

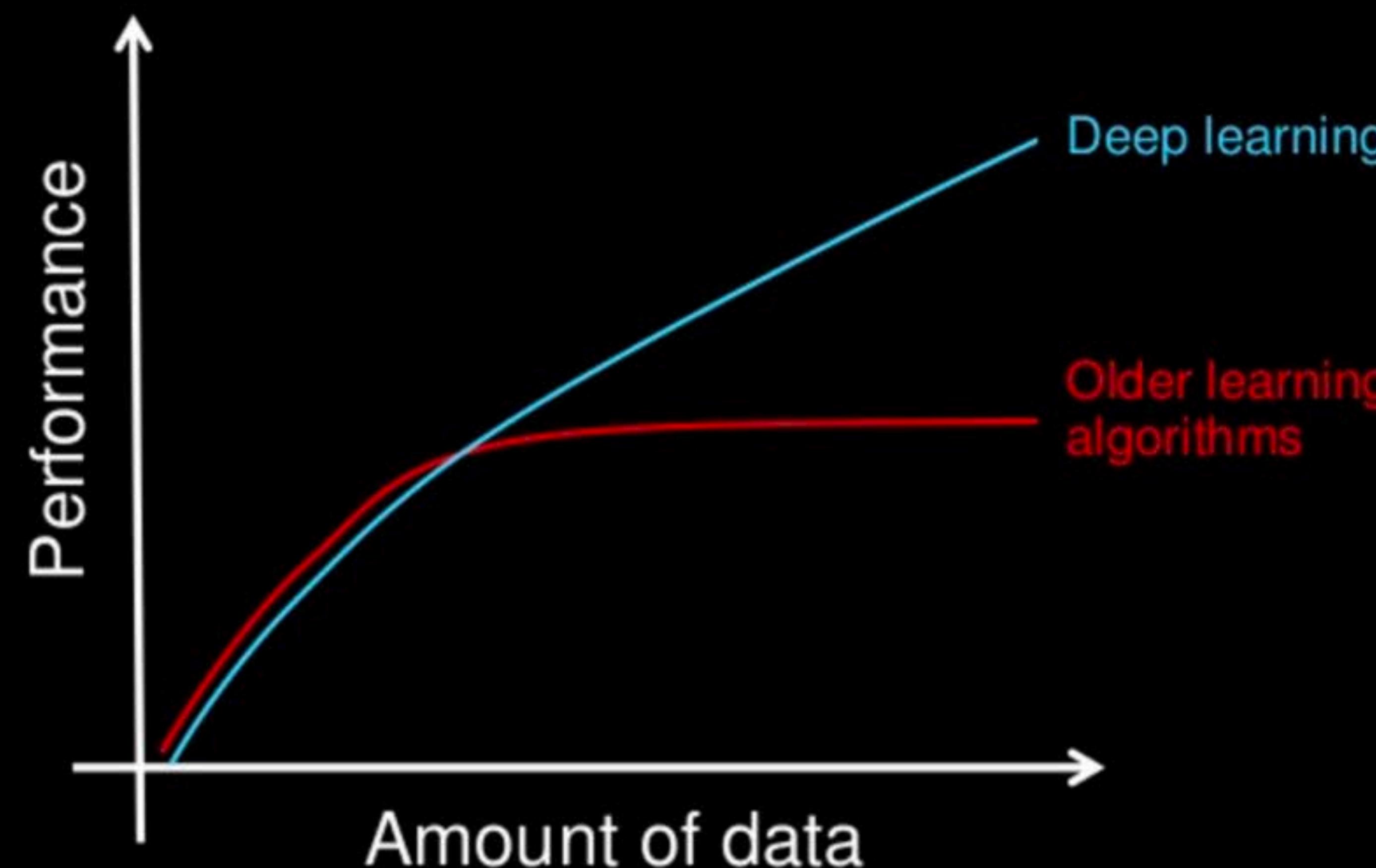
Lecture 18: Transfer Learning I

Speaker: Sara Beery

Transfer Learning I

- Learning with little data
- Transferring knowledge about the mapping
 - Finetuning
 - Domain adaptation
- Transferring knowledge about the outputs
 - Knowledge distillation
- Foundation models
 - Prompting

Why deep learning



How do data science techniques scale with amount of data?

[Slide credit: Andrew Ng]

Few-shot Learning

අ	ඖ	භ	බ	ඹ
උ	ඖ	භ	බ	ඹ
ඇ	ඇ	ඇ	ඇ	ඇ
උ	උ	උ	උ	උ

This is a “dax”.

Which of the below symbols are also daxes?

© AAAS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Lake, Salakhutdinov, Tenenbaum, 2015]

Few-shot Learning

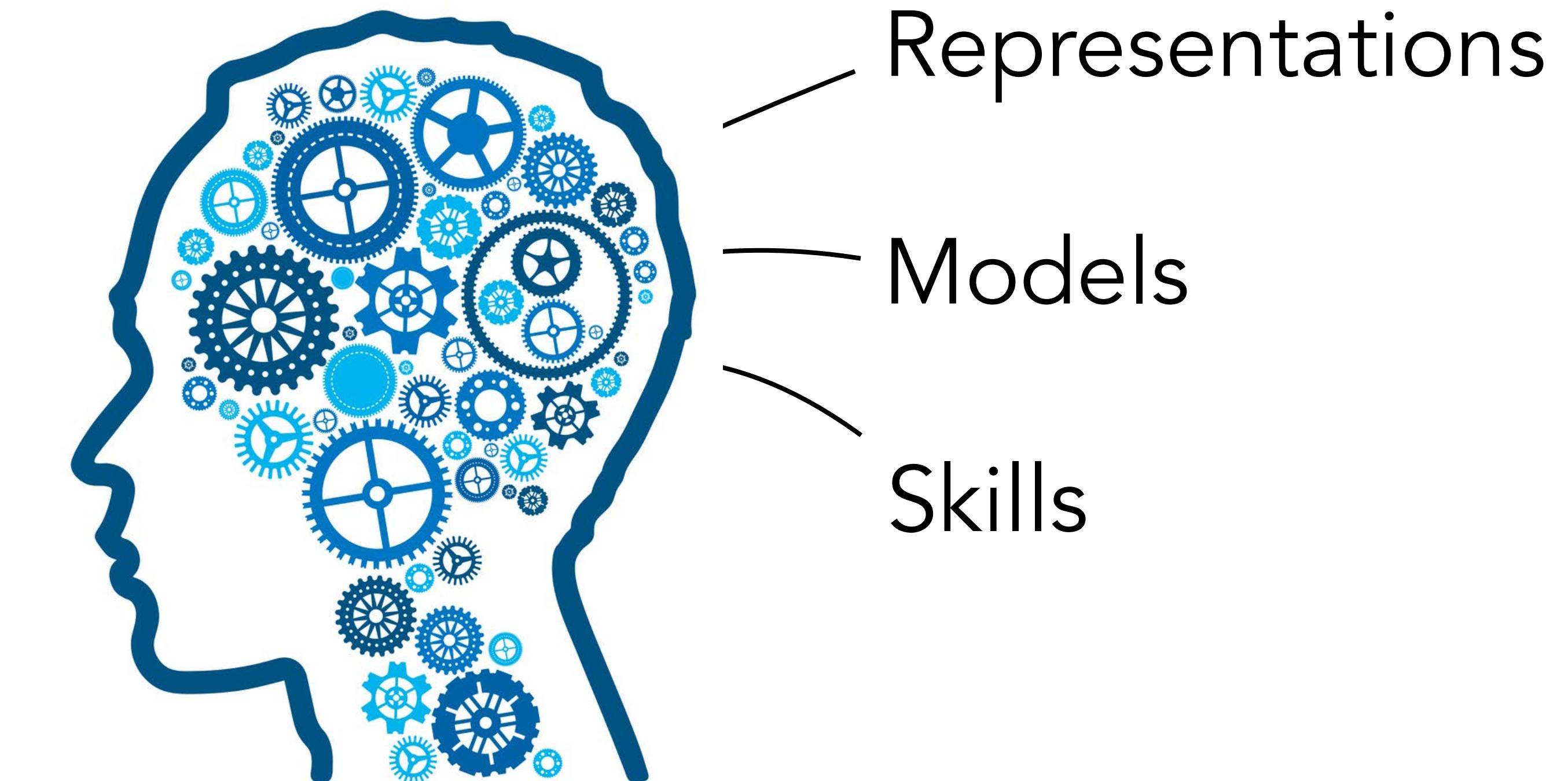
Which of these is an example of the same concept as the item in the box?

© AAAS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Lake, Salakhutdinov, Tenenbaum, 2015]

“Deep learning”

Human learning



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

How can we give deep nets prior knowledge?

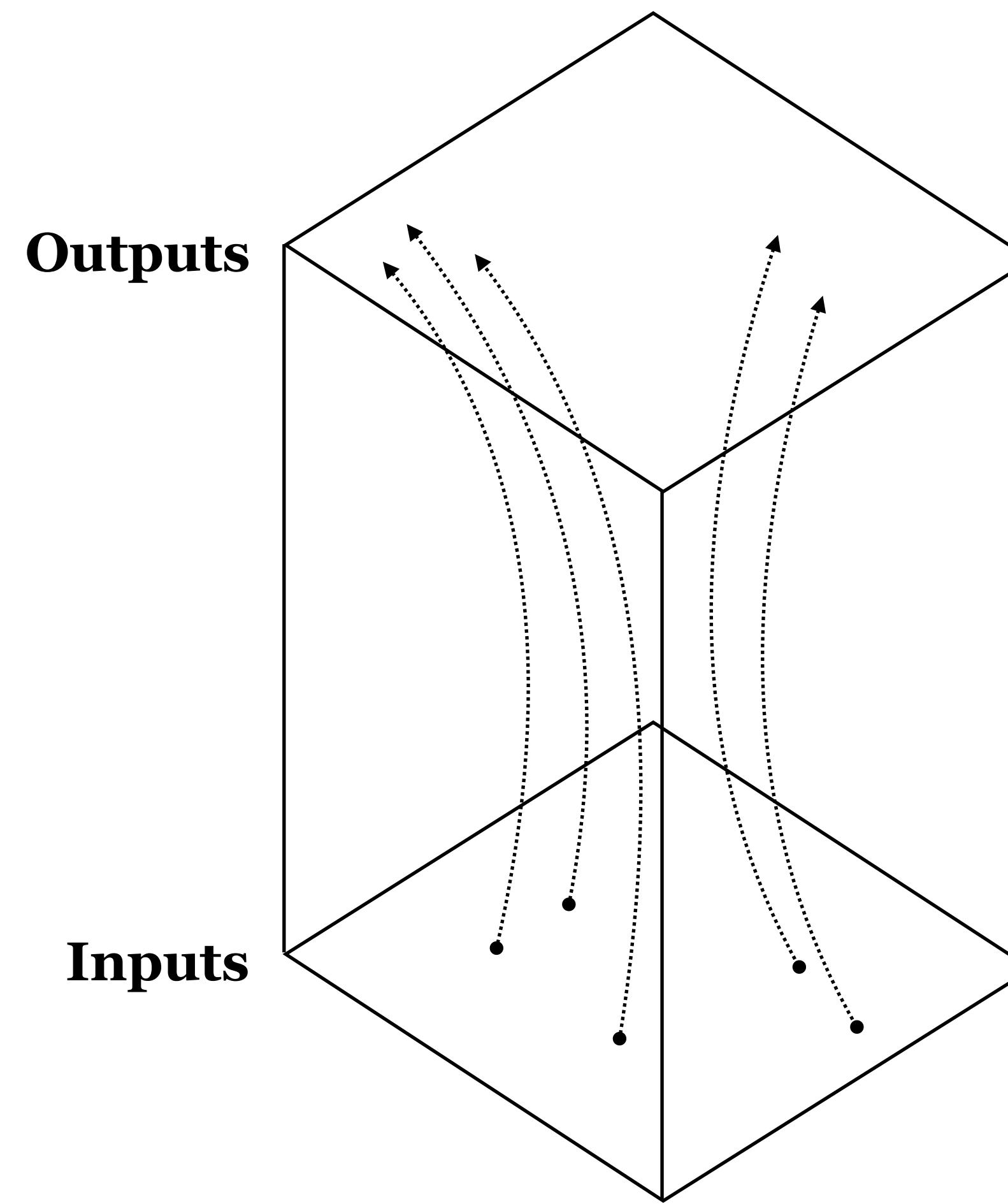
How can we give deep nets prior knowledge?

