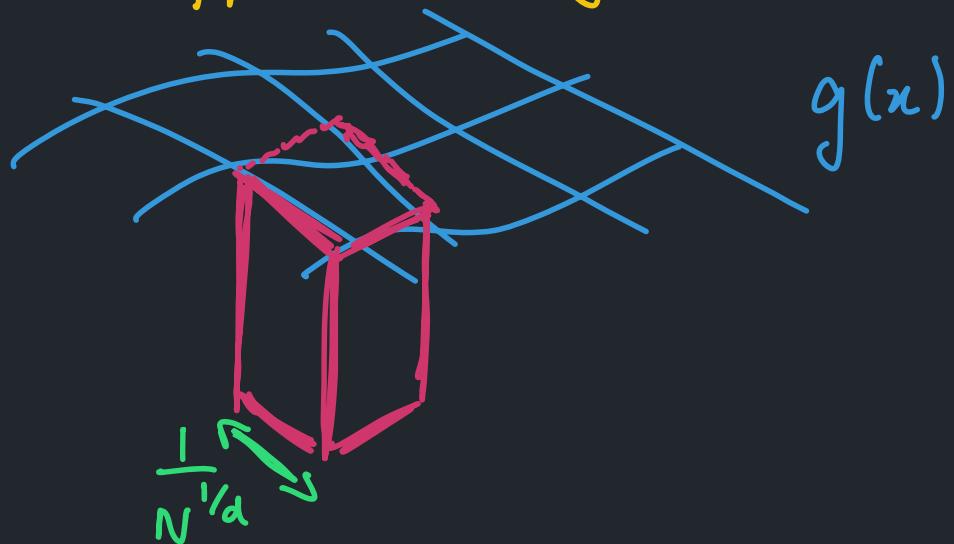
$$\begin{aligned} \text{Total error} &= \int dx |f(x) - g(x)| \leq N \times \frac{1}{2} \frac{L}{N^2} \\ &= \frac{1}{2} \frac{L}{N} \end{aligned}$$

So to achieve error ϵ we need

$$N = \frac{1}{2} \frac{L}{\epsilon}$$

Step two: Higher input dimension

Think: approximating a surface with cuboids



N hyperrectangles \Rightarrow each has side of Euclidean length $\frac{1}{N^{1/d}}$

$$\text{total error} = \int dx |f(x) - g(x)| \leq N \times \frac{\zeta}{N^{1/d}} \times \frac{1}{N} = \frac{\zeta}{N^{\frac{1}{d}}}$$

number of hyperrectangles

height of error cap.

area of error cap.

To get error ε requires

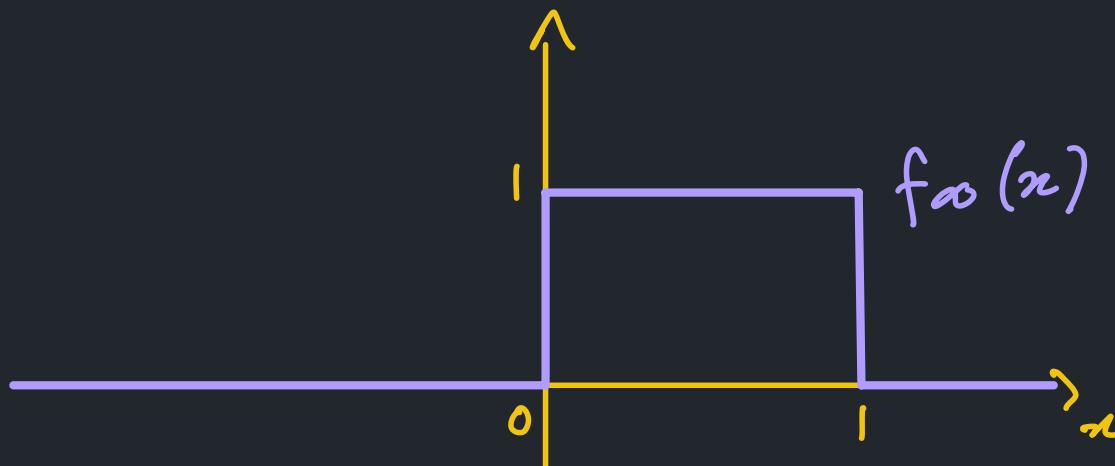
$$N = \left(\frac{\zeta}{\varepsilon}\right)^d$$

