| ecture 2: How to train a neural net

Speaker: Sara Beery

6.7960 Deep Learning https://phil|ipi.github.i0/c’>.79601 Fall 2024

https://phillipi.github.io/6.7960

Announcements

e Pset 1 out — due 9/24

e OH starting this week, see webpage for locations and times

e Pytorch tutorials this week

2. How to train a neural net

* Review of gradient descent, SGD
e Computation graphs

e Backprop through chains

e Backprop through MLPs

e Backprop through DAGs

e Differentiable programming

Deep learning

y (%)

clown fish

Clown fish © source unknown. All rights
reserved. This content is excluded from our
Creative Commons license. For more
information, see

https://ocw.mit.edu/help/fag-fair-use/

| earned

Loss

L(fo(x"),y")

Gradient Descent

N
9* = aremin > L(fo(xD), y¥
3 ; (fo(x*), y*")

- e

J(0)

Optimization

f" = arg min J(0)

v
« What's the knowledge we have about J?
— We can evaluate J(@) /—Gradient <+— Black box optimization
— We can evaluate J(8) and Vy.J(0) <«— First order optimization

— We can evaluate J(@) , Vo J(@) ,and Hy(J(0)) <«— Second order optimization

L Hessian

6

Gradient Descent

§* = argmin J(0)
0

14

Gradient Descent

N
9* = argmin Y L(fe(x\?). y(®
3 ; (fo(x*), y*)

- e

7(6)

One iteration of gradient descent:

(9k+1 (9k _ nvej(é)k)

learning rate

Stochastic Gradient Descent (SGD)

* WWant to minimize overall loss function J, which is sum of individual losses over each
example.

* In Stochastic gradient descent, compute gradient on sub-set (batch) ot data.

* |t batchsize=1 then 8 is updated after each example.

* It batchsize=N (full set) then this is standard gradient descent.
 Gradient direction is noisy, relative to average over all examples (standard gradient descent).
« Advantages

» Faster: approximates total gradient with small sample

* Implicit regularizer

 Disadvantages

» High variance, unstable updates

Momentum

A heavy ball rolling down a hill, gains speed.

» Gradient steps biased to continue in direction of previous update:

Pttt 9t — V(0" — am'

» Can help or hurt. Strength of momentum is a hyperparam.

u=~0 u=0.5

u = 0.95

1.00 0 0 0 1.00
0.75 - 10 10 L0.75
20 20
0.50 - 0.50
30 30
J 0.001 50 50 0.00 |
—0.25 - 60 60 —0.25
70 70
—0.50+ ~0.50
30 30
~1.00- ' ' ' ' ' ‘ ~1.00
~1.0 =05 0.0 05 1.0 ~1.0-050.0 0.5 1.0 -1.0-050.0 0.5 1.0 —-1.0-0.50.0 0.5 1.0

6 6 10 6 6

Why Momentum Really Works

‘) > Starting Point

= beIutiOn

We often think of Momentum as a means of dampening oscillations

Step-size a = 0.02 Momentum B = 0.99
and speeding up the iterations, leading to faster convergence. But it
& (5 : : . .
| - has other interesting behavior. It allows a larger range of step-sizes
| to be used, and creates its own oscillations. What is going on?
Court f Gabriel Goh, 2017. Li : CC-BY.
GABRIEL GOH April. 4 Citation: PHITESY OF abliel 2o ceme
UC Davis 2017 Goh, 2017

https://distill.pub{2017/momentum/

Which are differentiable?

— 7

12 9 9

Which are have defined gradients in pytorch?

N N =

s 0 0

Which will be hard to optimize?