Just “pretrain” them on prior tasks!

Then transfer knowledge from the pretrained nets to solve novel tasks.

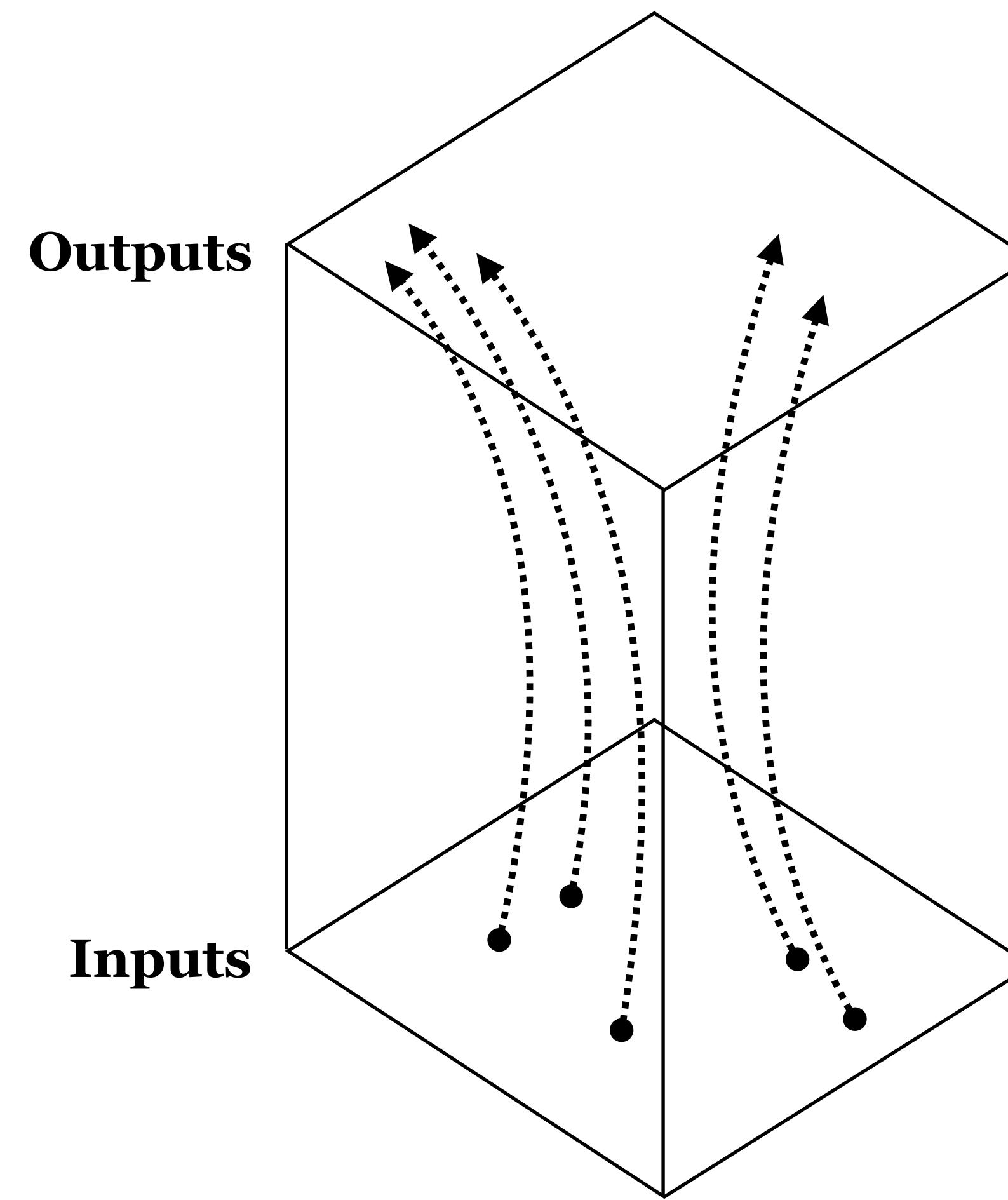
One view: the **point** of deep learning is to enable problem solving with little data

1. Knowledge about the mapping
2. Knowledge about the outputs
3. Knowledge about the inputs



Transfer Learning

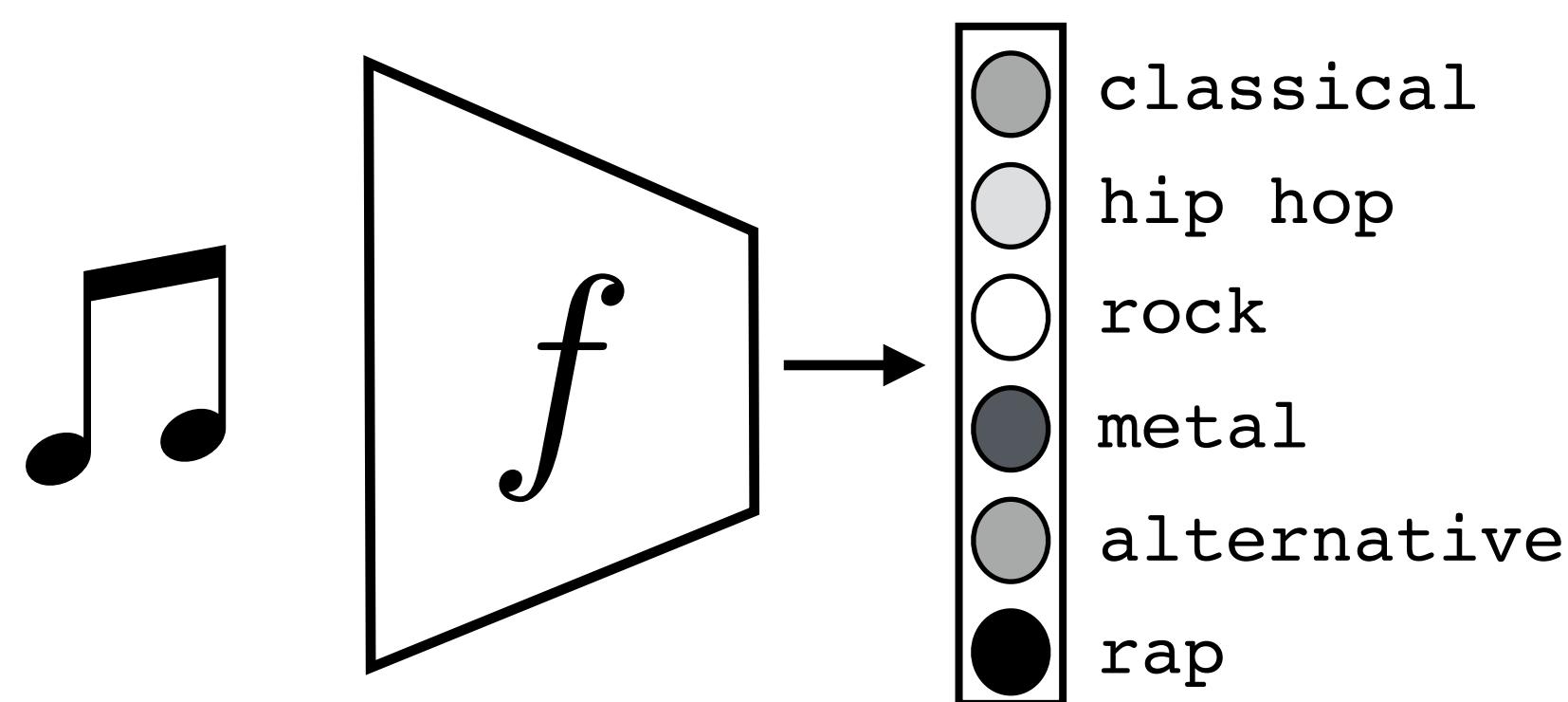
1. Knowledge about the mapping
2. Knowledge about the outputs
3. Knowledge about the inputs