hyperrectangles

Step Three: Relu networks can fit rectangles

Now define $f_c(x) = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}^T \text{relu} \begin{bmatrix} cx \\ cx - 1 \\ c(x-1) - 2 \\ c(x-1) - 3 \end{bmatrix}$

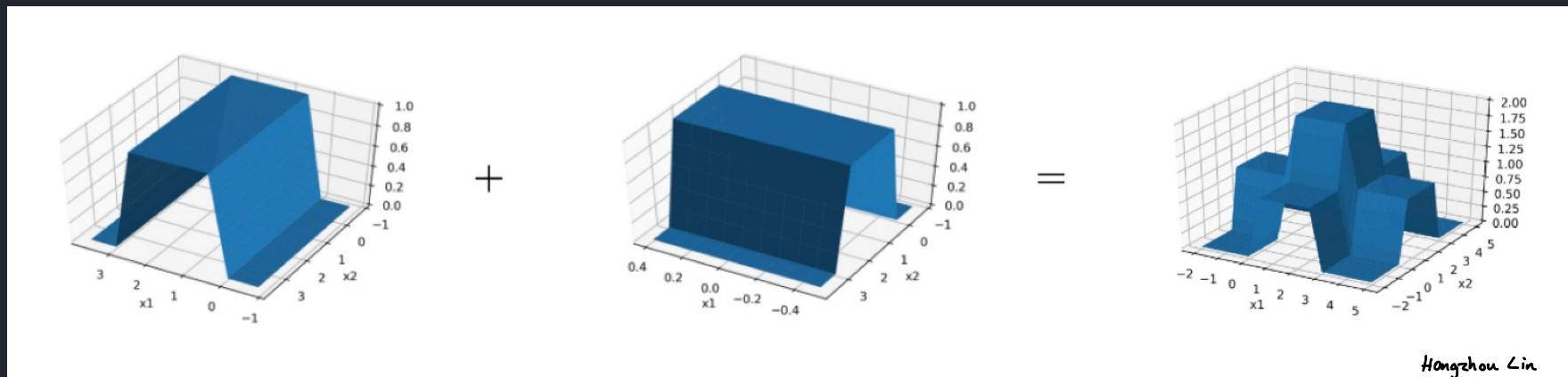
CLAIM: let $c \rightarrow \infty$ and we get:



↪ can also translate horizontally by adjusting weights and biases.

But we need d -dimensional hyperrectangles...

Solve by adding 1-dimensional rectangles and thresholding appropriately



Only exceeds $d-1$ when all rectangles are "on"

↪ so just threshold at $d-1$.

Assembling the pieces

rectangle: $f_c(x) = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}^T \text{relu} \begin{bmatrix} cx \\ cx - 1 \\ c(x-1) - 2 \\ c(x-1) - 3 \end{bmatrix}$

hyperrectangle: $h_c(x) = \text{relu} \left[\sum_{i=1}^d f_c(x_i) - (d-1) \right]$

linear combination
of hyperrectangles $f(x) = \sum_i \alpha_i h_c(x - u_i)$

position of *i*th
grid point

Let $c \rightarrow \infty$ and we get an approximation of an arbitrary Lipschitz surface!

Some comments

Theorem:

Let $g: [0,1]^d \rightarrow \mathbb{R}$ be any L -Lipschitz function.

Then for any error $\varepsilon > 0$

There exists a 3-layer relu network

With $N = 4d(L/\varepsilon)^d$ units

such that $\int_{[0,1]^d} |f(x) - g(x)| dx < 2\varepsilon$

General idea: approximate "bumps" then linearly combine

Needs exponentially many neurons in dimension

Taking $c \rightarrow \infty$ feels unrealistic

Approximating rectangles feels like a trick

Imagine training the rectangle representation

- would just get rectangles on the training points X
- regularisation (weight decay) would suppress the others
- would not generalise!