Vanishing gradient

J Vanishing gradient J Exploding gradient J

1.00 1.00
Simple case: 0.75- 0.75
e Convex 0.50- 0.50
e Single minimum 0.25- 0.25

e Gradients point toward it J 0.00- 0.00 .J

everywhere ~0.25- ~0.25

e Gradient gracefully goes to zero ~0.50- ~0.50

as minimum is approachea ~0.75- ~0.75

010 265 00 05 10 1100500 05 1.0 0

0 0

15

Discontinuous:

e But well-defined one-sided
derivatives

* Not a problem for Pytorch

1.00

0.75
0.50 1
0.25
J 0.001
—0.25
—0.50

—0.75

—1.00

16

~1.0 —=0.5 0.0

0

0.5

1.0

optim iter

~1.0-0.50.0 0.5 1.0
v,

1.00
-0.75

-0.50

0.25

0.00 J
—0.25
—0.50
—0.75

—1.00

Vanishing gradient:
® progress is slow, noise may
dominate

1.00

0.75-
0.50-
0.25-
J 0.00-
~0.25-
~0.50-
~0.75-

—1.00

~1.0 =0.5 0.0

17

0

0.5

1.0

~1.0-0.50.0 0.5 1.0
v

0 1.00
10- -0.75
20 -

-0.50
30+

5 40 0.25

£ 50- 0.00 J

aQ

S 60 —0.25
70+

—0.50
80 -
00 —0.75
—1.00

Zero gradient:

* Gradient is completely
uninformative as to how to make
progress

* | ow |loss region is never reached

1.00

0.75-
0.50-
0.25-
J 0.00-
—0.25-
—0.50-
—0.75-

—1.00

~1.0 —0.5 0.0
v,

18

0.5

1.0

~1.0-0.50.0 0.5 1.0
v,

1.00
-0.75
-0.50

0.25

0.00 J
—0.25
—0.50
—0.75

—1.00

Exploding gradient:

e Gradient goes to infinity as
minimizer is approached

e Unstable updates, overshoots

1.00

0.75-
0.50-
0.25-
J 0.00-
—0.25-
—0.50-
—0.75-

—1.00

~1.0 —0.5 0.0
v,

19

0.5

1.0

~1.0-0.50.0 0.5 1.0
v,

0- 1.00
10- L 0.75
20 -

0.50
30-
S 40 - 0.25
£ 50- 0.00 .J
© ~n .
o 60 —0.25
70 -
—0.50
80 -
~1.00

1.00 1.00
. . 0.75- 0.75
Multiple local minima:
o 0.50- 0.50
e \Where you initialize matters
| 0.25- 0.25
e (Gradient descent does not
. J 0.00- 0.00 J
guarantee reaching global
R ~0.25- ~0.25
minimizer
L ~0.50- ~0.50
 Reaches a local minimizer
~0.75- ~0.75
~1.00— ~1.00
-1.0 -0.5 0.0 0.5 1.0 ~1.0-0.50.0 0.5 1.0

0 0

20

Evolution Strategies

 QGradient-like: finds a locally loss-minimizing direction in parameter space

» Sample small perturbations of 8 and move toward perturbations that
achieved lower loss

€; NN(Oa I) 6)k+1 6)k e S‘M ¢
770'M si=] "1+l
S; = J(Q + O'Ei)
1.00 0 1.00
0.75- 10- 1 0.75
20-
0.50- 0. 1 0.50
0.25- 5 40- 0.25
Successtully minimizes this function: 7 oo £ 50 0.00]
—0.25+ . 5 60- ~0.25
70-
—0.50- ~0.50
80-
—0.75- 90- ~0.75
~100 T 05 00 05 1.0 100500 05 1.0 %

0 0
21

Gradient clipping

» |f gradients exceed a magnitude m, scale them to magnitude m

» Useful, and commonly used hack

v =VJ(6"%)
6’k+1

Successfully minimizes this function:

22

J

1.00
0.75-
0.50-
0.25-
0.00 1
0.25-
0.50-
0.75-

.00 - -
—-1.0 -0.5 0.0

0

0.5

1.0

Qk o 77|:C:I-:|-p(vl , —H1, m)? *ec Clip(vM’ —m, m)]T

~-1.0-0.50.0 0.5 1.0
0

0- 1.00
101 L 0.75
20 -

L 0.50
30 -
E’ 40 - 0.25
£501 0.00 .J
 ~n
o 60 ~0.25
70 -
~0.50
80 -
90- ~0.75
~1.00

What is important in a loss function?

