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The biggest lesson that can be read from 70 years of Al research is that general methods that
leverage computation are ultimately the most effective, and by a large margin. The ultimate
reason for this is Moore's law, or rather its generalization of continued exponentially falling
cost per unit of computation. Most Al research has been conducted as if the computation
available to the agent were constant (in which case leveraging human knowledge would be
one of the only ways to improve performance) but, over a slightly longer time than a typical
research project, massively more computation inevitably becomes available. Seeking an
improvement that makes a difference in the shorter term, researchers seek to leverage their
human knowledge of the domain, but the only thing that matters in the long run is the
leveraging of computation. These two need not run counter to each other, but in practice they
tend to. Time spent on one is time not spent on the other. There are psychological
commitments to investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation. There were many examples of Al
researchers' belated learning of this bitter lesson, and it is instructive to review some of the
most prominent.



' you had a given budget of compute, what
model would you train on how much data?



OpenAl codebase next word prediction
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Capability prediction on 23 coding problems
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Scaling laws

minimize fest-loss(model size, data, batch size, steps,...) such that compute within budget

for a given architecture, how much data / what model size would be needed for a target
performance?

can we extrapolate from smaller to larger models / experiments??

Nopt (C), Dopt (C) = argmin L(N, D)
N,D s.t. FLOPs(N,D)=C



How does the test loss scale as a function of data, #parameters etc?

® autoregressive Transformer

e data: WebText2, 96GB of text. 2.29 - 100 tokens
1024 token context

® vary:
* model size: 768 - 1.5 billion non-embedding parameters
e data: 22M - 23B tokens
* shape (depth, with, attention heads, ...)
* batch size

* compute = 6 x #parameters x batchsize x #steps

e computation: in PF-days (petaflop/s-days)
1 PF-day = 8.64 - 10!” FLOPs



Finding #1: power law relationships

LX) = (1/X)* =X

/

test loss resource
(data/parameters/
compute

e scale X -> 2X => Loss -> 27% Loss



How does the test loss scale as a function of data?

* #parameters, compute: “infinite”
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L(D)= (D./D)*?; ap ~0.095, D.~ 5.4 x 10'° (tokens)

Kaplan®, McCandlish®, et al. “Scaling Laws of Neural Language Models,” 2020



How does the test loss scale as a function of #parameters?

o #tokens, compute: "“infinite”
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How does the test loss scale with available compute?

e power law for all of them
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Finding #2: simultaneous dependence on multiple factors

* “Performance improves predictably as long as we scale up N and D in tandem,

but enters a regime of diminishing returns if either N or D is held fixed while the

%onstants

other increases.”

e | 0ss as function of

parameters N & data D:
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Finding #2: simultaneous dependence on multiple factors

“Performance improves predictably as long as we scale up N and D in tandem,

but enters a regime of diminishing returns if either N or D is held fixed while the

other increases.”

e | 0ss as function of
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Finding #2: simultaneous dependence on multiple factors

* “Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the

other increases.”

- N 1 &D

* Loss as function of #parameters N & data D: L(N, D) = (%) *p D,

* Loss as function of #parameters N & #steps S:

NC QN SC Qg
L(Na Smin) — (W) . ¥ (S . )

e from this, they conclude to scale, with compute C:

params CO'73, data = batch-size - steps X CO'27 Take these exact
equations/numbers

with a grain of salt!
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Similar findings in other works

logl0(err)

(a) Wiki1103 error (cross entropy) landscape. (b) CIFARI10 error (top1) landscape.
e Rosenfeld et al:

for vision, language, fit function
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Rosenfeld et al, 2020. A constructive prediction of the generalization error across scales



Extrapolation is possible!

e from Rosenfeld et al
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estimated test loss

7.0 -

6.5 1

o
O
1

i
w
L

4.
o
A

x
W
1

-
o
L

=
wn
A

W
o
1

fit
e extrapolated

14:0.5%
0:1.689%

model fraction 1/16
data fraction 1/8

) I I |}

3 - - 6

measured test loss

(c) Extrapolation on WikiText-103.