Further reading

More results on universal function approximation

- Barron's theorem

"Smooth functions can be approximated with fewer neurons"

leverages Fourier representation

- 2 layers are enough

e.g. Hornik, Stinchcombe and White (1989)

uses Stone-Weierstrass theorem

Is universal function approximation important?

Is "UFA" sufficient for learning to work?

No, there are many UFAs that we usually don't do ML with:

Examples: Fourier series

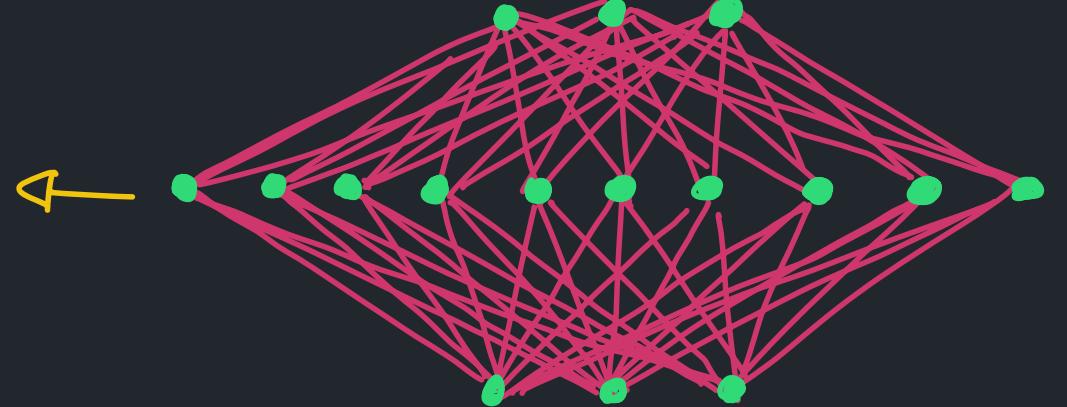
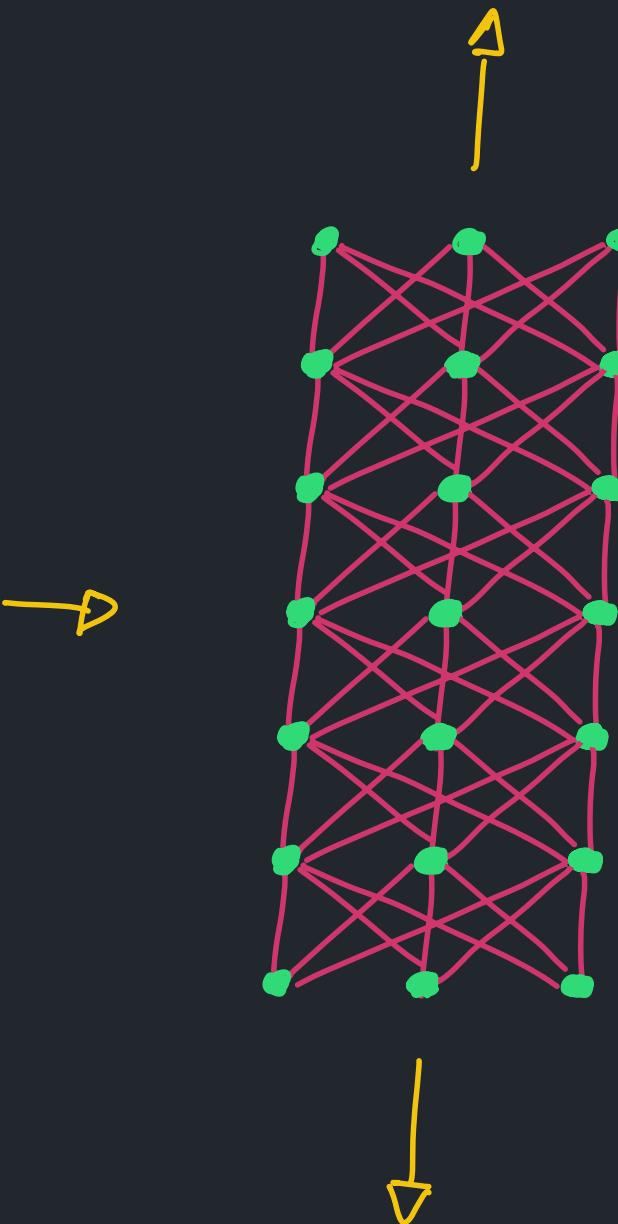
polynomials