Transfer Learning

Pretraining

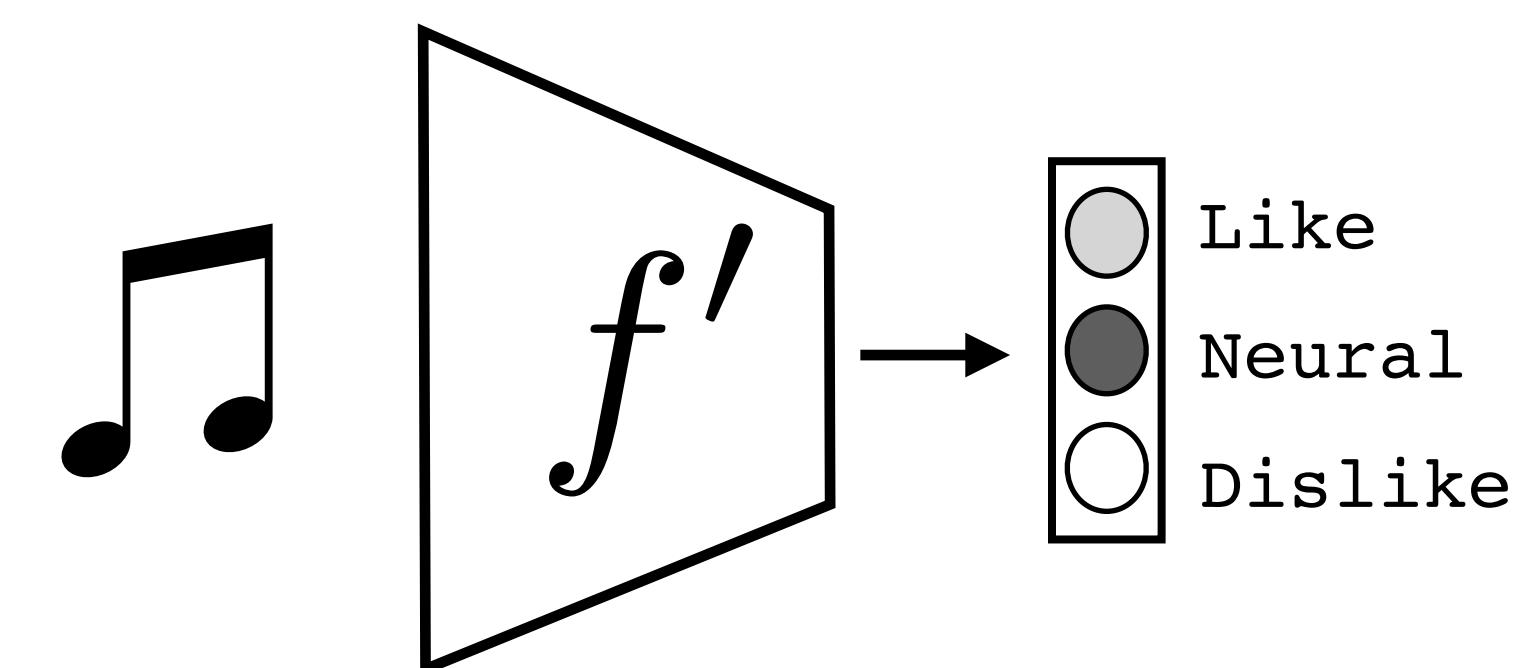
Genre recognition



A lot of data

Adapting

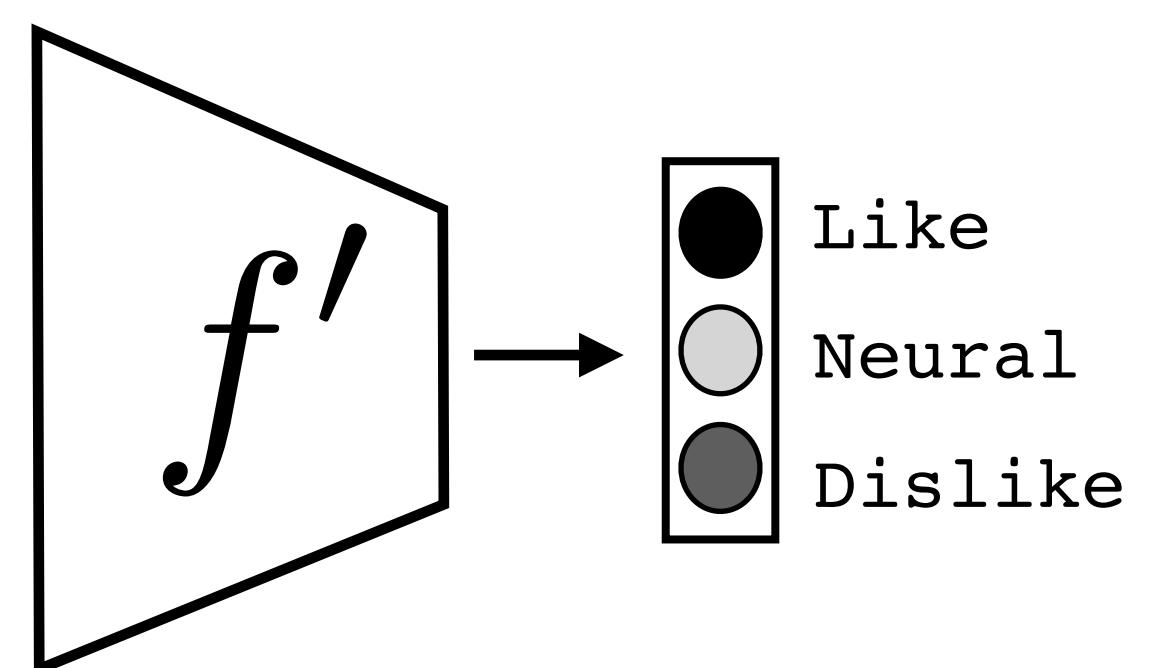
Preference prediction



A little data

Testing

Preference prediction



Finetuning

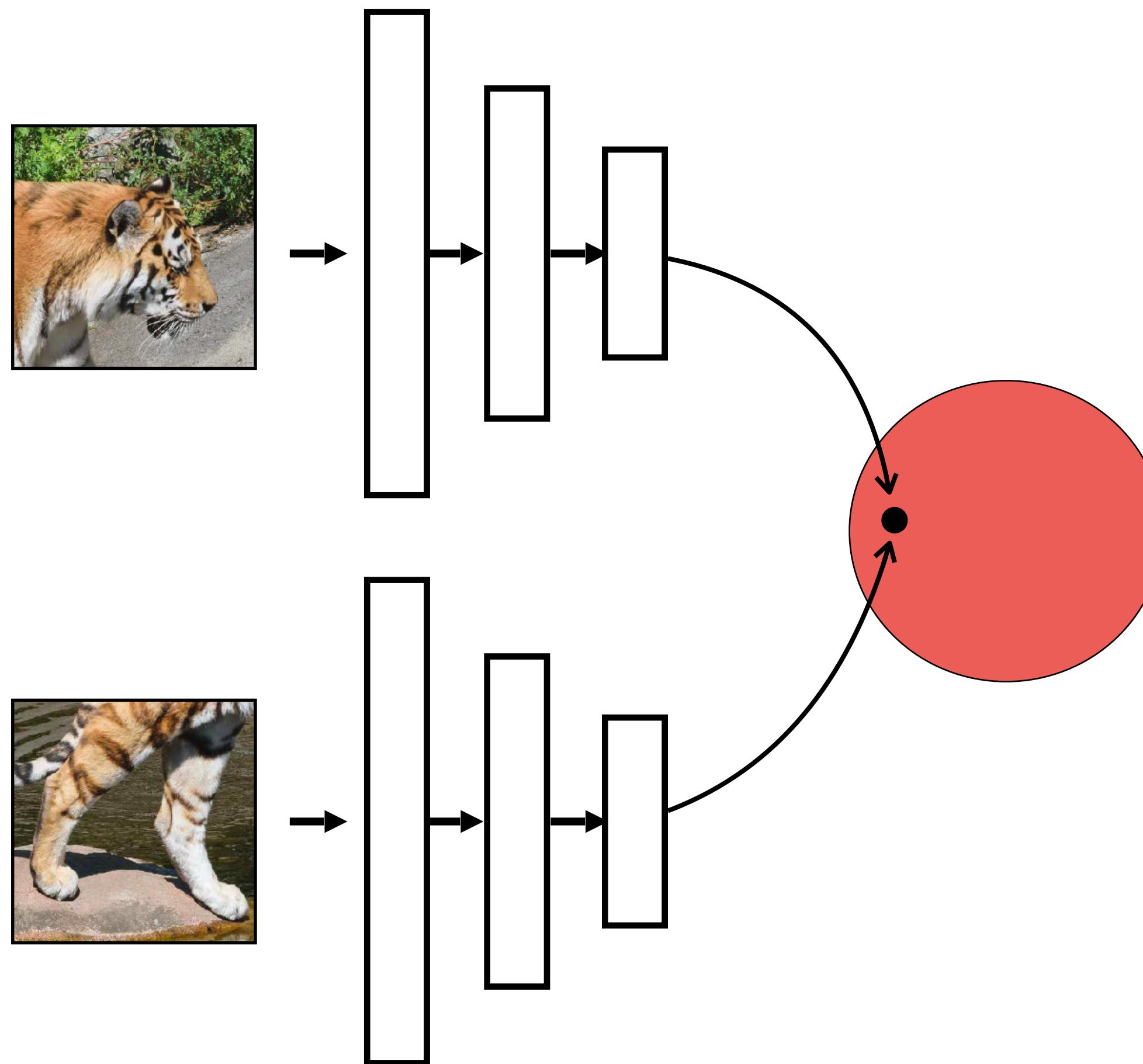
- Pretrain a network on task A, resulting in parameters \mathbf{W} and \mathbf{b}
- Initialize a second network with some or all of \mathbf{W} and \mathbf{b}
- Train the second network on task B, resulting in parameters \mathbf{W}' and \mathbf{b}'

The “learned representation” is the *encoder* (its weights and biases) so that’s what we transfer

