
Jeremy Bernstein
https://jeremybernste.in/

Metrized deep learning

1

https://jeremybernste.in/

We build neural networks like lego

2
Then why don’t we also build the theory like lego?

2

What does that even mean?

3

Suppose we can characterize the
properties of an individual layer

Can we characterize the properties of combinations of layers?

series combination parallel combination

© source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

https://ocw.mit.edu/help/faq-fair-use/

weights w

x

What properties do we care about?

4

x+∆x

y+∆y

w+∆w

y

How sensitive is the output to the weights and inputs?

an input x

an output y{a layer has

Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/faq-fair-use/4

https://ocw.mit.edu/help/faq-fair-use/

If we understand the sensitivity of individual layers…

5

x
w

y

x
w

y

1
w2

x
w2

w

y

1

1

y2

…can we extend this understanding to combinations?

Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/faq-fair-use/

5

https://ocw.mit.edu/help/faq-fair-use/

A deep learning library should be like a lego set

6

● a collection of layers each with its own theory
● a system of rules for combining layers
● build whatever you want!

Image © source unknown. All rights
reserved. This content is excluded
from our Creative Commons license.
For more information, see https://
ocw.mit.edu/help/faq-fair-use/

6

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/

The practical payoff… so far

fixing scaling issues nanoGPT speed records

@kellerjordan0
© @kellerjordan0 on X. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/7

https://ocw.mit.edu/help/faq-fair-use/

Part I

Optimization theory

8

Recall: Steepest descent

9

½ ∆wT∇2
wL ∆w+=L(w+∆w) L(w) ∇wL T∆w+ + ...

≤ ∇wL T∆w ½ λ ||∆w||2+L(w) + + ...

Consider a loss function L : RN → R and its Taylor expansion:

can we find a norm || · || and a sharpness λ
to make this inequality hold tightly?

∇wL T∆w ½ λ ||∆w||2+

If so, then we can select an optimization step by solving:

arg min∆w

9

How could we produce such a norm? Step 1/3

10

∆wT∇2
wL ∆w ≤ λ ||∆w||2We need to bound

By the Gauss-Newton decomposition, the Hessian satisfies:

Recall that in deep learning, the loss function is a composite

L(w) = ℓ f(w)∘

error measure neural net

∆wT∇2
wL ∆w = ∆w ∇2

wf ∆w ∇fℓ + ∆w ∇wf ∇2
fℓ ∇wf ∆w

10

How could we produce such a norm? Step 2/3

11

∆wT∇2
wL ∆w ≤ λ ||∆w||2We need to bound

Then we may bound the Gauss-Newton decomposition:

∆wT∇2
wL ∆w = ∆w ∇2

wf ∆w ∇fℓ + ∆w ∇wf ∇2
fℓ ∇wf ∆w

Now suppose we know a good norm || · || on the network output

dual norm operator norm

≤ ||∆w ∇2
wf ∆w|| ||∇fℓ|| + ||∇2

fℓ|| ||∇wf ∆w||2

11

How could we produce such a norm? Step 3/3

12

∆wT∇2
wL ∆w ≤ λ ||∆w||2We need to bound

Can we produce a norm || · || on the network weights such that:

||∆w ∇2
wf ∆w|| ≤ α ||∆w||2

By the Gauss-Newton decomposition and having an output norm:

∆wT∇2
wL ∆w = ∆w ∇2

wf ∆w ∇fℓ + ∆w ∇wf ∇2
fℓ ∇wf ∆w

≤ ||∆w ∇2
wf ∆w|| + ||∇2

fℓ||||∇fℓ|| ||∇wf ∆w||2

||∇wf ∆w||2 ≤ δ ||∆w||2

Therefore, our problem reduces to the following:

network is “Lipschitz smooth” network is “Lipschitz”
12

f(x; w+∆w) = f(x; w) + ∇wf ∆w + ∆w ∇2
wf ∆w + …

Interpreting these conditions

13

input x

weights w

f(x;w)
output

We seek a weight norm that controls the network’s Taylor expansion

||∆w ∇2
wf ∆w|| ≤ α ||∆w||2 ||∇wf ∆w||2 ≤ δ ||∆w||2

network is “Lipschitz smooth” network is “Lipschitz”