the space of Python programs

Is "UFA" necessary for learning to work?

width versus depth

Would you rather...



Width versus depth

Advantages of scaling width

- 3 layer (or even 2 layer) NNs are "universal function approximators"
- width is inherently parallelisable, depth is sequential
- width is easier to train, depth leads to "compound problems"

So, scaling width is obviously better !

Or is it?.... Depth separations

Universal function approximation results suggest needing exponentially many hidden units at small width

"depth separation" results construct deep networks that require exponentially more units to fit with a shallow network.

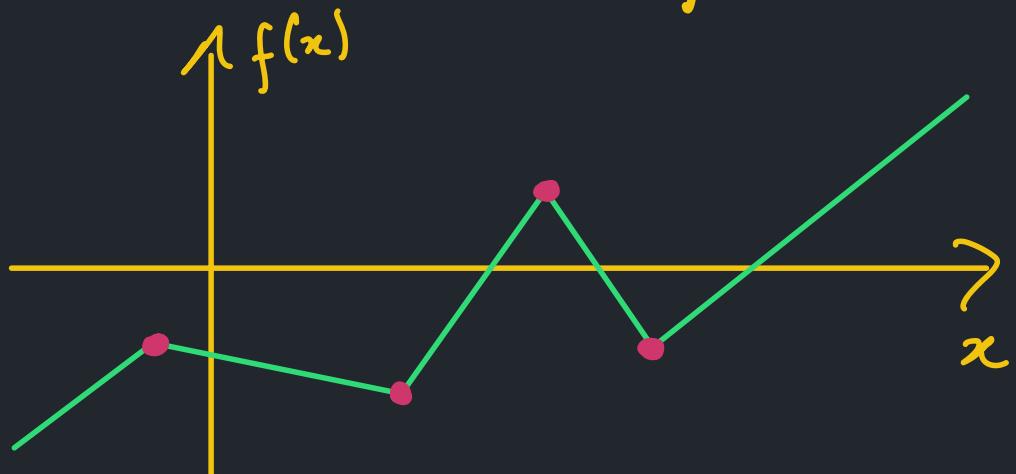
The shape of a result

To prove a "depth separation"

e.g. "number of linear regions"

- ① pick a property of a function
- ② construct a deep network that has this property
- ③ prove that a shallow network would need exponentially more units to also have this property

Piecewise linear functions



we will define a "kink" to be a place where the gradient changes
Here, #kinks = 4

Claim: relu networks are piecewise linear ("PWL")

