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We build neural networks like lego
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What does that even mean?

Suppose we can characterize the
properties of an individual layer

Can we characterize the properties of combinations of layers?
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y+Ay

What properties do we care about?

an input X
a layer has weights
an output y

X+AX

How sensitive is the output to the weights and inputs?
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If we understand the sensitivity of individual layers...
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...can we extend this understanding to combinations?
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A deep learning library should be like a lego set

e acollection of layers each with its own theory
e asystem of rules for combining layers
e build whatever you want!
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The practical payoff... so far

[ ) [ ) [ ] [ ]
fixing scaling issues nanoGPT speed records
. NanoGPT speedruns
. —— |Im.c baseline 140ms/step 10.258B tokens
wid t h 10/14/24 record 179ms/step 2.67B tokens

3.7 1 —— +Distributed Muon 154ms/step 2.67B tokens

® — 32

© "

= —— 64 3 361

2 — 128 z

K= @ 35

3 ‘\ —— 256 3

5 512 = e

F 1024
- 3.3
learning rate ’ Wallclock timéo(minutes on3ng100) =

@kellerjordan®

© @kellerjordan0 on X. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
7 https://ocw.mit.edu/help/faq-fair-use/



https://ocw.mit.edu/help/faq-fair-use/

Part |

Optimization theory



Recall: Steepest descent

Consider a loss function £: rY - R and its Taylor expansion:

Liw+Aw) | = | Lw) v LTAw Ve AWTV? LAw
< | Lw) v LTAw Y N ||Aw||?
can we find anorm || - || and a sharpness A

to make this inequality hold tightly?

If so, then we can select an optimization step by solving:

arg min,

\Y W.C TAwW

V2 N lAw][®

©




How could we produce such a norm? Step 1/3

We need to bound

AWTVZW.CAW <

A [lAw]®

Recall that in deep learning, the loss function is a composite

Low)y|=| € |o©
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neural net

By the Gauss-Newton decomposition, the Hessian satisfies:

AWV 2W£ Aw

2
Aw V of Aw Vfﬂ
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Aw V f szﬁ v fAw
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How could we produce such a norm? Step 2/3

We need to bound

AWTVZW.CAW <

A [lAw]®

Now suppose we know a good norm || - || on the network output

Then we may bound the Gauss-Newton decomposition:

AWV 2W£ Aw

IA

2
Aw V of Aw Vfﬂ

IAw V2 £ Awll || IV 2l

f

dual norm

11

+

Aw V f szﬁ v fAw
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operator norm
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How could we produce such a norm? Step 3/3

We need tobound | Aw'V? LAw | < A J|Aw||?

By the Gauss-Newton decomposition and having an output norm:

AWTVZW.CAW = Aw Vzwf Aw V 0 + [Aw V f szﬁ v fAw

IA

law V2 s AWl [TV 2|+ [ IV | TV, fAwll?

Therefore, our problem reduces to the following:

Can we produce a norm || - || on the network weights such that:

lAw V2 f Aw|| | = | o [JAw]]? IV fAW[[* | < | S]lAw]]?

network is “Lipschitz smooth” network is “Lipschitz”
12 12



Interpreting these conditions

network is “Lipschitz smooth” network is “Lipschitz”

weights w
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We seek a weight norm that controls the network’s Taylor expansion

s = 0w -+ AT [T + -




Recursively inducing a norm on the weight space

Activation spaces

‘Tensor spaces |,
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Part |l

The theory of modules



Combinator pattern

complex structures are built by defining a small set of very
simple “primitives”, and a set of “combinators” for
combining them into more complicated structures

input x
_

: module M >

weights vL oUtpUL v

Given two modules [M, | and | M, | we can form their:
composition M °M _l(_> M. — M Y modules
P 2 1 1 2 [ in series

i & dul
concatenation (M, M) X _modutes
in parallel
16 M, —> Y, -




Some basic circuits

Ml
[ ] [ ] Add I
addition M, +M, M I

multiplication
by scalar

axM  ——» M [—» Mul_(—p

where [ Add |and [Mul, | are special “utility modules”

Now we can build a residual block a * Identity+b * M

Identity — Mul , —»
—< Add —»
M & Mul_—p

b
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Three kinds of modules

Atoms — hand-declared attributes

e.g.