13

Recursively inducing a norm on the weight space

14

Activation spaces

Tensor spaces

|| · || || · || || · || || · ||

|| · || || · || || · || || · || || · ||

|| · ||

Full
weight
space

14

Part II

The theory of modules

15

Combinator pattern

18

complex structures are built by defining a small set of very
simple “primitives”, and a set of “combinators” for
combining them into more complicated structures

Haskell Wiki

module M

input x

weights w output y

Given two modules M1 and M2 we can form their:

concatenation
M1x

y1

M2
y2

(M1, M2)
modules

in parallel

composition M1
x y

M2M2 ⚬ M1
modules
in series

16

where Add and Mula are special “utility modules”

Some basic circuits

addition

multiplication
by scalar

M1 + M2

a ＊ M

19

M1

M2

Add

M Mula

Now we can build a residual block a ＊ Identity + b ＊ M

Identity Mula

M Mulb

Add

17

Three kinds of modules

20

e.g. Linear Conv2d Embed

e.g. ReLU FunctionalAttention

e.g. MLP Linear ReLU Linear= ⚬ ⚬

Atoms — hand-declared attributes

Bonds — hand-declared attributes + no weights

Compounds — combinations of atoms and bonds

Atoms

Bonds

Compounds

18

Our major goal:

1. predict size of ∆y from size of ∆x

2. predict size of ∆y from size of ∆w

Sensitivity of a module

22

perturb inputs

x+ ∆x

Mw
y+ ∆y

M

x

w
y

perturb weights

y+ ∆y
M

x

w+ ∆w

for any module}
If we can do this for atoms and bonds, what about compounds?

19

Formal definition of a module

A module M must have

1) input space 𝓧
2) weight space 𝓦
3) output space 𝓨 M

x ∈ 𝓧

w ∈ 𝓦
 y ∈ 𝓨

and four attributes:

I. a function M.forward 𝓧 x 𝓦 → 𝓨
II. a number M.sensitivity ∈ ℝ+

III. a number M.mass ∈ ℝ+

IV. a norm M.norm 𝓦 → ℝ+

Definition: Module

A module M is well-normed if

1) the input space 𝓧 has norm || · ||𝓧
2) the output space 𝓨 has norm || · ||𝓨

and the first derivatives of the module satisfy:

I. || ∇wM ◇ ∆w ||𝓨 ≤ M.norm(∆w)
II. || ∇xM ◇ ∆x ||𝓨 ≤ M.sensitivity ＊ || ∆x ||𝓧

Definition: Well-normed module

A module M must have three vector spaces:

1) input space 𝓧
2) weight space 𝓦
3) output space 𝓨 M

x ∈ 𝓧

w ∈ 𝓦
 y ∈ 𝓨

and four attributes:

I. a function M.forward 𝓧 x 𝓦 → 𝓨
II. a number M.sensitivity ∈ ℝ+

III. a number M.mass ∈ ℝ+

IV. a norm M.norm 𝓦 → ℝ+

A module M is well-normed if

1) the input space 𝓧 has norm || · ||𝓧
2) the output space 𝓨 has norm || · ||𝓨

and the first derivatives of the module satisfy:

I. || ∇wM ◇ ∆w ||𝓨 ≤ M.norm(∆w)
II. || ∇xM ◇ ∆x ||𝓨 ≤ M.sensitivity ＊ || ∆x ||𝓧

20

Some atomic modules

24

L.forward(W, x) = W x
L.sensitivity = 1
L.mass = 1
L.norm = || · ||spectral ＊ sqrt(fan-in/fan-out)

 Definition: Linear module L

E.forward(W, x) = W x
E.sensitivity = 1
E.mass = 1
E.norm = maxi || columni(W) ||RMS

 Definition: Embedding module E

|| · ||𝓧 = || · ||𝓨 = || · ||RMS
|| x ||𝓧 ≤ 1 and L.norm(W) ≤ 1

|| · ||𝓧 = || · ||1 and || · ||𝓨 = || · ||RMS
|| x ||𝓧 ≤ 1 and L.norm(W) ≤ 1

L well-normed if {

E well-normed if { 21

We want to be able to prove statements about module combinations

Can we make compound modules automatically “good”?