® Everywhere continuous
® Everywhere differentiable

® Everywhere smooth

23

What is important in a loss function?

RelLU

® Everywhere continuous
® Everywhere differentiable

® Everywhere smooth X

24

What is important in a loss function?

GelLU

® Everywhere continuous
® Everywhere differentiable

® Fverywhere smooth

o5 https://arxiv.org/abs/1606.08415

Computation Graphs

A graph of functional transformations,
nodes ([_]), that when strung together
perform some useful computation.

computation graphs that take the form of
directed acyclic graphs (DAGs), and for
which each node is ditferentiable.

i Deep learning deals (primarily) with

26

Computation Graphs

y
O

linear

27

relu

linear

> Yy

Forward pass

forward

Xin — | f(Xin, 0) | —> Xout

Xout =f(Xina ‘9)

28

Forward pass — multiple layers

X0 » f1 — X1 »

g @

ol

Jr-1

— X711 P

o

* This computation graph could represent an MLP, for example

29

Learning

X0 ¥ fi Ji1 = X1 > JL

" o

* \We need to compute gradients of the cost, J,

with respect to model parameters.

e By design, each layer will be ditterentiable with
respect to its inputs (the inputs are the data and
parameters)

30

Matrix calculus

» x column vector of size [n x 1] ; L1
L2
X =

Ln

 We now define a function on vector x: y = f(x)
* [f v Is a scalar, then
@_(ﬁ o ... 3y)

8961 8:1:2 8a:n

00X
The derivative of y Is a row vector of size |1 x n|

* |f y IS a vector [m x 1], then (Jacobian formulation):

oY1 dyi ... Ou

8:131 8:132 8$n
dy
0 OYm OYm .. OYm

8:131 8:132 Bazn

The derivative of y is a matrix of size |m x n]

2 (M rows and n columns)

Matrix calculus

e If y is a scalar and X is a matrix of size [n x m/|, then

Oy Oy L 0y
32811 3.’,821 aiUfn,l
0y
0 Oy Oy L Oy
0L 1m 0T 2m 0% pm

The output is a matrix of size [m x n|

Wikipedia: The three types of derivatives that have not been considered are those involving vectors-by-matrices, matrices-by-vectors,
and matrices-by-matrices. These are not as widely considered and a notation i1s not widely agreed upon.

33

Matrix calculus

* Chain rule:
For the function: A(x) = f(g(x))

ts derivative is: h'(x) = f'(g(x))g’ (x)

and writing z = f(u), and u = g(x):

oz _os| om
OxX |, _. - Ou u=g(a) OxX |, _.,
I \ \
m xmn| |mXp| p X n]

with p = length of vector u = |u|, m =|z|, and n = |x

Example, If |z| =1, |u| =2, |x| =4

h(x)= I HIHE - Bl HEEE
BN

34

The Trick of Backpropagation — Reuse of Computation

(aka dynamic programming)

X0 fi [—X1» fo =¥ Jia =X »| fo |—X»p L P> J
01 0> 011 0L
0J
00,
0J
00,
9] 8] Ox; Oxs Ox, Ox; °© We could separately compute all the derivatives
8—(91 = 8XL 8XL—1 S aXZ X 86;1 USiﬂg the chain rule.
e But the terms in the gray box are shared. So we
O.J oJ 0x; Ox; 0%, should only compute this value once.
00, 0xp OXp 0xy 00, Backpropagation is an algorithm for propagating

shaged terms throughout the computation graph

Forward pass

X0 —»
0h >

S

— X| —p
0, ¥

)2

o o _>
Or1 ”

Ji-1

— X[-1 ¥
O, >

Jr

Send data forward through the network, computing outputs and calculating loss.

Backward pass

20 €

o)
0,

f

<+ 81 —

9] «
50,

4_...

0J <
0011

i

< 811 —

9]
50,

Send error signals (gradients) backwards through the network, from outputs and

loss back to inputs and parameters.