Contrastive pre-training

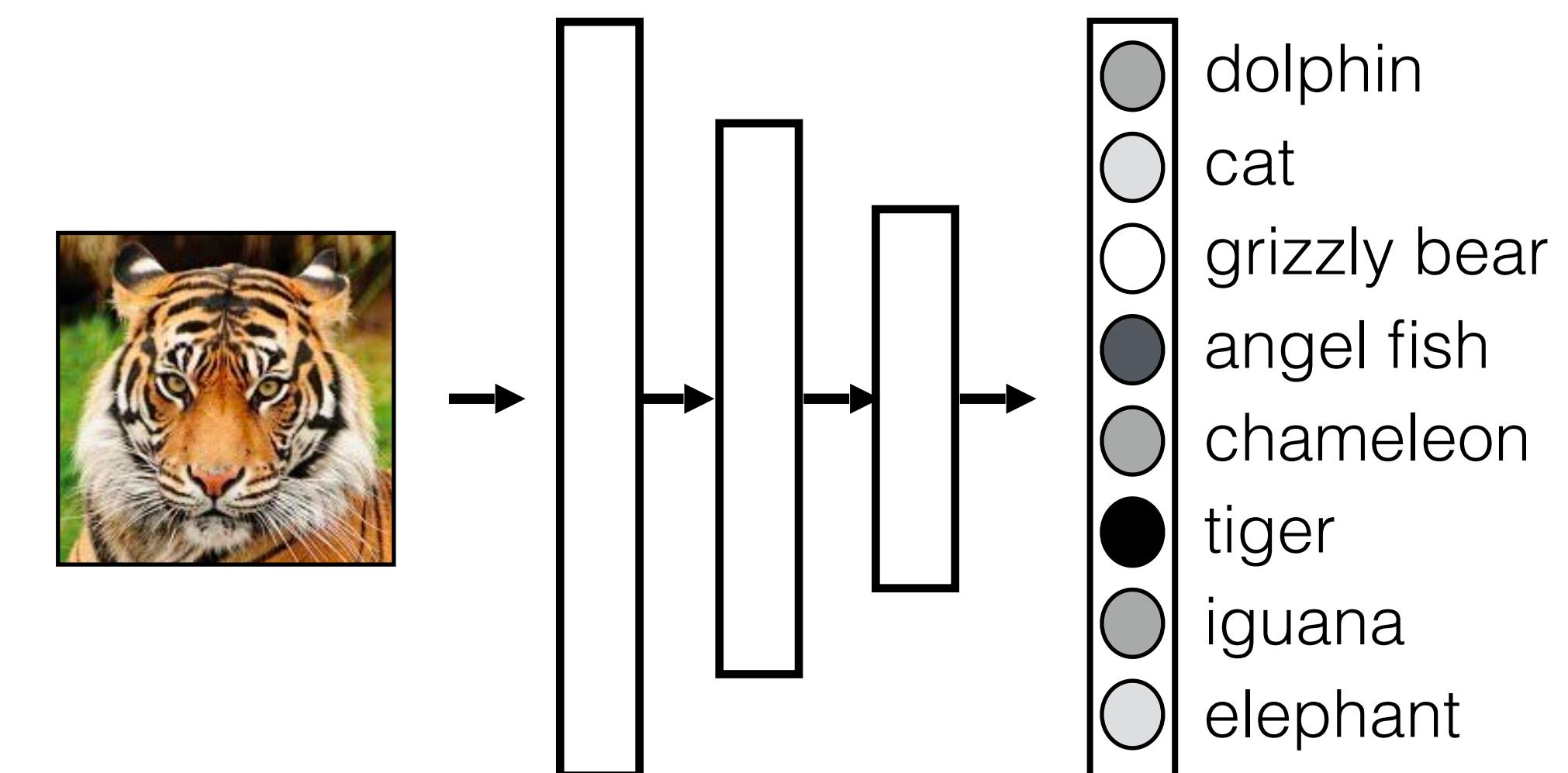
Pretraining

Self-supervised contrastive learning



Testing

New recognition task

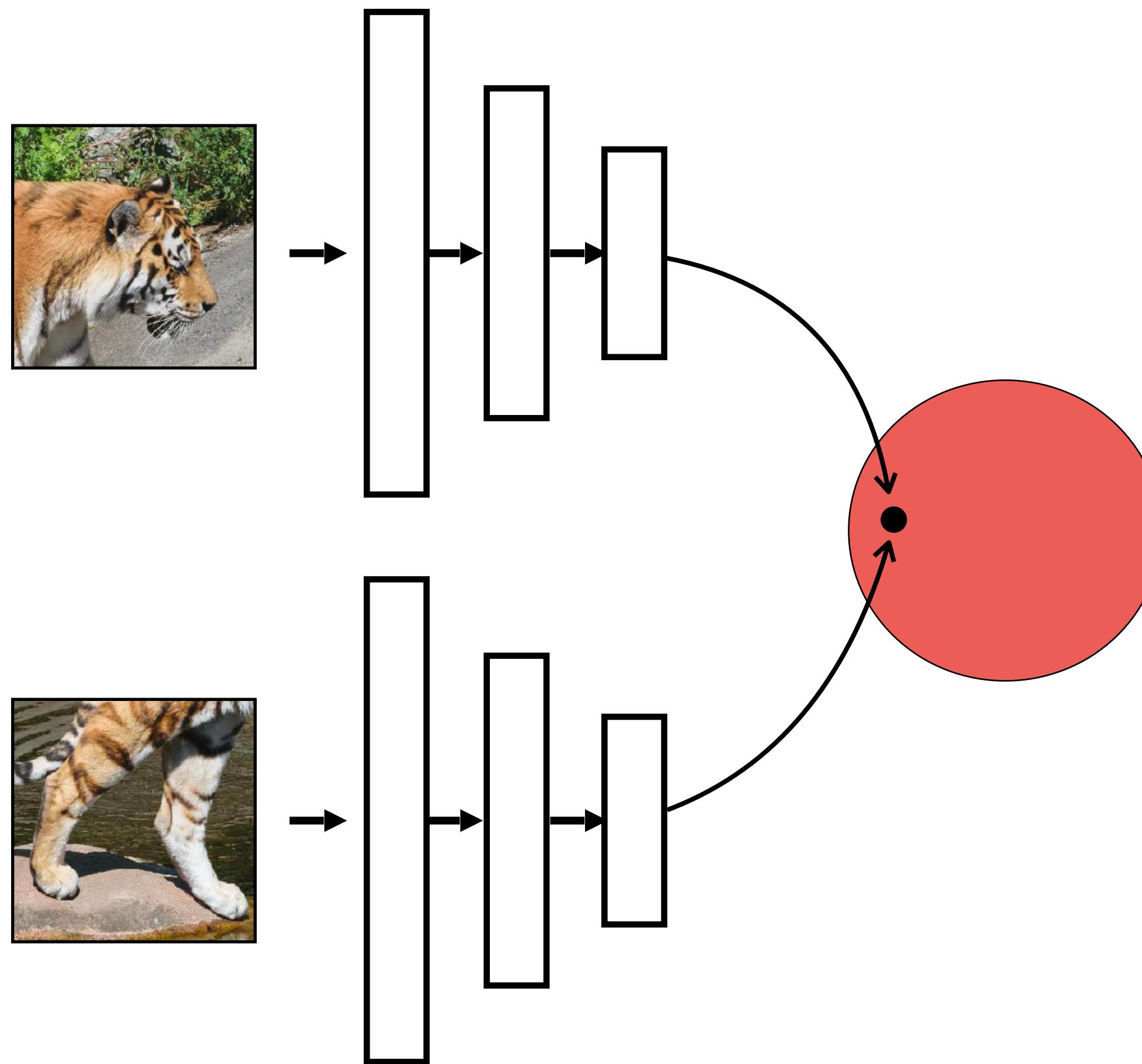


Tigers © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Contrastive pre-training