Linear

Conv2d

Embed

Bonds — hand-declared attributes + no weights

e.g.

RelLU

FunctionalAttention

Compounds — combinations of atoms and bonds

e.g.

MLP

Linear | ©

18

RelLU O

Linear
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Sensitivity of a module

X X+|AX X
— y —> y+|Ay —> y+|Ay
W M —> W M —> wW+AW|[ M |—>
—> — —>
perturb inputs perturb weights

Our major goal:

1. predict size of |[Ay|from size of |Ax

} for any module

2. predict size of ([Ay| from size of |Aw

If we can do this for atoms and bonds, what about compounds?

19 22



Formal definition of a module

A module M must have three vector spaces: A module M is well-normed if

1) inputspace X XE X 1) theinputspace X hasnorm |||,

2) weightspace w =P YE)Y 2) theoutput space Y hasnorm || -]l

3) outputspace Y w €V » and the first derivatives of the module satisfy:
and four attributes: L |V MOAw], < M.norm(Aw)

I. afunction M.forward XXW Y IL ||VMO A = M.sensitivity * || Ax|[,

II. anumber M.sensitivity € R*
III. anumber M.mass € R*

IV. anorm M.norm W — Rt

20



Some atomic modules

Definition: Linear module L

L.forward(W, x) =W x

L.sensitivity =1
L.mass =1
L.norm =||- ||Specfrql * sqrt(fan-in/fan-out)
L well-normed if -{ =0l =1l
Ix],=1 and L.norm(W) < 1

Definition: Embedding module E

E.forward(W, x) =W Xx

E.sensitivity =1
E.mass =1
E.norm = max. || column(W) |l
=1l and || - I, =] -
E well-normed if I 1= 1 -1l =11y, = 11 Tlgws

I x|, = 1amd L.norm(W) =< 1

24



Can we make compound modules automatically “good”?

We want to be able to prove statements about module combinations

M1
—> M, —> —<
M, —»

2

composition concatenation

Proposition 1

Proposition 2

Proposition 3

Module combination is associative
Module combination preserves well-normed-ness

Feature learning is apportioned by mass
* 25



Defining combination rules

_ Definition: Well-normed module

A module M must have A module M is well-normed if

1) inputspace X X € X 1) theinputspace X hasnorm |||,

2) weight space W - yE)Y 2) theoutput space )y has norm |- I,

9 cupuitEpece poow E.W M » and the first derivatives of the module satisfy:
and four attributes: L |V MO AW, < M.norm(Aw)

I. afunction M.forward XXW—Y IL |V MO AX], = M.sensitivity * || Ax ||,

II. anumber M.sensitivity € R*
III. anumber M.mass € R*

IV. anorm M.norm W — R*
Definition: Module composition Definition: Module concatenation
Given two modules M, and M, their composite Given two modules M, and M, their tuple

= M M —>
M=M,oM, =Pl M =P M, —P M=(M;, M, ( 1

e e el e sl is the module with attributes: M, —

I. Mforward = M,forward © M forward I. Mforward = (M, forward, M,.forward)
II. M.sensitivity = M_.sensitivity x M_.sensitivity II. Msensitivity = M sensitivity + M, sensitivity
III. M.mass = M, mass + M,mass III. M.mass = M .mass + M,.mass

IV. M.norm = max(p * M_.norm, g * M,.norm) IV. M.norm = max(p * M,.norm, q * M,.norm)
where p = M.mass / M_.mass * M_.sensitivity where p =M.mass / M.mass

q = M.mass / M, mass 23 q = M.mass / M, mass
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The theory works to secpn“' order