37

Backward for a Generic Layer

We will keep track ot two kinds of arrays of
partial derivatives:

e L: gradient of layer outputs w.r.t. layer

| . " X ceh —P : :
—» Xin —»| [(Xin, 0) | —» Xout J inputs (a matrix)

9‘ ® g: gradient of cost w.r.t. activations (a row
vector)
L N—— A a:)(Ollt A 81]
L — g = —
Sout 8[Xina 9] 8X
L 0J
g in | Pl OXour Sout = OXout
OXin
OX oy s 9J
LY & aet Bin = 5

38

. —p Xin —P

Backward for a Generic Layer

f(Xin,(g) —» Xout ' —» J
0
L N— —
Sout

gin

39

The parameter update is easy if
we know L and g for a layer:

oJ 0J OXout

= — 0
90" Ox 00 Bowl
\ /\,_/
gout LY
- - OJN\T
(91+1 6)1_ (_)
"\ 99

Backward for a Generic Layer

But how do we get L and g for
each layer?

+ —p Xin —Pp f(Xin,(g) —» Xout *°° —P J

| L comes from the derivative
4 function, t', of the layer (which
we assume is provided):

D G L =f"(Xin, 0)
gout

g can be computed iteratively
gin via the following recurrence:

8in = goutLX
backpropagation of error signals .~~~

40

Backward for a Generic Layer

backward

Xins 0 —» L =f/(Xina (9)
gin — gin — 8out L* <4— Bout

‘ % = out LQ

oJ
00

e All this machinery is to compute parameter update directions

41

The Full Algorithm: Forward, Then Backwaro

Forward:

X0» hH |—Xi>» fo |— > fra |Xear| L

0 0, ¥ Or1 7 O
Backward:

S| f |le-—| B |le—| fy e8| f

5] € 5] € o] 5]«

a91 86’2 89L_1 69L
Update: | AJ\T

! e@l—n(%) ... and repeat

42

Backpropagation — Goal: to update parameters of layer [

» Layer | has three inputs (during training)
X[—1
Ji41 —
t
0
=L v > - And three outputs
Hidden layer [fl E «— 0, X; = fi(xi—1,0;)
X1
..... >
v 4
Ji—1
Backward
PasSS (Given the inputs, we just need to evaluate:
dJi dJfi

fi

0X|—1 0—6%

43

Backpropagation summary

1. Forward pass: for each training example,
compute the outputs for all layers:

x; = fi(x;-1,0;)

2. Backwards pass: compute loss derivatives
iteratively from top to bottom:

3. Parameter update: Compute gradients
w.r.t. weights, and update weights:

44

t
L(xL,Yy)
(output) X7, l
o 2,
XL-1 +
X1 ‘1,
2,
Xl-1 \l:
X5 |
2 (2,
X1 |
nooo2,

(input) Xq

Backpropagation Over Data Batches

Typically we want to minimize the average cost over lots ot datapoints:
| N

Then the gradient of the total cost is just the average of all the
gradients of all the per-datapoint costs:

aJ ii 9.J;(x", 6)
90 N - 90

1—=1

45

l |inear layer
Tout o FOrWard propagation:Xout — f(Xin7 W) — WXin

Xout W Xin
Xin gin
v With W being a
matrix of size
» Backprop to input: Xout]X[Xin|

f we look at the i component of output x,;, with respect to the j component ot the input, x;,:

axout- af(x W)
() — Wz . 1119 _
aXinj S aXin 4
Therefore: Sin Sout W

N S

46

l Linear layer
» Forward propagation:Xout = f(Xin, W) = Wx,

* Backprop to input:

v TTT]=[TT

Now let's see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

47

Linear layer

&

Xout
______ « Forward propagation:Xout = f(Xin, W) = Wx;,
f(Xin,W_) (_9W p p 9 t
Xin g e Backprop to weights:

T we look at how the parameter W, changes the cost, only the i

component of the output will change, therefore: oJ
Xin Sout
|:| H
aXout?;
— Xin;
OW,; ; 7

oJ

T
And now we can update the weights: | W™ « W" + ”(ﬁ)

48

Linear layer

“4n Sin Weight updates:
T
WHeH . W +77< o))