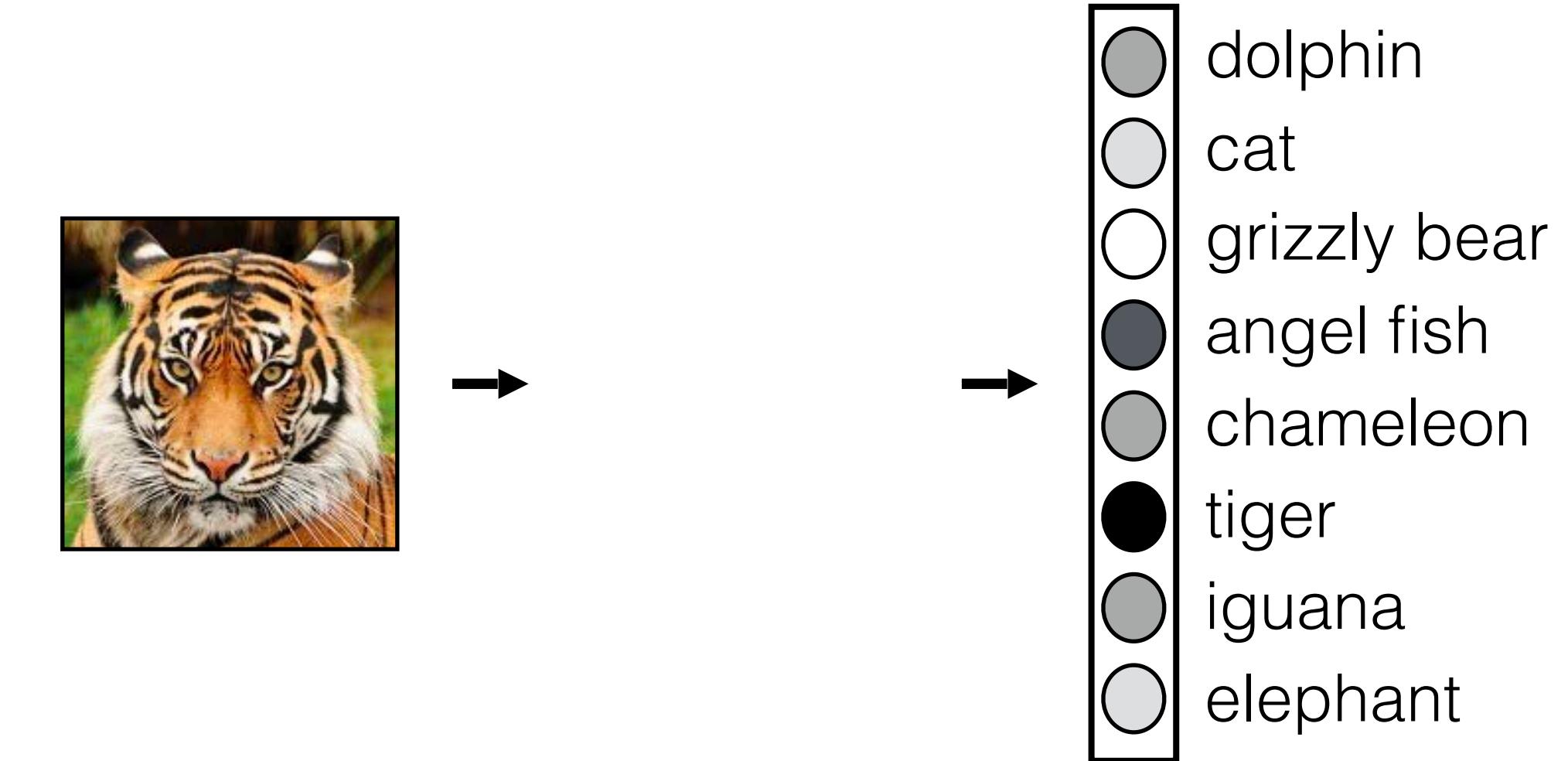
Pretraining

Self-supervised contrastive learning



Finetuning

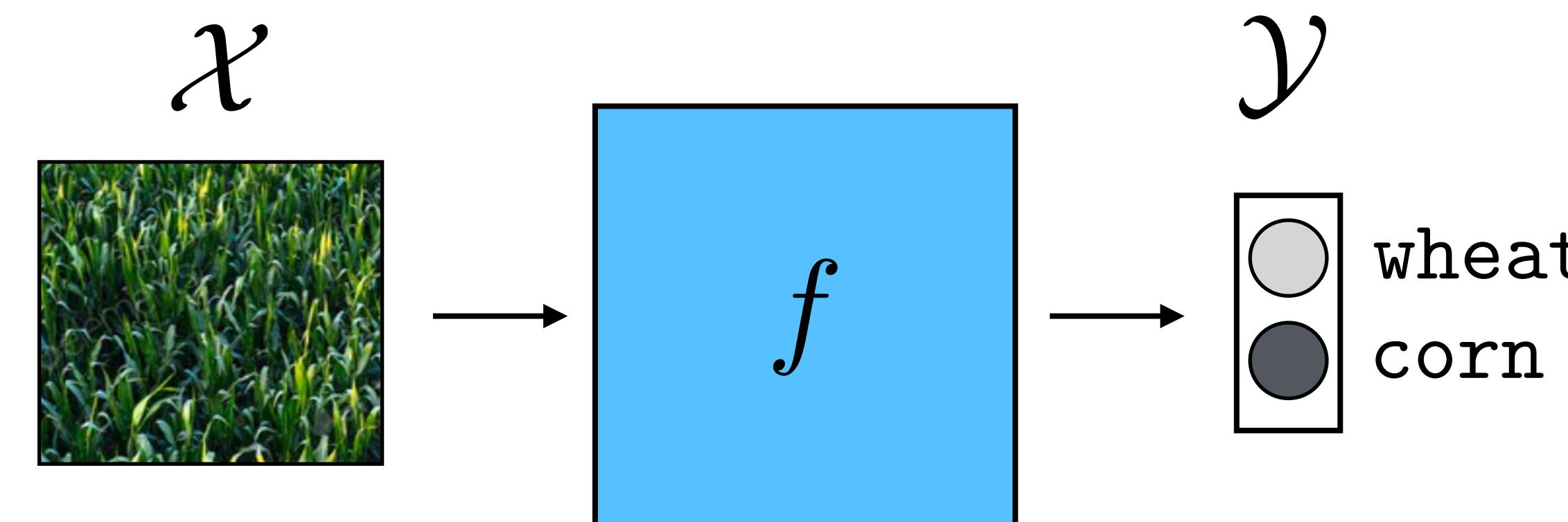
New recognition task



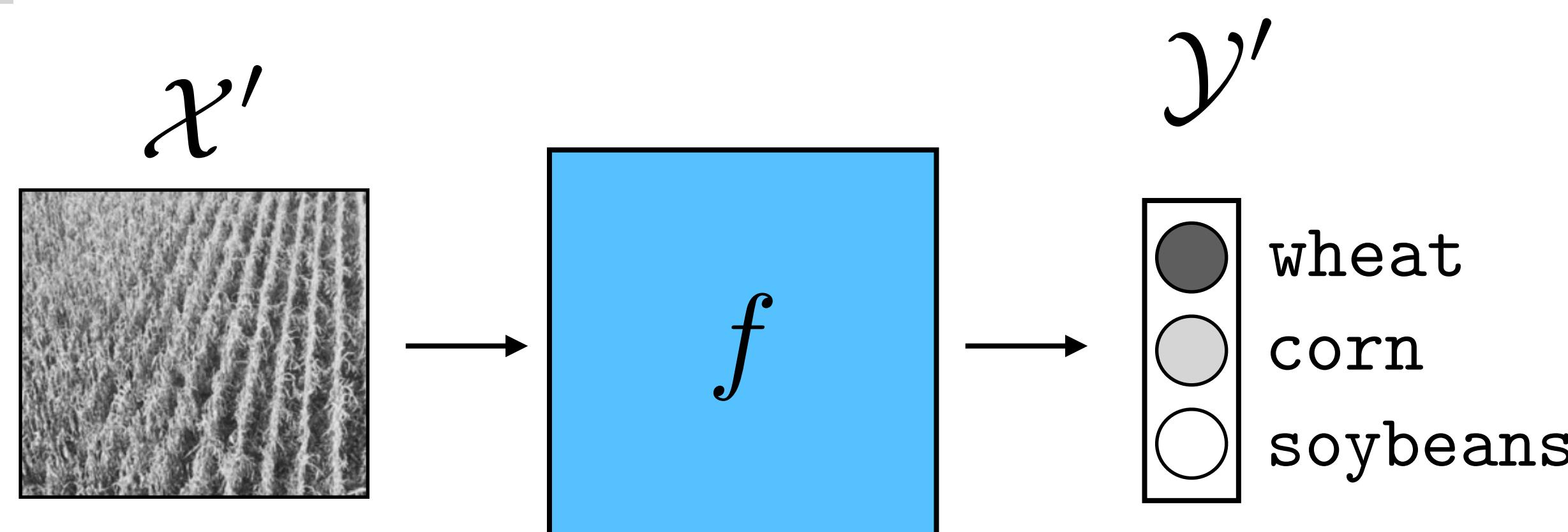
Tigers © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What if the input/output dimensions don't match?

Pretraining



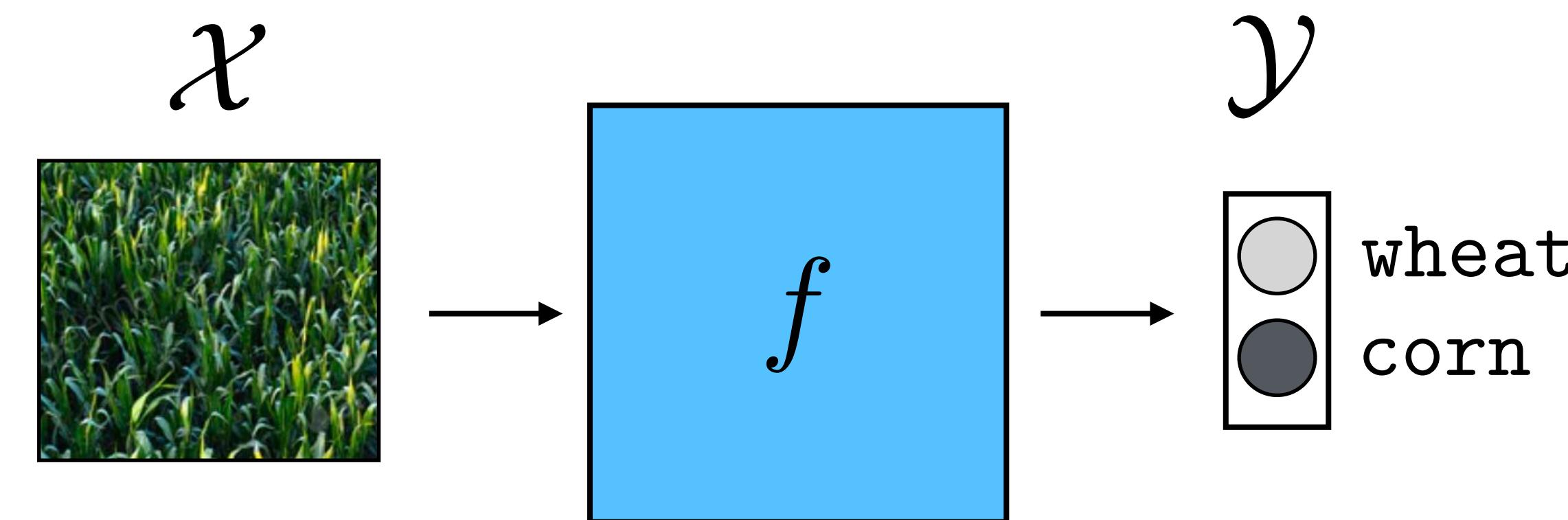
Finetuning



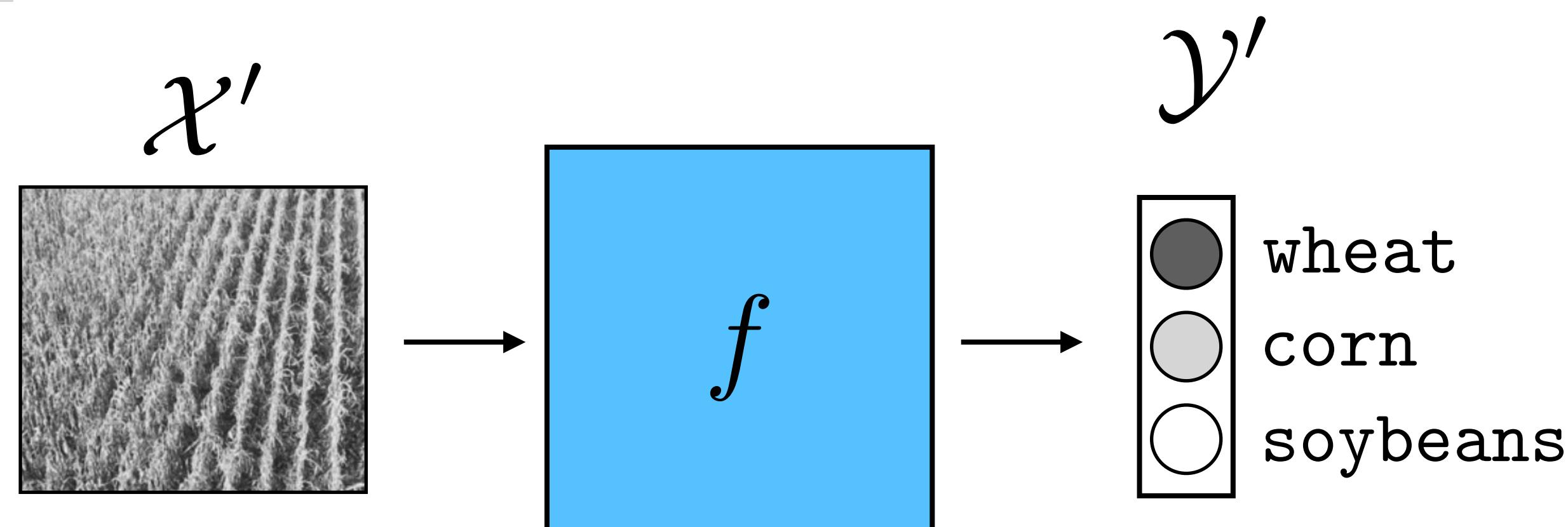
Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What if the input/output dimensions don't match?