25

Proposition 1 Module combination is associative

Proposition 2 Module combination preserves well-normed-ness

Proposition 3 Feature learning is apportioned by mass

M1 M2

M1

M2

composition concatenation

22

Defining combination rules

A module M must have

1) input space 𝓧
2) weight space 𝓦
3) output space 𝓨 M

x ∈ 𝓧

w ∈ 𝓦
 y ∈ 𝓨

and four attributes:

I. a function M.forward 𝓧 x 𝓦 → 𝓨
II. a number M.sensitivity ∈ ℝ+

III. a number M.mass ∈ ℝ+

IV. a norm M.norm 𝓦 → ℝ+

Definition: Module

A module M is well-normed if

1) the input space 𝓧 has norm || · ||𝓧
2) the output space 𝓨 has norm || · ||𝓨

and the first derivatives of the module satisfy:

I. || ∇wM ◇ ∆w ||𝓨 ≤ M.norm(∆w)
II. || ∇xM ◇ ∆x ||𝓨 ≤ M.sensitivity ＊ || ∆x ||𝓧

Definition: Well-normed module

Given two modules M1 and M2 their composite

Definition: Module composition

M1 M2
M = M2 ⚬ M1

is the module with attributes:

I. M.forward = M2.forward ⚬ M1.forward
II. M.sensitivity = M1.sensitivity＊M2.sensitivity

III. M.mass = M1.mass + M2.mass
IV. M.norm = max(p＊M1.norm, q＊M2.norm)

where p = M.mass / M1.mass＊M2.sensitivity
q = M.mass / M2.mass

Given two modules M1 and M2 their tuple

Definition: Module concatenation

M = (M1, M2)

is the module with attributes:

I. M.forward = (M1.forward, M2.forward)
II. M.sensitivity = M1.sensitivity + M2.sensitivity

III. M.mass = M1.mass + M2.mass
IV. M.norm = max(p＊M1.norm, q＊M2.norm)

where p = M.mass / M1.mass
q = M.mass / M2.mass

M1

M2

A module M must have

1) input space 𝓧
2) weight space 𝓦
3) output space 𝓨 M

x ∈ 𝓧

w ∈ 𝓦
 y ∈ 𝓨

and four attributes:

I. a function M.forward 𝓧 x 𝓦 → 𝓨
II. a number M.sensitivity ∈ ℝ+

III. a number M.mass ∈ ℝ+

IV. a norm M.norm 𝓦 → ℝ+

A module M is well-normed if

1) the input space 𝓧 has norm || · ||𝓧
2) the output space 𝓨 has norm || · ||𝓨

and the first derivatives of the module satisfy:

I. || ∇wM ◇ ∆w ||𝓨 ≤ M.norm(∆w)
II. || ∇xM ◇ ∆x ||𝓨 ≤ M.sensitivity ＊ || ∆x ||𝓧

Given two modules M1 and M2 their composite

M1 M2
M = M2 ⚬ M1

is the module with attributes:

I. M.forward = M2.forward ⚬ M1.forward
II. M.sensitivity = M1.sensitivity＊M2.sensitivity

III. M.mass = M1.mass + M2.mass
IV. M.norm = max(p＊M1.norm, q＊M2.norm)

where p = M.mass / M1.mass＊M2.sensitivity
q = M.mass / M2.mass

Given two modules M1 and M2 their tuple

is the module with attributes:

I. M.forward = (M1.forward, M2.forward)
II. M.sensitivity = M1.sensitivity + M2.sensitivity

III. M.mass = M1.mass + M2.mass
IV. M.norm = max(p＊M1.norm, q＊M2.norm)

where p = M.mass / M1.mass
q = M.mass / M2.mass

M = (M1, M2)
M1

M2

23

A module M is “(α, β, γ)-sharp” if second derivatives obey:

I. || ∆w ∇w∇wM ∆w̃ ||𝓨 ≤ α ＊ M.norm(∆w) ＊ M.norm(∆w̃)
II. || ∆x ∇x∇wM ∆w ||𝓨 ≤ β ＊ M.norm(∆w) ＊ || ∆x ||𝒳

III. || ∆x ∇x∇xM ∆x̃ ||𝓨 ≤ γ ＊ || ∆x ||𝒳 ＊ || ∆x̃ ||𝒳

Definition: Module sharpness

● Sharpness tuple (α, β, γ) obeys associative combination laws
● Neural net loss functions are:

○ Lipschitz smooth in the modular norm
○ with non-dimensional Lipschitz constants!

● So long as the error measure is smooth in the module output

Visualizing the loss landscape of neural nets, Li et al (2018)

The theory works to second order

“Generalized
top eigenvalues”Think:

© Li, et al. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use/

24

https://ocw.mit.edu/help/faq-fair-use/

Part III

Scaling

25

Scale is all you need?

29

302
neurons

130 thousand
neurons

250 billion
neurons

100 billion
neurons

Fruit fly © Sanjay Acharya. Other images © source unkown. All rights
reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use/

26

https://ocw.mit.edu/help/faq-fair-use/

Recipe for AGI?

1. get the biggest supercomputer you can

2. scrape as much data as you can (don’t get caught!)

3. train the biggest transformer you can

Embed GPT
block

GPT
block

GPT
block Linear

© Carlos Jones / Oak Ridge National Laboratory.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-
use/

27

https://ocw.mit.edu/help/faq-fair-use/2
https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/2

❌ performance gets worse❌ optimal learning rate drifts

Problem: Scaling can hurt

Scale width Scale depth

Graphs© @kellerjordan0 on X. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

28

https://ocw.mit.edu/help/faq-fair-use/

Our thesis for good scaling

If for generic module M we can achieve:

1. Lipschitz constants independent of width, depth, etc.

2. Bounds stay tight across scale

Then controlling M.norm(∆w) ⇒ control over || ∆y ||𝓨

32

non-dimensional tight Lipschitzness ⇒ LR transfer

|| ∆y ||𝓨 ≤ M.norm(∆w)Formally, we want to hold tightly

29

Breaking up the problem

34

What are good properties for an individual layer?

How to keep under composition & concatenation?

W+∆W
x (W+∆W)x

Example: linear layer W
x Wx

= LR

📘 On the distance between two neural networks and the stability of learning
Bernstein, Vahdat, Yue, Liu NeurIPS 2020

📗 A spectral condition for feature learning
Yang*, Simon*, Bernstein* arXiv 2023

= 1{impose
spectral

 conditions

|| W ||spectral

|| ∆W ||spectral

sqrt(fan-in/fan-out) ＊

sqrt(fan-in/fan-out) ＊

30

Breaking up the problem

35

What are good properties for an individual layer?

How to keep under composition & concatenation?

Photos © source unknown. All
rights reserved. This content is
excluded from our Creative
Commons license. For more
information, see https://
ocw.mit.edu/help/faq-fair-use/

31

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/

36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import torch

from modula.atom import Linear
from modula.bond import ReLU

mlp = Linear(10,10000) @ ReLU() @ Linear(10000, 1000)

weights = mlp.initialize(device="cpu")
data, target = torch.randn(1000), torch.randn(10)

for step in range(steps:=20):
 output = mlp.forward(data, weights)
 loss = (target - output).square().mean()
 loss.backward()

 with torch.no_grad():
grad = weights.grad()
mlp.normalize(grad)
weights -= 0.1 * grad
weights.zero_grad()

32

 PyTorch: github.com/jxbz/modula/
 JAX: github.com/GallagherCommaJack/modulax/
 NumPy: open in Colab—best place to start 37