OW

49

Now lets look at a whole MLP: Forwara

linear

W,

X

relu

h=relu(z)

50

linear

W, h

L[> loss

Now lets look at a whole MLP: Backward

linear

T T
Wi g3

gl =(gou: W) =W'g!

relu “—g

51

linear

Outputs

Backpropagation (1 iteration)

Inputs

IeaUTT

a

IesautT]

IeauT]

a

IeautT]

IeauT]

a

IeaUTT

#

— ™~

™~
9%

-~
£ =

IeSUTT

SSOT 2T

—

IeauT]

A

WzJ
Z

2

IeauT]

A

IeaUuTT

T EETRENR-FRERREERRERRELREL)

A

IIIIIIIII“IIIIIIIIIIIIII llllllllllllllll

=== : params forward

. params backward

=== : data forward
=== : data backward

52

DAGs

Parameter sharing

Parameter sharing

Parameter sharing —> sum gradients

95

Differentiable programming

Deep learning

Xout \[

f(Xin7 W)

Xin j gin

Differentialble programming

Xout \[

f(Xin7 6))

PyTorch

TensorFlow ™

Differentiable programming

* Yann LeCun
Deep nets are popular for a few reasons: s 9
I ; ; OK, Deep Learning has outlived its usefulness as a buzz-phrase.
1 " EaSy tO (.)ptlmlze (dlﬁerentlab‘e) | Deep Learning est mort. Vive Differentiable Programming!
2. Compositional “block based programming”

1:3 Thomas G. Dietterich
| s Following _

DL is essentially a new style of

An emerging term for general models with these rCirrt I a0 e ek s 1y 5
properties is differentiable programming. ¥l We (s aome: corohlon,

pooling, LSTM, GAN, VAE, memory
units, routing units, etc. 8/

ssremecs 1L PO SOD 3O

© Yann LeCun and Thomas Dietterich. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

57

Differentiable programming

the dog? LSTM 1 couch

| |
count - color
Parser Layout
]

CNN

© Andreas, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Figure from “Neural Module Networks”, Andreas et al. 2017]

Software 2.0

[Andrej Karpathy: https://karpathy.medium.com/software-2-0-a64152b37c35]

Program space

Software 1.0

Software 2.0

© Andrej Karpathy. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

59

Programmed by a human

Programmed by backprop

e.g., programmed by tuning behavior to match
fraining examples

60

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

61

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

|

/ o How the cost changes when the weights of that
O function (yellow) change

62

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

|

/ O How the cost changes when the functional node
O highlighted changes

o]

A How the cost changes when the input data changes

0

63

Optimizing parameters versus optimizing INputs

Yy
X B 6 dolphin
O cat
O grizzly bear
Ol angel fish
@ chameleon —» J
O clown fish
' O)| iguana
©sourc o, Al gt resred. T O] elephant
o Bitpesoom it dufbelp/faq fie ney - - - - - B
a J - How much the total cost is increased or decreased by changing the
89 parameters.

64

Optimizing parameters versus optimizing INputs

Yy
X B B B B B 6 dolphin
O cat
(Ol grizzly bear
Ol angel fish
- (=] |[=»]| [—»| [=—> (@] chameleon
O clown fish
| ST O)| iguana
oo s it o oot O] elephant
e s e L L L L i
ayj < Howmuch the "chameleon” score Is increased or decreased Dy
aX changing the image pixels.

65

Unit visualization

Make an image that maximizes the “cat”
output neuron:

arg max y; + AR(x)

- o el Y
Courtesy of Olah, et al. Used under CC BY.

[https://distill.pulb/201 7 /feature-visualization/]

66

Unit visualization

Make an image that maximizes the
value of neuron | on layer | of the

arg max h;, + AR(x) network:

Courtesy of Olah, et al. Used under CC BY.

[https://distill.pulb/201 7 /feature-visualization/]

67

Images created using a network trained on places by MIT Computer Science and Al Laboratory.