Finding #3: dependence on model shape

e “Performance depends strongly on scale, weakly on model shape”

Loss Increase
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Finding #4: larger models require fewer samples to reach
the same performance

Larger models require fewer samples
to reach the same performance

Test Loss 10

109 Params
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Tokens Processed

Kaplan®, McCandlish®, et al. “Scaling Laws of Neural Language Models,” 2020



Similar tindings...

o Lietal, 2020: larger models train faster, not much loss via compression

20 https://bair.berkeley.edu/blog/2020/03/05/compress/



Take-aways from Kaplan et al.

o test loss scales as power law as a function of data, parameter count,
compute

* test loss is more sensitive to parameter count than data: with more
compute, increase model by a larger factor than dataset size

e don't train to completion, rather make your model larger

* in general, scaling laws can help to “optimally” allocate computation

21



"Caveats” for Kaplan et al

e " .. the scaling with D at very large model size still remains mysterious.
Without a theory or systematic understanding of the corrections to our
scaling laws, it's difficult to determine in what circumstances they can be
trusted”

e didn’t thoroughly investigate small data regime, poor fits of L(N,D) in that
regime. Didn't investigate regularization or data augmentation.

e didn’t tune all hyperparameters; possibly better learning rates for short
training runs

22



Implications

* subsequently: larger models, scale data only moderately

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion

MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion

23



Pocket gopher courtesy of LeonardoWeiss on Wikipedia Commons.
Used under CC BY.

spend compute on model size ...

Dinosaur © Universal Pictures. Chinchilla © source unknown. All
rights reserved. This content is excluded from our Creative
Commons license. For more information, see

‘. https://ocw.mit.edu/help/fag-fair-use/
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... Or on data?

Finding the right predictions is not easy...

@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions
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Two years later...

under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly

e still assume a power law, but find somewhat different equations / scaling

e still do not train to minimum loss, but train for many more tokens (& steps),
increase #parameters and data equally: "smaller” models, train longer

25



Differences

o different learning rate schedules (not explored in Kaplan et al), adapted to
dataset size

e |arger models
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Figure AS | Training curve envelopes. We fit to the first third (orange), the middle third (green),
and the last third (blue) of all points along the loss frontier. We plot only a subset of the points.
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Approaches to estimate loss as a function of data ano
Parameter count

e minimize L(N,D) with constraint FLOPs(N,D) = budget

 Approach 1: for each fixed model size, record entire training curve (=different

training tokens, as they use 1 epoch only)

* Approach 2: fixed #FLOPs, use tinal training loss for different N,D

* Approach 3: fit parametric loss function f(N D) £ E+ i + 2

N« DB

e for all 3: optimal scaling of #parameters N / data D with compute C is
roughly
N X CO'49,D X CO‘SI vs Kaplan et al: #params CO'73, data o C"?

=> existing large models would need much more training data.
Better allocation: smaller madel, more data/steps



Predictions: extrapolation

For a given #FLOPs, how many
parameters should we allocate?

1T /, (compute = 6 x data x params)
éf
/
/l — Approach 1
0B 7 oy — Approach 2
- —  Approach 3
J 108 ---. Kaplan et al (2020)
J,
g % Chinchilla (70B)
o 1 0B y¢r Gopher (280B)
% GPT-3(175B)
Yr Megatron-Turing NLG (530B)
100M
7
10'\]/_]017, 1023 1025

FLOPs
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Discussion / limitations

* use (smoothed) training loss as a proxy for test loss

* expensive experiments: only two large-scale training runs (Gopher,
Chinchilla), no additional tests at intermediate scales

® assume a power law for L(N) — but some

concavity at high compute budgets, |

so it may not hold universally
* only one epoch of training (each data 7" E

point seen once) g

N
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Figure AS | Training curve envelopes. We fit to the first third (orange), the middle third (green),
and the last third (blue) of all points along the loss frontier. We plot only a subset of the points.
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Many more on scaling laws...