Why? relu is PWL

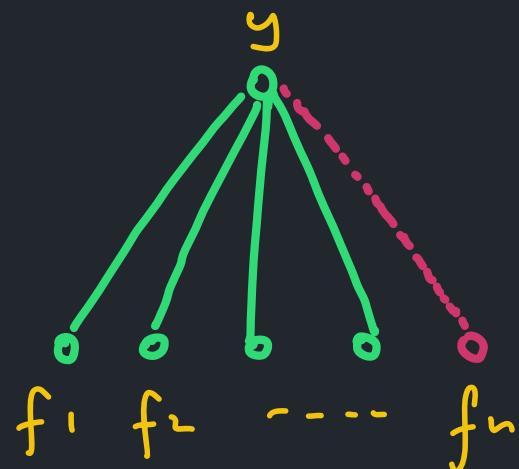
f, g both PWL $\Rightarrow f + g$ PWL

f, g both PWL $\Rightarrow f \circ g$ PWL

f PWL $\Rightarrow \alpha \cdot f$ PWL for $\alpha \in \mathbb{R}$

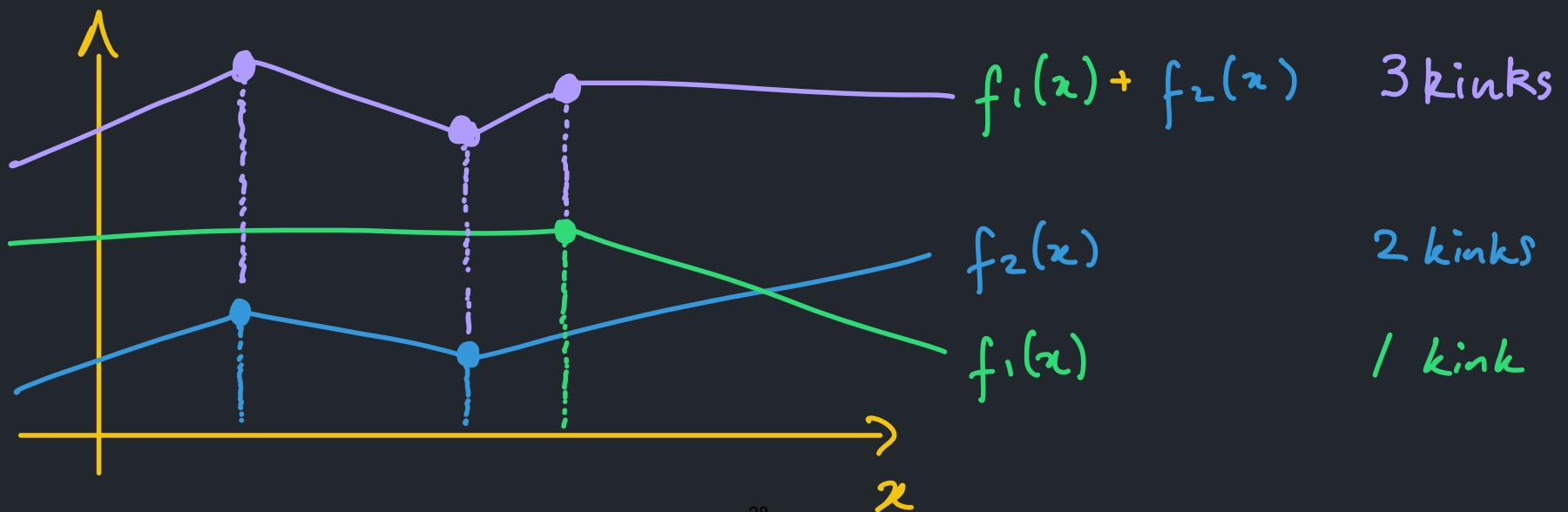
Okay, let's construct a depth separation based on #kinks

Intuition: Effect of adding width



$$y(x) = \sum_{i=1}^n \alpha_i f_i(x)$$

When we add functions, at most we add the # kinks.