! Deep dream” [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html]

68

CLIP

pepper the

aussie pup

© Radford, et al. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[https://openai.com/blog/clip/]

1. Contrastive pre-training

Text
Encoder

Image
Encoder

69

IN'T7

IN’TZ

IN.TS

IN 'TN

https://openai.com/blog/clip/

CLIP+GAN

INPUT:
"What 1s the answer to the Tt €1
ultimate question of life, the — Encoder
universe, and everything?” To maximize
XIMIZ
this
v
el . e2 ét“‘
OUTPUT: N
Optimize this
e
) Image 2
Z ' Encoder

Code: https://colab.research.goggle.com/drive/1_4PQqzM_O0KKytCzWtn-ZPi4dcCaSbwK2F?usp=sharing

2. How to train a neural net

* Review of gradient descent, SGD
e Computation graphs

e Backprop through chains

e Backprop through MLPs

e Backprop through DAGs

e Differentiable programming

71

BacKpropagation example

node 1 W3- node 3

iINput output

tanh
Learning rate n = -0.2 (because we used positive increments)

—uclidean loss

Training data: Input desired output
node 1 node 2 node 5
1.0 0.1 0.5

—Xercise: run one iteration of back propagation

72

BacKpropagation example

node 1

node 3

W13=1.02

0.17

iINput output

node 2

1.0 tanh

After one iteration (rounding to two digits)

73

Step by step solution

First, let’'s rewrite the network using the modular block notation:

We need to compute all these terms simply so we can find the weight updates at the bottom.

75

Our goal is to perform the following two updates:

oL \'
ROSERI O

oL \'
k+1 ~xrk
Wl _Wl_l_n(an)

where Wkare the weights at some iteration k of gradient descent given by the first slide:

I -3
Wi=(op 1) Wi=0 -1

76

First we compute the derivative of the loss with respect to the output:

oL
8X3_ 3Y

Now, by the chain rule, we can derive equations, working backwards, for each remaining
term we neeaq.

OL| 0L ox3 oL

0%yl Ox3 0%y |Ox3|

OL| OL dxo L dtanh(xy) |OL 2
OL|_ _ loch, o
0X1 8X2 (7X1 8X2 aXl 0X2 (tan (Xl))

ending up with our two gradients needed for the weight update:
oL oL 0x; oL

p— — XO—
OWgo 0x1 OWy 0x1 \ Notice the ordering of the two terms being multiplied

oL OL Oxs EYe here. The rjotgtion hides the deﬁai!s but you can vvritg
J— p— X S
OW, Ox3 OW, 2 9% out all the indices to see that this is the correct ordering

— or just check that the dimensions work out.
77

The values for input vector xo and target y are also given by the first slide;
- (1.0
0= \o01 y =05

Finally, we simply plug these values into our equations and compute the numerical updates:

Forward pass:

1 -3\ (1 0.7
¥1 = WoXo = (0.2 1 > (0.1) - (0.3)

0.604
X9 — tanh(xl) — 0291>

0.604
x3 = Wixs = (1 —1) <0'291> = (.313

1
L = §(X3 —y)? =0.017

/8

Sackward pass:

a—ﬁ — X3 — VY = —(0.1869
8X3
diagonal matrix because tanh is a
L _ 9L\ — 01869 (1 —1) = (—0.1869 0.1869) pointwise operation
(3X2 8X3 /
oL oL) B 1 — tanh?(0.7) 0 B
o 6—}(2(1 — tanh®(x;)) = (—0.1869 0.1869) () , _tanh2(0.3)> = (—0.1186 0.171)

0L oL (1.0 ~0.1186 0.171
oW, Vox; <0.1> (~0.1186 0.171) = (—0.01186 0.0171)

oL 0L (0.604 —0.113
OW, 20xs (0.291) (~0.1186) = (—0.054)

79

Gradient updates:

T
Wit :W’§+n<£§ >
0

(1 =3\ _ (01186 0.171
—\02 1 “\—0.01186 0.0171

~(1.02 —3.0
—\017 1.0

oL\
Wk—|—1 :Wk}
1 1 _I_n(an)

= (1 -1)—-0.2(-0.113 —0.054)
= (1.02 —0.989)

)

80

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

81

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page