Pretraining



Finetuning

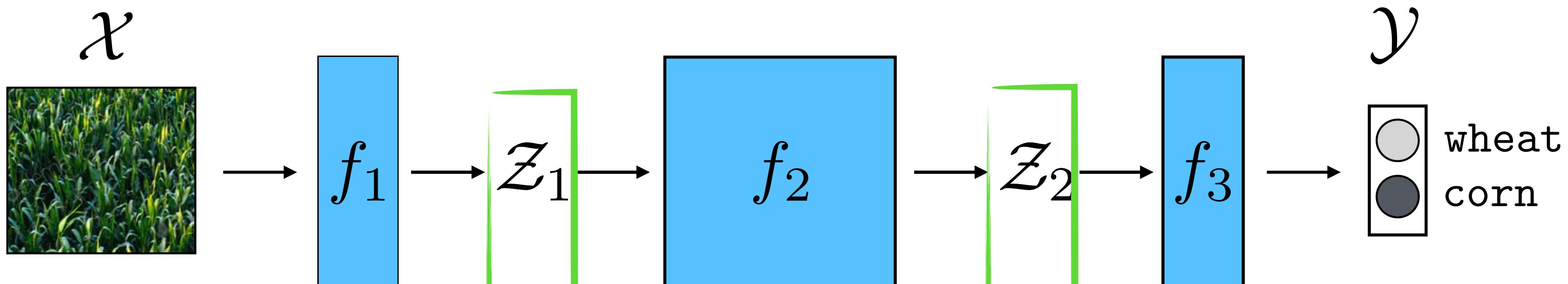


$$\boxed{\begin{aligned} x' &\neq x \\ y' &\neq y \end{aligned}}$$

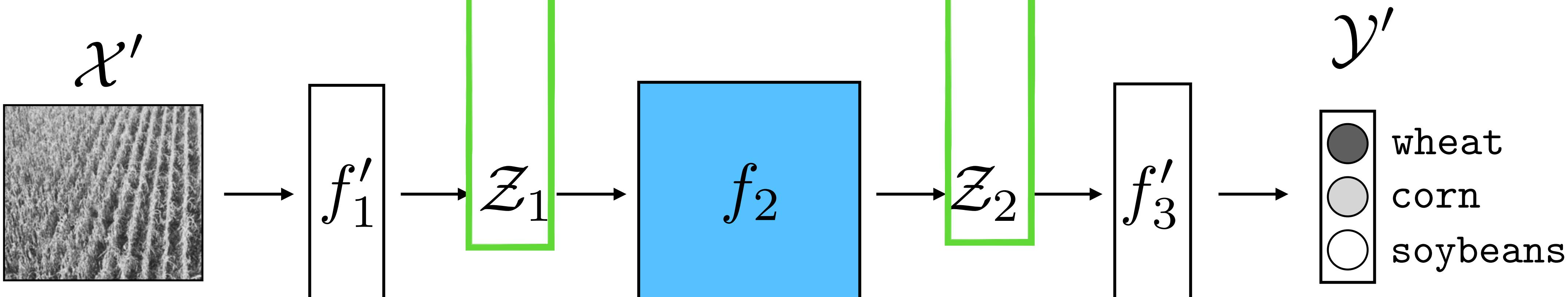
Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What if the input/output dimensions don't match?

Pretraining



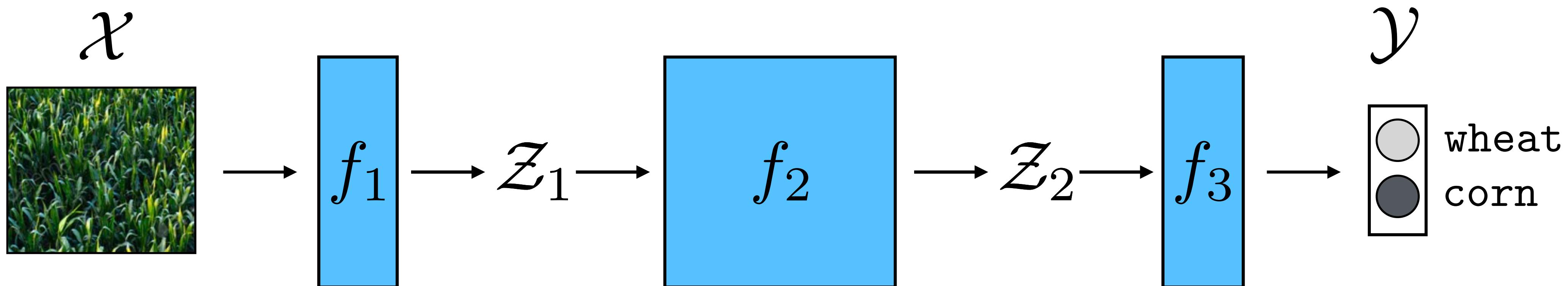
Finetuning



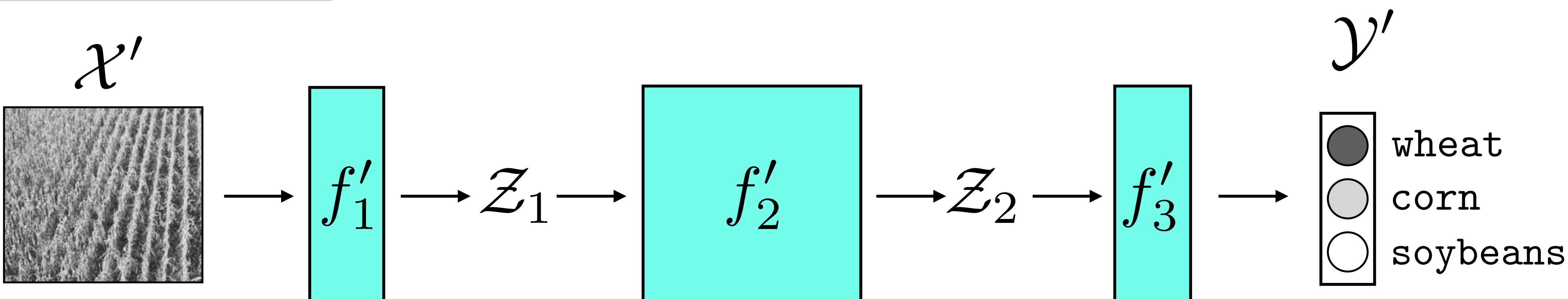
Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What if the input/output dimensions don't match?

Pretraining



Finetuning



How to avoid forgetting the general representation?

Avoiding overfitting on a small amount of data for a new task while still enabling specialization can be a balancing act. A few methods:

- Freeze most of the network, train only the final layers
- Use a small learning rate
- Early stopping
- Continue to train on the original data as well

All assume that you have a good, representative validation set for your task (not always possible when you may see distribution shift)

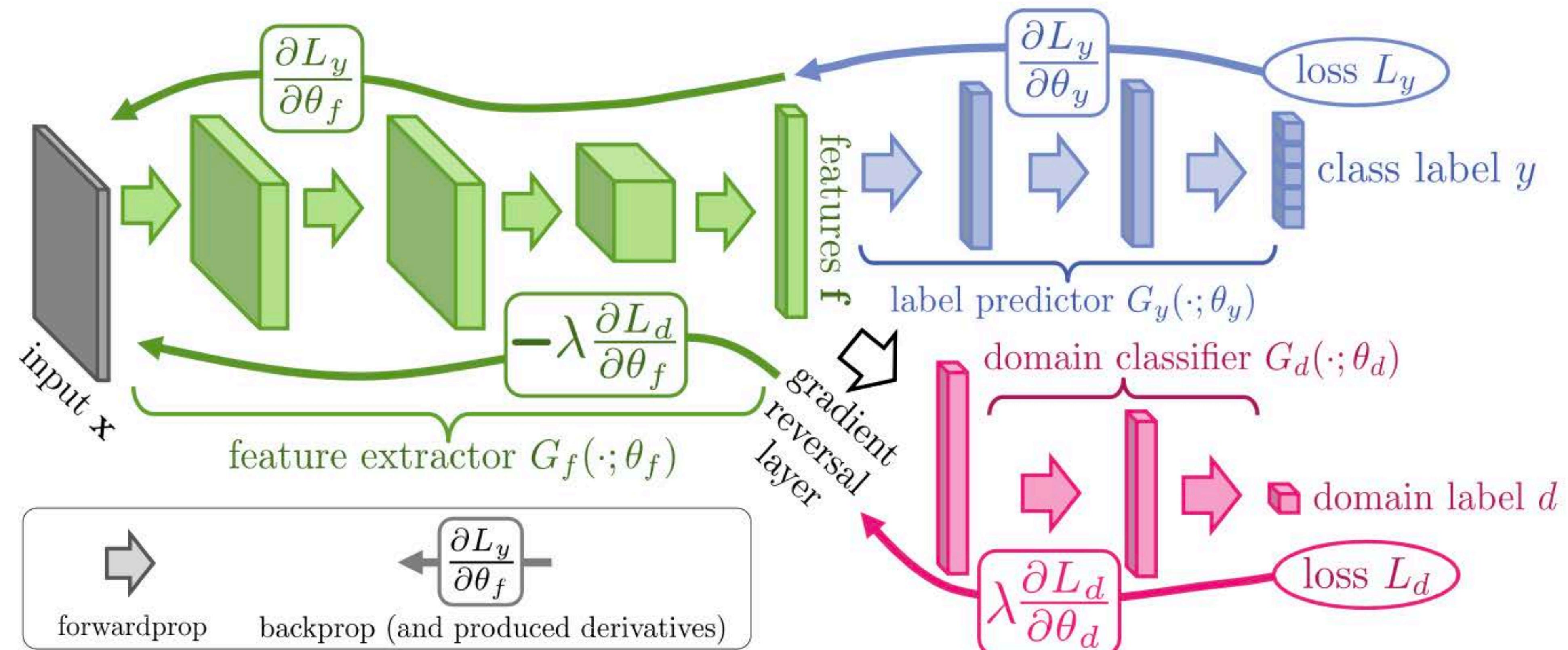
Domain
→
Adaptation

Source domain: ● ★ ▲ ■

Target domain: □ △ ○ ☆

Images © He, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

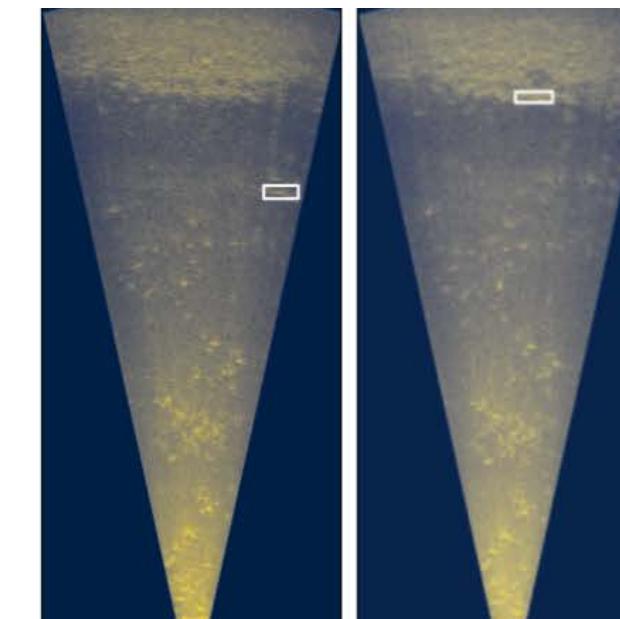
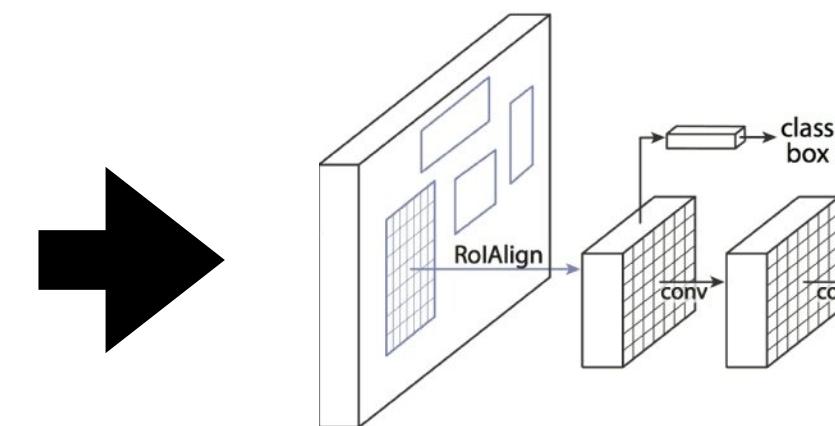
Domain Adversarial Neural Networks (DANN)