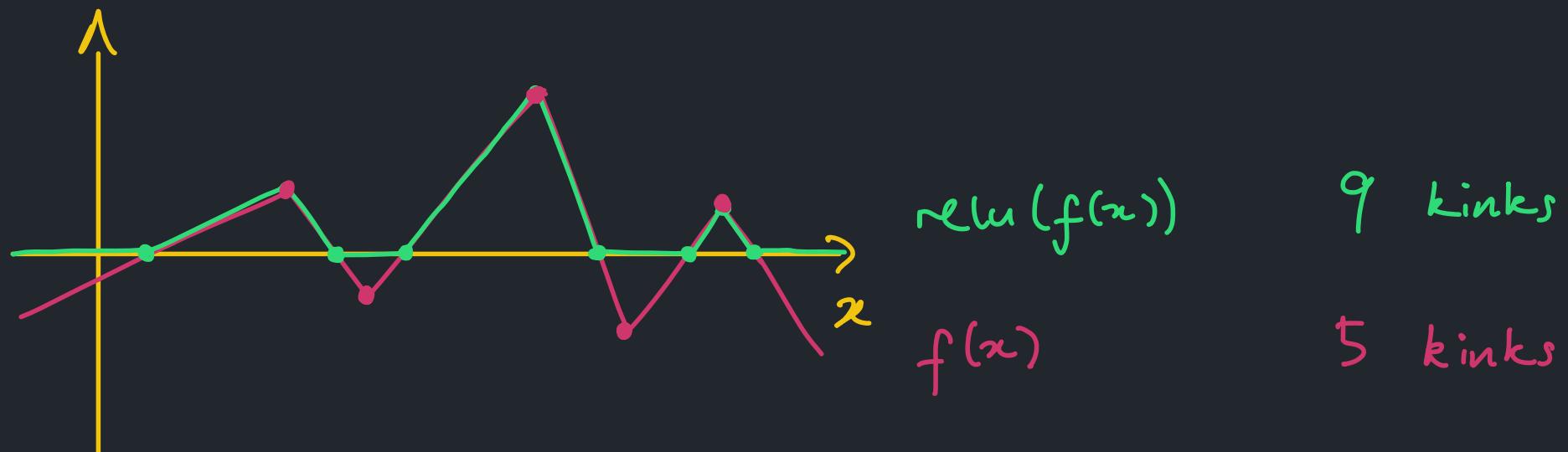


Intuition : Effect of applying relu

$$\begin{array}{c} \text{relu}(f) \\ \downarrow \\ f \end{array}$$

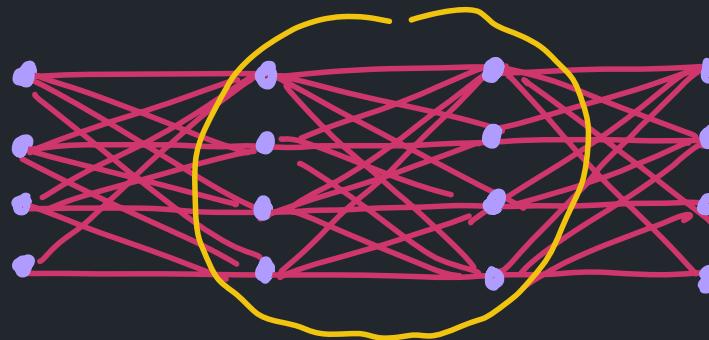
$$y(x) = \text{relu}(f(x))$$

When we apply relu, at most we double the # kinks



Because linear pieces can be split in two.

More formally



Consider the l^{th} layer:

$$f_l(x) = \text{relu}\left(W_l f_{l-1}(x) + b_l\right)$$

vector in \mathbb{R}^n

$n \times n$ matrix

vectors in \mathbb{R}^n

Let KINKS_l denote the max number of kinks over the n coordinates of $f_l(x)$.

Then it holds that $\text{KINKS}_l \leq 2^n \cdot \text{KINKS}_{l-1}$

Since $\text{KINKS}_0 = 1$, this implies $\boxed{\text{KINKS}_l \leq (2^n)^l}$

Interpreting the result

We showed that: $\boxed{KINKS_L \leq (2n)^L}$

$KINKS_L$ = # kinks in the function at layer L

n = width

L = depth

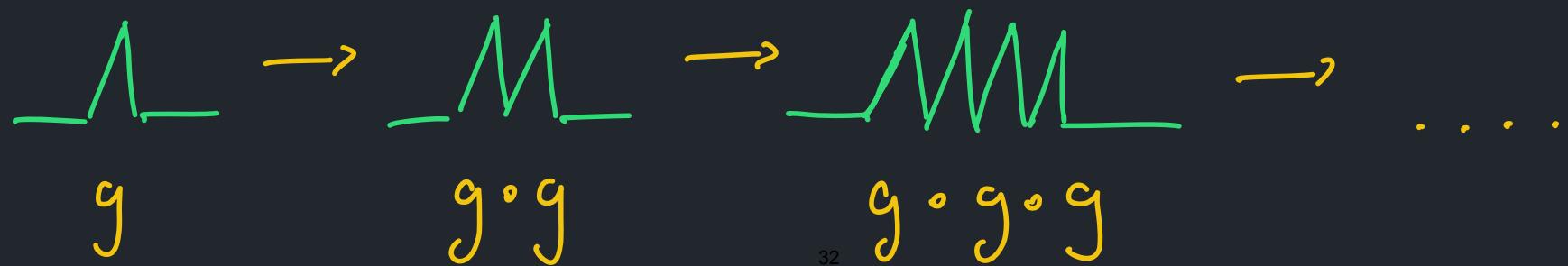
↳ upper bound grows at best polynomially in width
but exponentially in depth