« g
Think: Gen?rallzed §
top eigenvalues

A module M is “(q, B, y)ssharp” if second derivatives obey:

L [lAw V V M Aw ||y< a\* M.norm(Aw) * M.norm(Aw)
II. [[AXV V. M Aw ||y B |* M.norm(Aw) * || Ax ||,
III. ||AX V_V_M AX ||y <\y /* || Ax ], * || AX ],

X X

e Sharpness tuple (q, B, y) obeys associative combination laws
e Neural net loss functions are:

o Lipschitz smooth in the modular norm

o with non-dimensional Lipschitz constants!
e Solong as the error measure is smooth in the module output
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Part lli

Scaling



Scale is all you need?

\

302 130 thousand 100 billion 250 billion
neurons neurons neurons neurons

e e

Fruit fly © Sanjay Acharya. Other images © source unkown. All rights
26 reserved. This content is excluded from our Creative Commons license. For 2 9
more information, see https://ocw.mit.edu/help/faq-fair-use/
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Recipe for AGI?

© Carlos Jones / Oak Ridge National Laboratory.
All rights reserved. This content is excluded from
our Creative Commons license. For more

use/

1. get the bigge St Supercomputer you Can information, see https://ocw.mit.edu/help/faq-fair-

2. scrape as much data as you can (don’t get caught!)

&he New York Eimes = stackoverflow

3. train the biggest transformer you can

GPT GPT GPT :
Embed = 100 ™1 block | ™ block [| Linear
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Problem: Scaling can hurt

Graphs© @kellerjordan0 on X. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see
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Our thesis for good scaling

non-dimensional

tight | | Lipschitzness | = | LR transfer

If for generic module M we can achieve:

1. Lipschitz constants independent of width, depth, etc.

2. Bounds stay tight across scale

Then controlling M.norm(Aw) = control over || Ay ||,

Formally, we want

|| Ay ||y < M.norm(Aw)

29

to hold tightly

32



Breaking up the problem

What are good properties for an individual layer?

: X WX X (W+AW)X
Example: linear layer —| w > > W+AW >
impose sqrt(fan-in/fan-out) | * | || W ||Specm]I = | 1
spectral
conditions sqrt(fan-in/fan-out) | * | |AW || .| = |LR

On the distance between two neural networks and the stability of learning

| A spectral condition for feature learning_

34



Breaking up the problem

How to keep under composition & concatenation?

Photos © source unknown. All
rights reserved. This content is
excluded from our Creative
Commons license. For more
information, see https:// 31
ocw.mit.edu/help/faq-fair-use/
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Mmo(ou,la

import toxrch

from modula.atom import Linear
from modula.bond import RelU

mlp = Linear(10,10000) @ RelLU() @ Linear (10000, 1000)

weights = MIPLIRIEIATIZE (device="cpu")

data, target = torch.randn(1000), torch.randn(10)

for step in range(steps:=20):
output = mlp.forward(data, weights)
loss = (target - output).square().mean()
loss.backward()

with torch.no_grad():
grad = weights.grad()
mlp.normalize (grad)
weights -= 0.1 * grad
weights.zero_grad()

36



Compatible with any array programming package

O PyTorch

mo(du,la)

o’

N#s NumPy

PyTorch: github.com/jxbz/modula/
JAX: github.com/GallagherCommaJack/modulax/
NumPy: open in Colab—best place to start 37
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Learning rate transfers across width and depth

e train GPT for 10k steps on OpenWebText
e normalization {on, off} with Adam as base optimizer

Adam
nanoGPT

Adam normed Adam
modulaGPT modulaGPT

test loss

test loss

(L

103 10~2 10-1  10°
learning rate

width

64
128
256
512
1024

blocks
—D
— 4

— 16
32
64

In the paper:

< enables training GPT using SGD
< transfers LR actoss context length




Part IV

Modular duality



Recall: Steepest descent

Consider a loss function £: RN — R that satisfies:

L(w+Aw)

IA

L(w)

+ VW.C TAw

+ | ZAlAw]?