* many earlier works, too (Tan & Le 2019, Cho et al 2015, Miceli Barone et al 2017/,
Johnson et al 2018, Hestness et al 2017)

* vision models tend to have better scaling in model size than transformers
L(N) « 1/N*% tor vision models (CNNs), with larger a =~ 0.5 (Rosenfeld et al 2019,

Sharma et al)

e power law for L(D) across vision, language, speech tasks (Hestness et al 2017)

* power laws in theoretical bounds: model (Yarotsky, 2018), data size (Liang et al, 2019)

30



Can we explain scaling laws? One hypothesis

31



A hypothesis: data manifold

Scaling Laws from the Data Manifold Dimension

Utkarsh Sharma USHARMAT7@JHU.EDU
Department of Physics and Astronomy

Johns Hopkins University

Baltimore, MD 21218, USA

Jared Kaplan JAREDKQJHU.EDU
Department of Physics and Astronomy

Johns Hopkins University

Baltimore, MD 21218, USA

* |dea: neural networks are doing regression on an embedded data
manitold

32



A toy model

e Toy model: approximate Lipschitz function f(x)
on [0,1]¢ by a piecewise constant function c(x).

e Use hypercubes with side length s:

N = s~ regions (values).
Lipschitz constant

1
o« MSE scales as L(s) = J | f(x) — c(x) \2ddx < A%(s%d)
0

1
N2/d

e S0, up to constant factors, L(N) S

e For piecewise linear approximations (ReLU), MSE and cross entropy scale as s”, so
L(N) 5 N—4/d

33



Relation to neural networks: hypothesis

e For piecewise linear approximations (ReLU), MSE and cross entropy scale as s,

so L(N) < N~

e Common belief: NN map data into a low-dimensional “manifold” that depends
on data, loss/task

e |t we take d to be intrinsic dimension of data manitfold, then we get a scaling law

L(N) « — with a ~ 4/d

* Suggests that scaling exponent is strongly related to data and task: ditterent
models will scale similarly on the same data

34



Empirical evidence

* Hypothesis: L(N) —a with a ~ 4/d

Intrinsic Dimension vs 4/a

* Experiment: measure

intrinsic dimension of -~ 1D = 4/a for reference
: 102 { ® Teacher Student
embedding and relate : CIFAR1O
" - MNIST
to scahng exponent a .é Fashion MNIST
o SVHN
= - GPT
 Good fit for vision models, G
only upper bound for £ 10" - Qy_,fﬁ
y pp 42 _ e@@@
transtormer: A < > 4/d B : ﬁ@
from upper bou nd on L(N) | o _~
| 10!
4/a
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Breaking power law scaling

36



Breaking power law scaling

4.2
- L=(D/5.4'1013)_0'095
, 3.9 N
* Power laws with small exponents: a small :
= 3.6
improvement in loss may need an order 3
. = 3.3
of magnitude more data/parameters
3.0
Diminishing returns: suggests that many 2.7 e o
training examples are highly redundant Dataset Size\

IDkBne log scale

 Pruning intelligently can lead to better scaling
(e.qg. Sorscher et al, 2022)

Sorscher et al, Beyond neural scaling laws: beating power law scaling via data pruning



Critical batch size
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What should the batch size be?

e Bigger batches are more costly but provide better estimates of the tfull-batch
gradient

e FLOPS(16 SGD steps with batch size 16) = FLOPS(1 SGD step with batch size
256). Which is yields better performance?

e FLOPs aren’t everything: one compute node can only handle some max
batch size at once (in parallel). If you use bigger batches then you have to
split up across nodes or do sequential computation. Splitting incurs
communication costs. Sequential computation incurs time cost.