Need to ask: is the bound ever attained?

Short answer: Yes!

Define $g(x) = \text{relu} \left[2 \cdot \text{relu}(x) - 4 \cdot \text{relu}(x - \frac{1}{2}) \right]$

Each time we "iterate" g — i.e. compose with self — we double the number of linear regions



\Rightarrow Depth separation

- $g \circ g \circ \dots \circ g$ 500 times has $2^{500} - 1$ links
- it has 1000 layers of width 2
- to get the same number of links with a 3-layer network we would need a width n of

$$\text{KINKS} \leq (2^n)^L$$

$$\Rightarrow n \geq \frac{1}{2} \cdot \text{KINKS}^{\frac{1}{L}}$$

$$= \frac{1}{2} \cdot (2^{500} - 1)^{\frac{1}{3}}$$

$$= \overbrace{7 \times 10^{49}}^{\text{units}}$$

What does this not say?

It does not mean that :

- very deep networks are easy to train
OPTIMISATION
- very deep networks would generalise well
GENERALISATION

In our machine learning puzzle, it only tells us something about *APPROXIMATION!*

Further reading

- Telgarsky (2015, 2016)
 - our depth separation
- Safran and Shamir (2017)
 - a different depth separation
- Lu, Pu, Wang, Hu and Wang (2017)
 - results on "minimum width" needed to be a universal function approximator even at "large depth"
 - relates to rank of the weight matrices