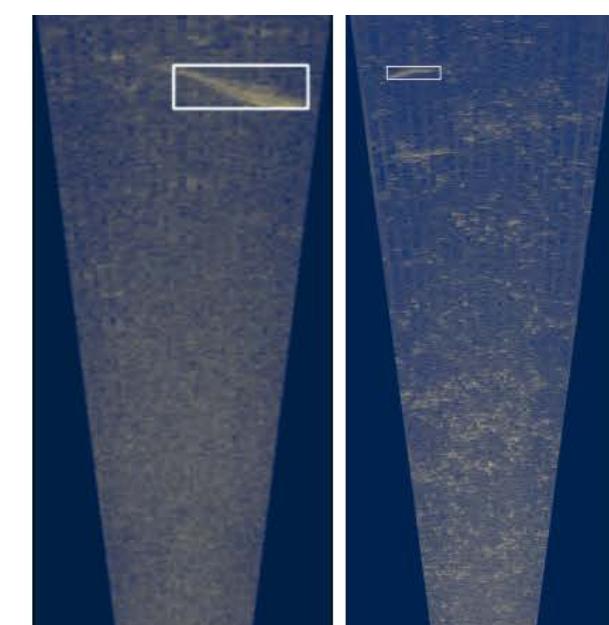
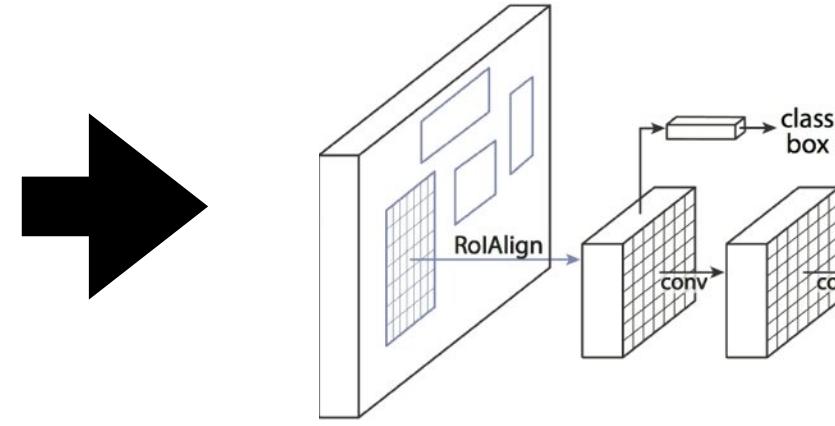
© Ganin, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Unsupervised Domain Adaptation (UDA)