Compatible with any array programming package

{
33

http://github.com/jxbz/modula
https://github.com/GallagherCommaJack/modulax/
https://colab.research.google.com/drive/1lKS15RJilGsstYP5JDQKSn3Z7TUUYIDQ?usp=sharing

❖ enables training GPT using SGD
❖ transfers LR across context length

Learning rate transfers across width and depth
● train GPT for 10k steps on OpenWebText
● normalization {on, off} with Adam as base optimizer

In the paper: 34

Part IV

Modular duality

35

Recall: Steepest descent

40

L(w+∆w) ≤ ∇wL T∆w ½ λ ||∆w||2+L(w) +

Consider a loss function L : RN → R that satisfies:

∇wL T∆w ½ λ ||∆w||2+

We can select an optimization step by solving:

arg min∆w

|| ∇wL || / λ= ＊ arg max||∆w||=1- ∇wL T∆w

step size “duality map”

36

weight - LR * dualize(gradient)
weight - LR * gradient

gradient
space

weight
space

Gradient descent does not type check

Image © "ilbusca" at iStock. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/help/
faq-fair-use/

37

https://ocw.mit.edu/help/faq-fair-use/

Recall: Inducing a norm on the full weight space

42

Activation spaces

Tensor spaces

|| · || || · || || · || || · ||

|| · || || · || || · || || · || || · ||

|| · ||

Full
weight
space

38

We propose modular dualization

modules in parallelmodules in series

2. recursively solve duality map for full network

1. solve duality map for each layer

dualize(G) = arg maxǁAǁ=1<A,G>

39

Faster training with Shampoo

44

Core primitive: (GGT)-¼ G (GTG)-¼∆W = -η ＊

i.e. “steepest descent under the spectral norm”

= arg max||A||≤1 <G, A> -η ＊

40

class ShampooLinear(Linear):
 def __init__(self, fanout, fanin):

super().__init__(fanout, fanin)

 def normalize(self, grad_w, target_norm=1.0):
grad_weight = grad_w[0]
U, S, Vt = np.linalg.svd(grad_weight, full_matrices=False)
return [U @ Vt * target_norm]

Implement in Modula just by overriding Linear

45

(GGT)-¼ G (GTG)-¼ G0= i.e. set all singular values to one

open in Colab

41

https://colab.research.google.com/drive/1lKS15RJilGsstYP5JDQKSn3Z7TUUYIDQ?usp=sharing

@kellerjordan0

¡New NanoGPT speed record!

Uses “Newton-Schulz” to do Linear.dualize fast

Xt+1 = a Xt - b XtXt
TXt + c XtXt

TXtXt
TXt

© @kellerjordan0 on X. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

42

https://ocw.mit.edu/help/faq-fair-use/

48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import torch

from modula.atom import Linear
from modula.bond import ReLU

mlp = Linear(10,10000) @ ReLU() @ Linear(10000, 1000)

weights = mlp.initialize(device="cpu")
data, target = torch.randn(1000), torch.randn(10)

for step in range(steps:=20):
 output = mlp.forward(data, weights)
 loss = (target - output).square().mean()
 loss.backward()

 with torch.no_grad():
grad = weights.grad()
mlp.normalize(grad)
weights -= 0.1 * grad
weights.zero_grad()

mlp.dualize(grad)

43

Conclusion

44

A deep learning library should be like a lego set

50

w1

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

45

https://ocw.mit.edu/help/faq-fair-use/

The practical payoff… so far

fixing scaling issues nanoGPT speed records

© @kellerjordan0 on X. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

46

https://ocw.mit.edu/help/faq-fair-use/

53

+ =

The future: Robust, low-precision models

x+ ∆x

M
y+ ∆y

w+ ∆w
We believe are questions
of module sensitivity

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
47

https://ocw.mit.edu/help/faq-fair-use/

https://modula.systems/

48

https://modula.systems
https://modula.systems/

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

49

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page