We can select an optimization step by solving:

arg min,

\Y W.C TAwW

+ | ZAllaw]?

IV LI/ A

e

step size

36

* arg max , .

\Y W.C TAwW

K

“duality map”




Gradient descent does not type check

gradient
space

Image © "ilbusca" at iStock. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/

faq-fair-use/

weight - LR * gradient
weight - LR * dualize(gradient)

37
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Recall: Inducing a norm on the full weight space

Activation spaces

‘Tensor spaces

42



We propose modular dualization

1. solve duality map for each layer 4>D—>

dualize(G) = argmax,,, .<A,G>

lIAll=1

2. recursively solve duality map for full network

-~

modules in series modules in parallel



Faster training with Shampoo

Core primitive: | AW n | * [ (GGNHY* G (G'G)™*

-n | * [ argmax <G, A>

lIAll=1

i.e. “steepest descent under the spectral norm”

40



Implement in Modula just by overriding Linear

(GGY”* G (G'G)™* G° | i.e.setall singular values to one

class Shampoolinear (Linear) : C@ Oen in Colab

def __init__(self, fanout, fanin):

super (). 1init (fanout, fanin)

def normalize(self, grad w, target norm=1.0):
grad weight = grad wl[O]
U, S, Vt = np.linalg.svd(grad weight, full matrices=False)
return [U @ Vt * target norm]

: Vanilla gradient descent Modular normalization using G/||G||- Modular normalization using G°
10

1072 1 1
&
o 5 Learning rate:
o 10771 — 0.0001 1
= 0.001
£ 10°4 — o0.01 1

— 0.1
1084 — 10 1

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training iteration Trainingf'teration Training iteration

45
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iNew NanoGPT speed record!

4.1

4.0 4

3.9 A

Validation loss

3.5 1

3.4 A

3.3 1

Optimizer comparison by time (NanoGPT speedrun)

3.8 4

37

3.6

Adam 139ms/step
DistributedShampoo (UpdateFreq=10) 179ms/step
DistributedShampoo (UpdateFreq=32) 154ms/step
SOAP* 301ms/step
Muon 142ms/step

SRRy

5 10 15 20 25
Wallclock time on 8xH100

*SOAP is under active development. Future versions will significantly improve the wallclock overhead.

@kellerjordan0®

© @kellerjordan0 on X. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

Uses “Newton-Schulz” to do Linearx.dualize fast
_ T T T
XT+1 =q XT -b XTX XT + C XTXT XTXT XT

1.42
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Mmo(ou,la

import toxrch

from modula.atom import Linear
from modula.bond import RelU

mlp = Linear(10,10000) @ RelLU() @ Linear (10000, 1000)

weights = MIPLIRIEIATIZE (device="cpu")

data, target = torch.randn(1000), torch.randn(10)

for step in range(steps:=20):
output = mlp.forward(data, weights)
loss = (target - output).square().mean()
loss.backward()

with torch.no_grad():
grad = weights.grad()
e gz (NN (srad)
weights -= 0.1 * grad
weights.zero_grad()

43



Conclusion




A deep learning library should be like a lego set

© source unknown. All rights reserved. This content is 5 O
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/
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The practical payoff... so far

fixing scaling issues

nanoGPT speed records

training loss

R

—
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-
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aEN
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Fineweb val loss

3.8

3.7 1

W
o
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W
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w
=
L

3.3 1

NanoGPT speedruns

—— |Im.c baseline 140ms/step 10.258B tokens
10/14/24 record 179ms/step 2.67B tokens
—— +Distributed Muon 154ms/step 2.67B tokens

10 20 30 40
Wallclock time (minutes on 8xH100)
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The future: Robust, low-precision models

| We believe are questions
- of module sensitivity

|

47
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X+|AX

>
w+AW
—

M

y+|Ay

—
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Mmo(ou,la

https://modula.systems/
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