Practical considerations

Let's consider the whole puzzle

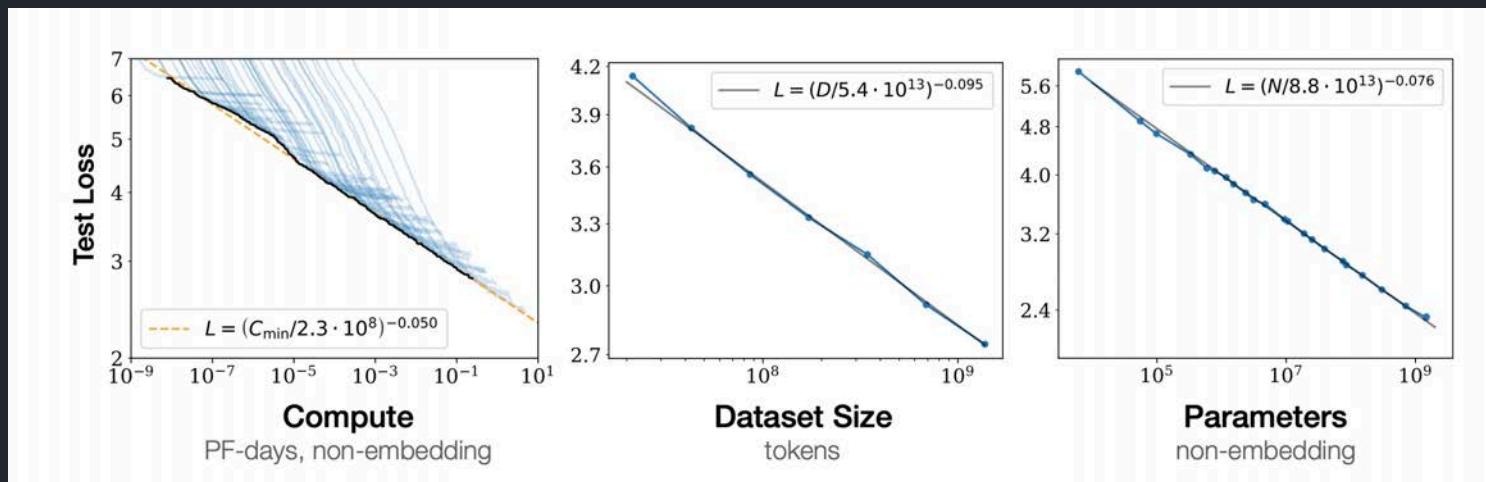
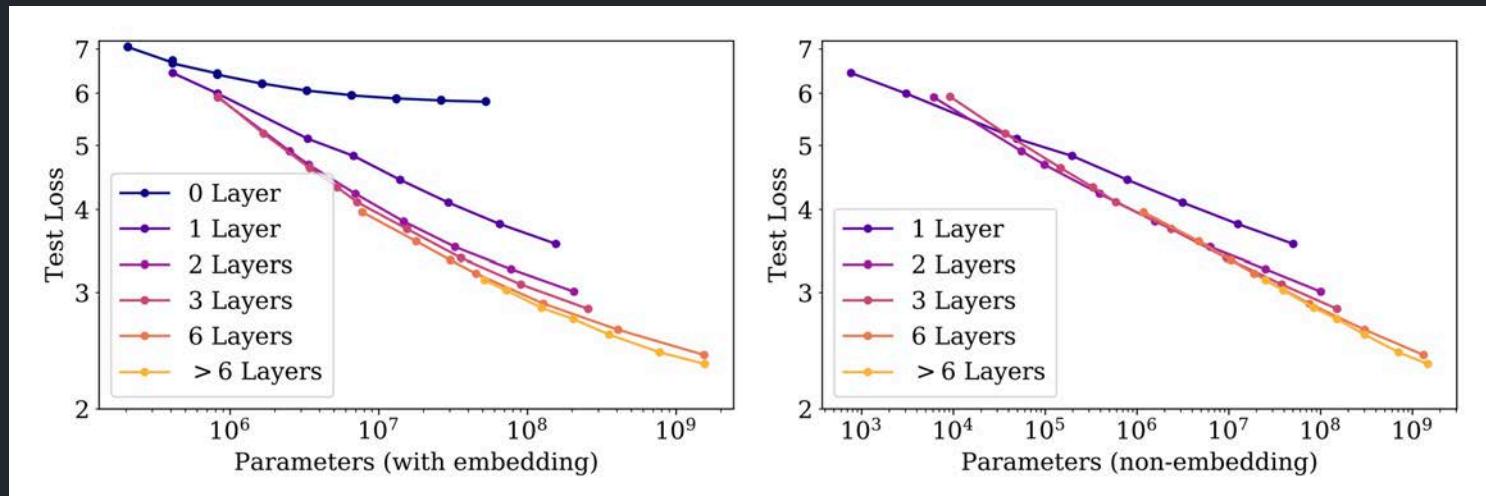
APPROXIMATION

+ OPTIMISATION

+ GENERALISATION

- Pretend you work at an LLM startup
- You want to train the most efficient LLM possible
- You really care about the optimal width vs. depth

Scaling laws



From Kaplan, McCandlish et al (2020)

The importance of confounders

"Chinchilla scaling rules"

Hoffmann, Borgeau, Mensch et al (2020)

- question some results in Kaplan et al
- suggest a different learning rate schedule
- changes certain scaling results

→ to really answer

"what is the optimal width versus depth"

need to obsess over "minor details" of the
training pipeline

Wrapping up

Summary

- Very wide shallow neural nets are universal function approximators
- Deeper networks can fit certain kinds of function with many fewer neurons — "depth separations"
- Unclear how these results interact with training and generalisation

Preview: Inductive biases

Suppose we want to solve two different machine learning problems

unstructured

"hello"

"human"

In both cases, we could flatten the inputs into vectors and just apply an MLP...

↪ Hey, it's a universal function approximator.

But, is this a good idea?

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>