39
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An Empirical Model of Large-Batch Training

Sam McCandlish® Jared Kaplan Dario Amodei
OpenAl Johns Hopkins University, OpenAl OpenAl
sam@Qopenai.com jaredk@jhu.edu damodei@openai.com

and the OpenAl Dota Team'

Abstract

qttps;//o pena i.com/research/o pena i-five-defeats-dota-2-world-cham o lons In an increasing number of domains it has been demonstrated that deep learning models can

be trained using relatively large batch sizes without sacrificing data efficiency. However the
. limits of this massive data parallelism seem to differ from domain to domain, ranging from
’TttpS//Cd N Opeﬂa | Com/d Ota—z . pdf batches of tens of thousands in ImageNet to batches of millions in RL agents that play
the game Dota 2. To our knowledge there is limited conceptual understanding of why
these limits to batch size differ or how we might choose the correct batch size in a new
domain. In this paper, we demonstrate that a simple and easy-to-measure statistic called
the gradient noise scule predicts the largest useful batch size across many domains and
. A applications, including a number of supervised learning datasets (MNIST, SVHN, CIFAR-
B atch S I Ze : ~ 2 m I ‘ ‘ I O n 10, Ima’chct, Billio'n 'Word)_. reinforcement learning domains (Atari an.d Dota), 'and even
generative model training (autoencoders on SVHN). We find that the noise scale increases
as the loss decreases over a training run and depends on the model size primarily through
improved model performance. Our empirically-motivated theory also describes the tradeoff
between compute-efficiency and time-efficiency, and provides a rough model of the benefits

of adaptive batch-size training.

https://arxiv.org/abs/1812.06162
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Variability of solution as a function

given your mini-batch size

[slide credit: adapted from Minyoung Huh] McCandlish,,Kaplan, Amodei, “An Empirical Model of Large-Batch Training”, 2018



Gradient noise

Vo

l \

Gradient Noise

Vgd?

Signal Noise

V40 =V0+ (ngde _ Vé’)

[slide credit: adapted from Minyoung Huh] McCandlish,.Kaplan, Amodei, “An Empirical Model of Large-Batch Training”, 2018



How much progress can one step ot SGD make?

covariance of G_sgd, with B=1

Optimal learning rate for SGD? &

2
L[£(0 + nGiga)] = L(0) — nlGI* + 7 (GTHG  frace (HE))

Take the derivative and solve for the learning rate

1 bere B trace( HX)
opt — max w noise —
Tort = 1 4 B.oce/ B GTHG

Plug the equation learning rate back into the equation
1 1 |G|*
AL . where AL .. =

[slide credit: adapted from Minyoung Huh]

A‘copt —

McCandlish,,Kaplan, Amodei, “An Empirical Model of Large-Batch Training”, 2018



* One step of SGD can make
progress proportional to:

1
1 + Bnoise/B

e For small B, second term ot
denominator dominates, so

increasing B linearly increases
progress

 Forlarge B, first term of
denominator dominates, so
increasing B has little effect I

Critical batch size

McCandlish,,Kaplan, Amodei, “An Empirical Model of Large-Batch Training”, 2018
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Representational convergence
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Characterizing representations using kernels

KviSiOn Restrict our attention to vector embeddings
. n
@ T e f: & =R
5 . . Characterize a representation
2 . . in terms of its kernel
%3 .. dissimilar K : X X X — R
@ O
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Scaling laws for cross-modal alignment
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A red sphere next to
a blue cone.

| fre

Courtesy of Huh, et al. Used under CC BY.

Huh*, Cheungsp Wang?, Isola*, “The Platonic Representation Hypothesis,” ICML 2024



Summary

* Neural scaling laws: predict test loss as a function of resources and model
hyperparameters

o Allows to “optimally” allocate compute resources

e Power law scaling in model size, data size across variety of models and
tasks

e Actual parameters hard to measure, large extrapolation nontrivial
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