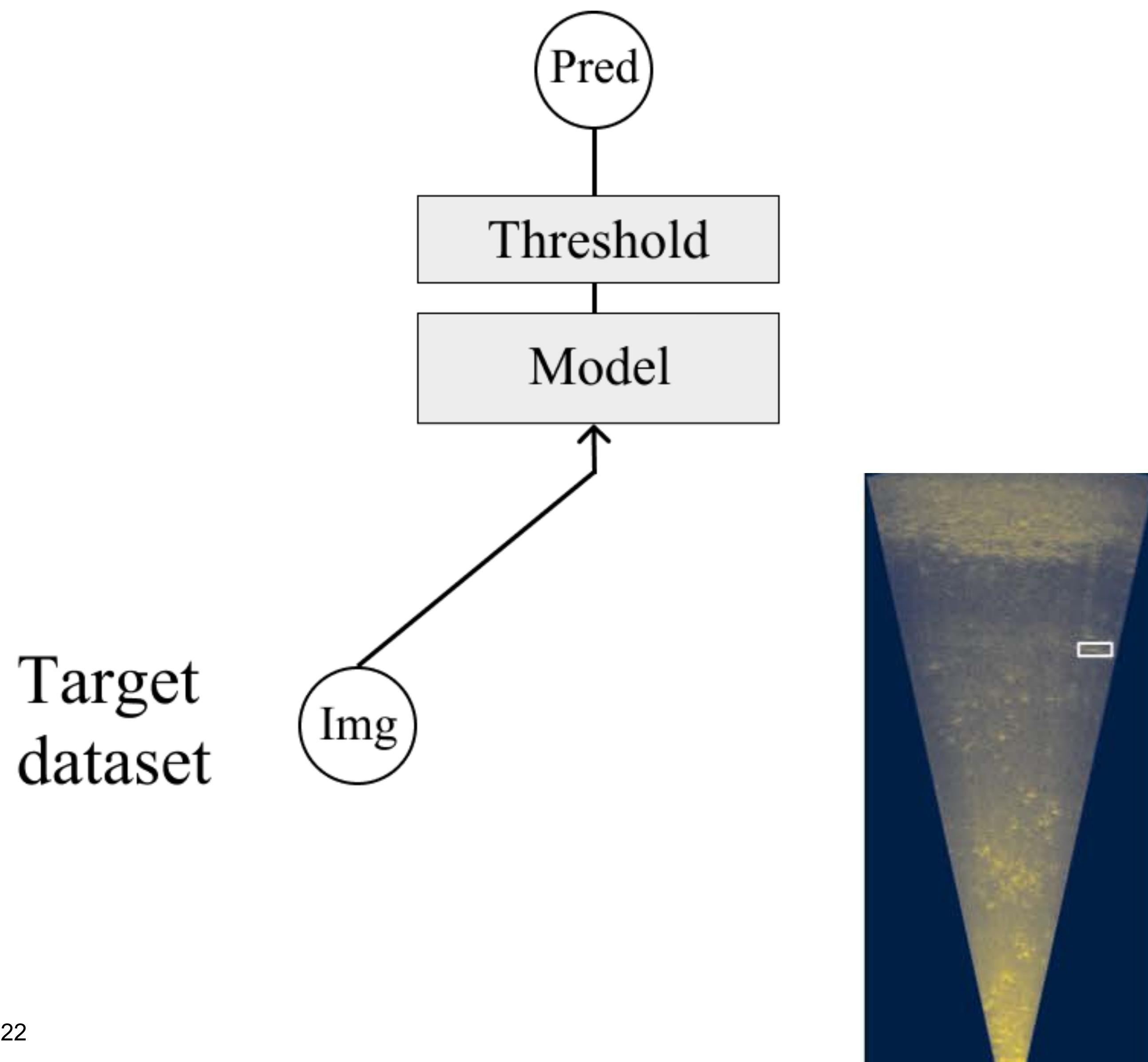
Unlabeled target

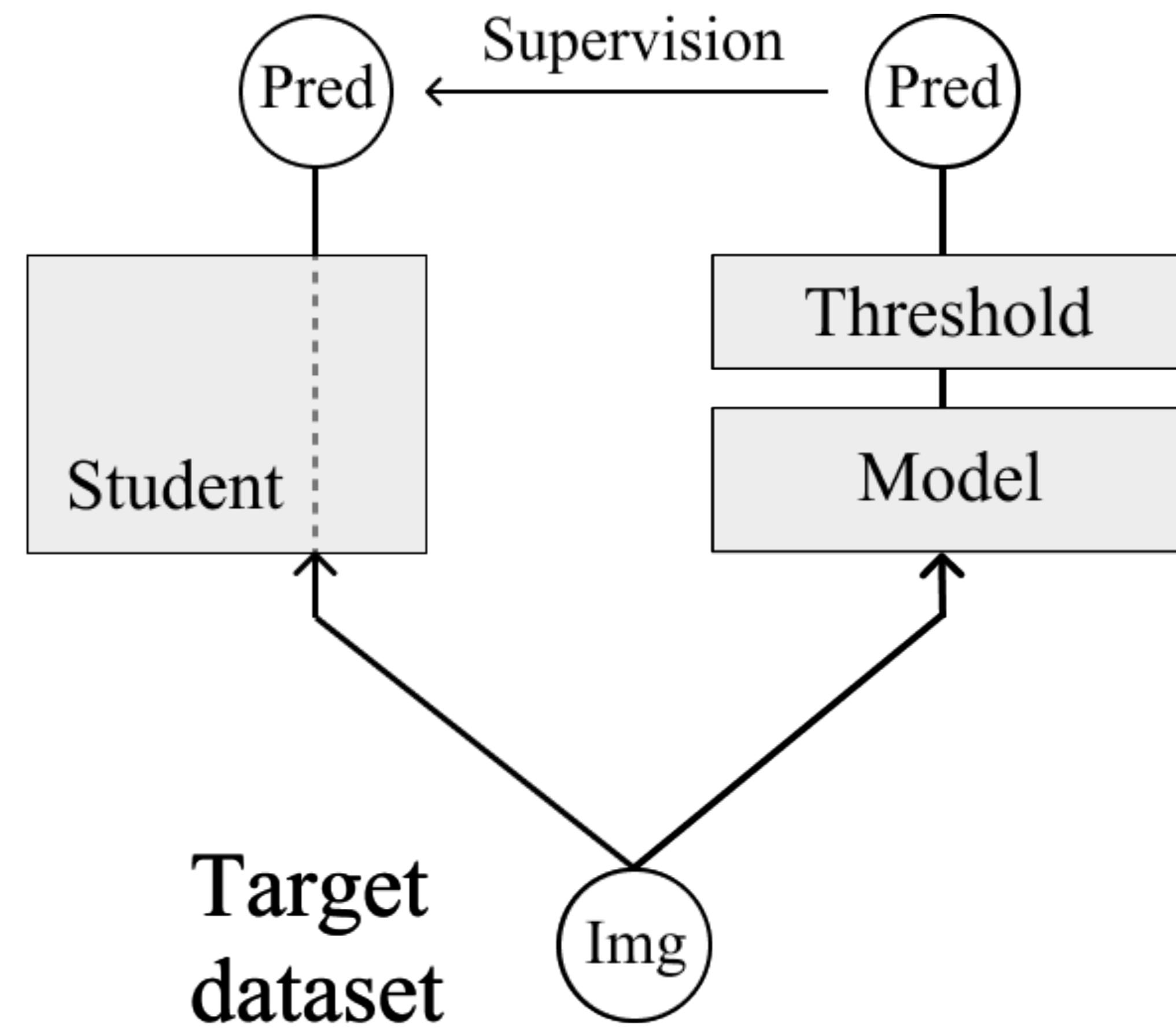
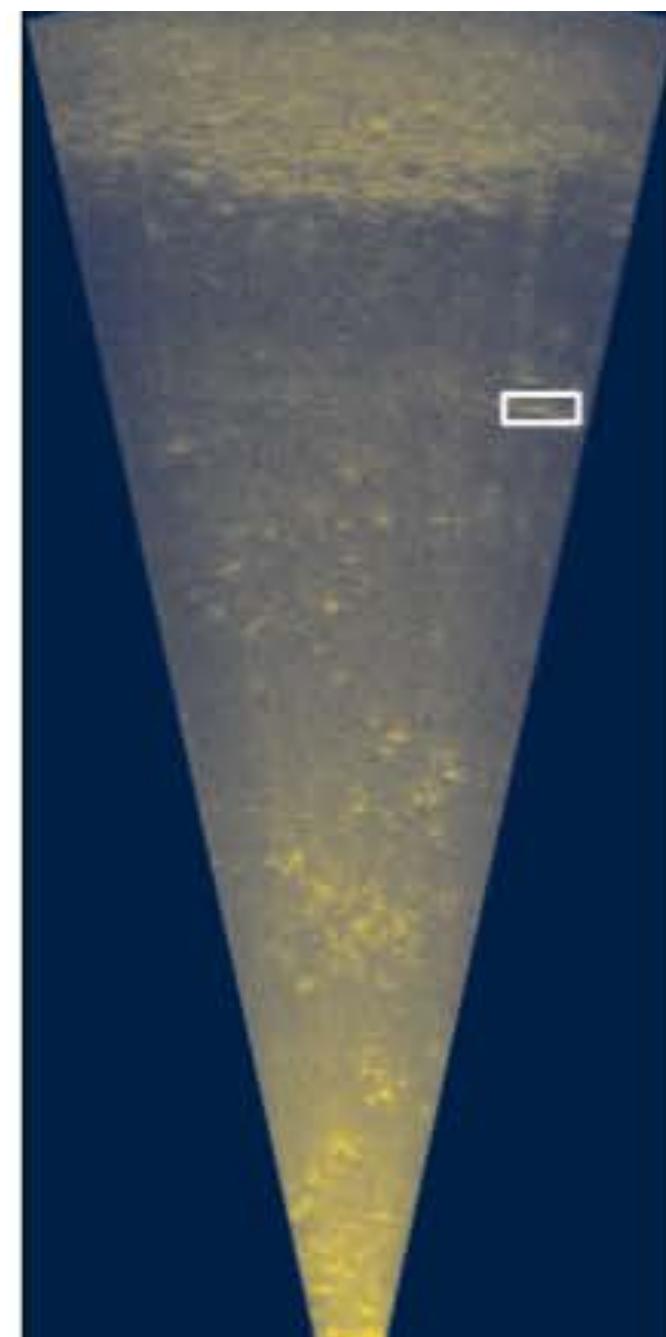


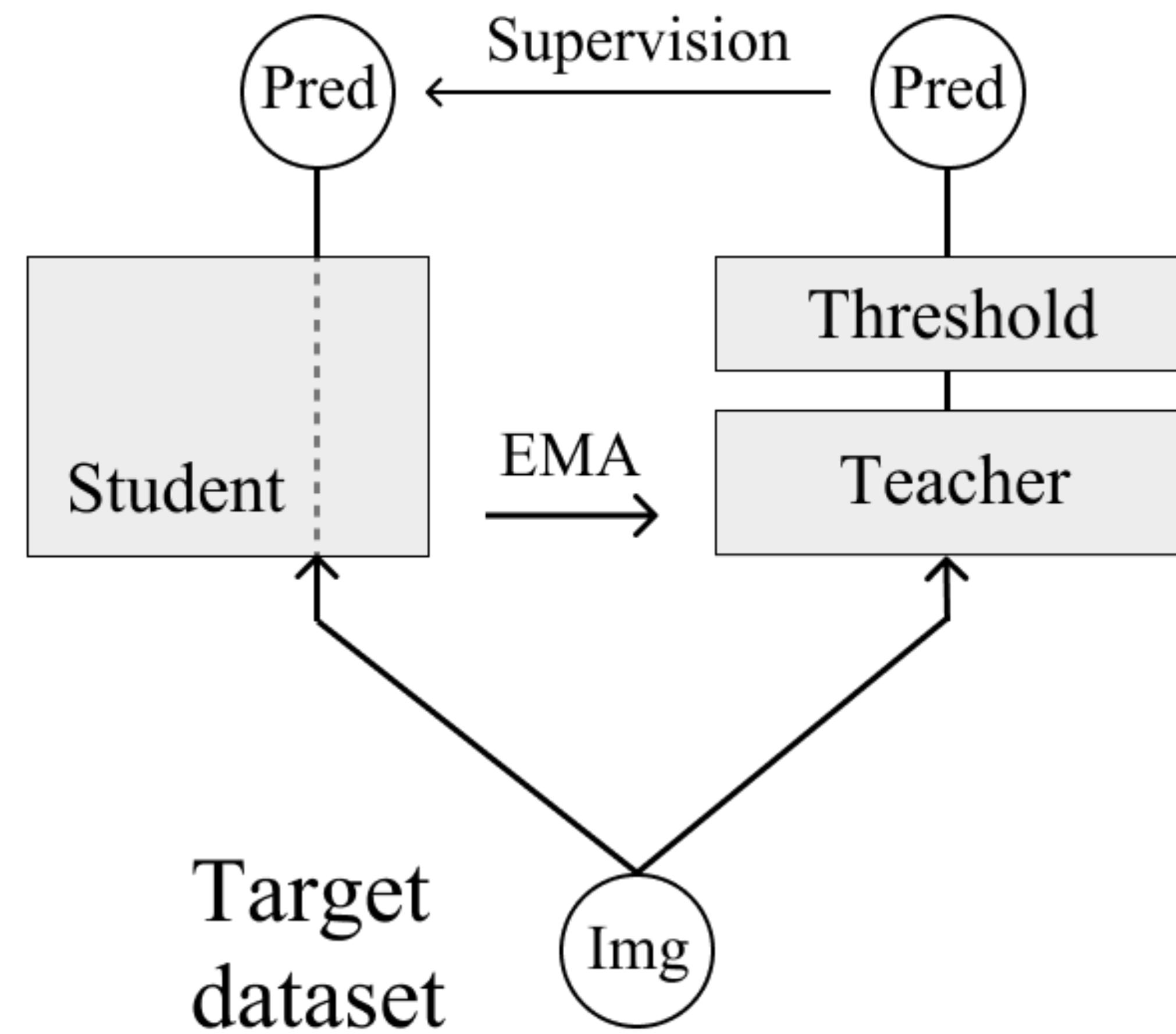
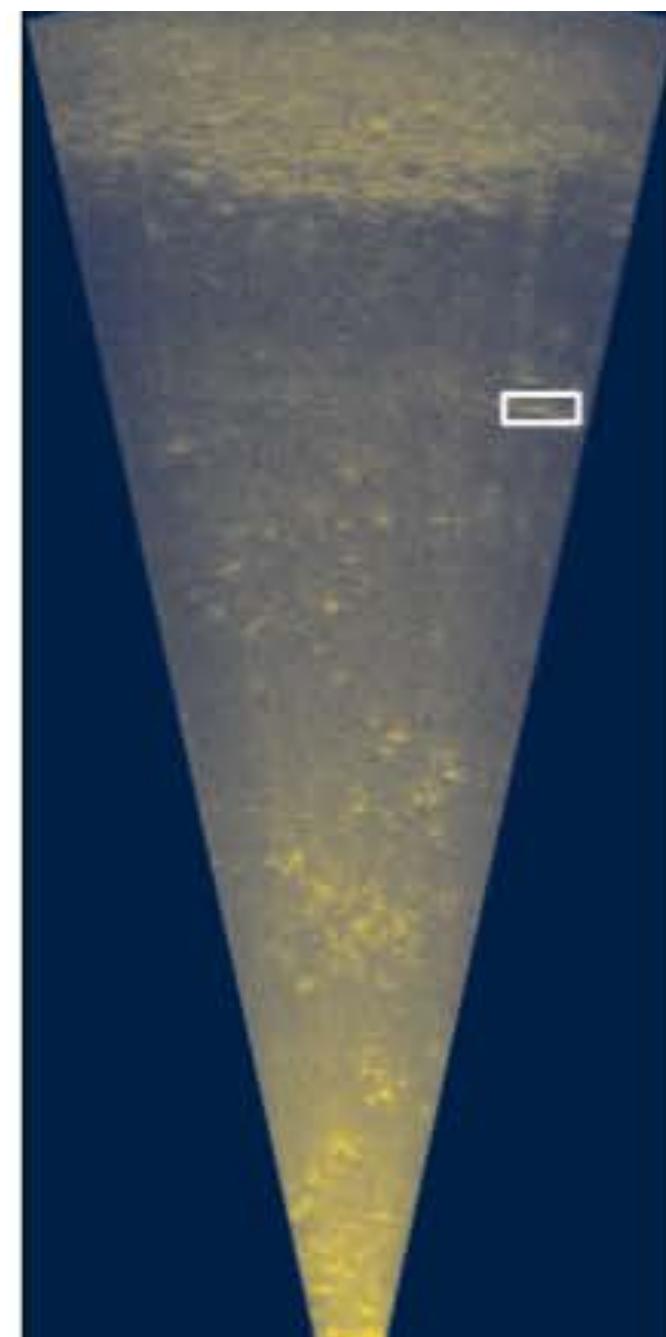
Labeled source

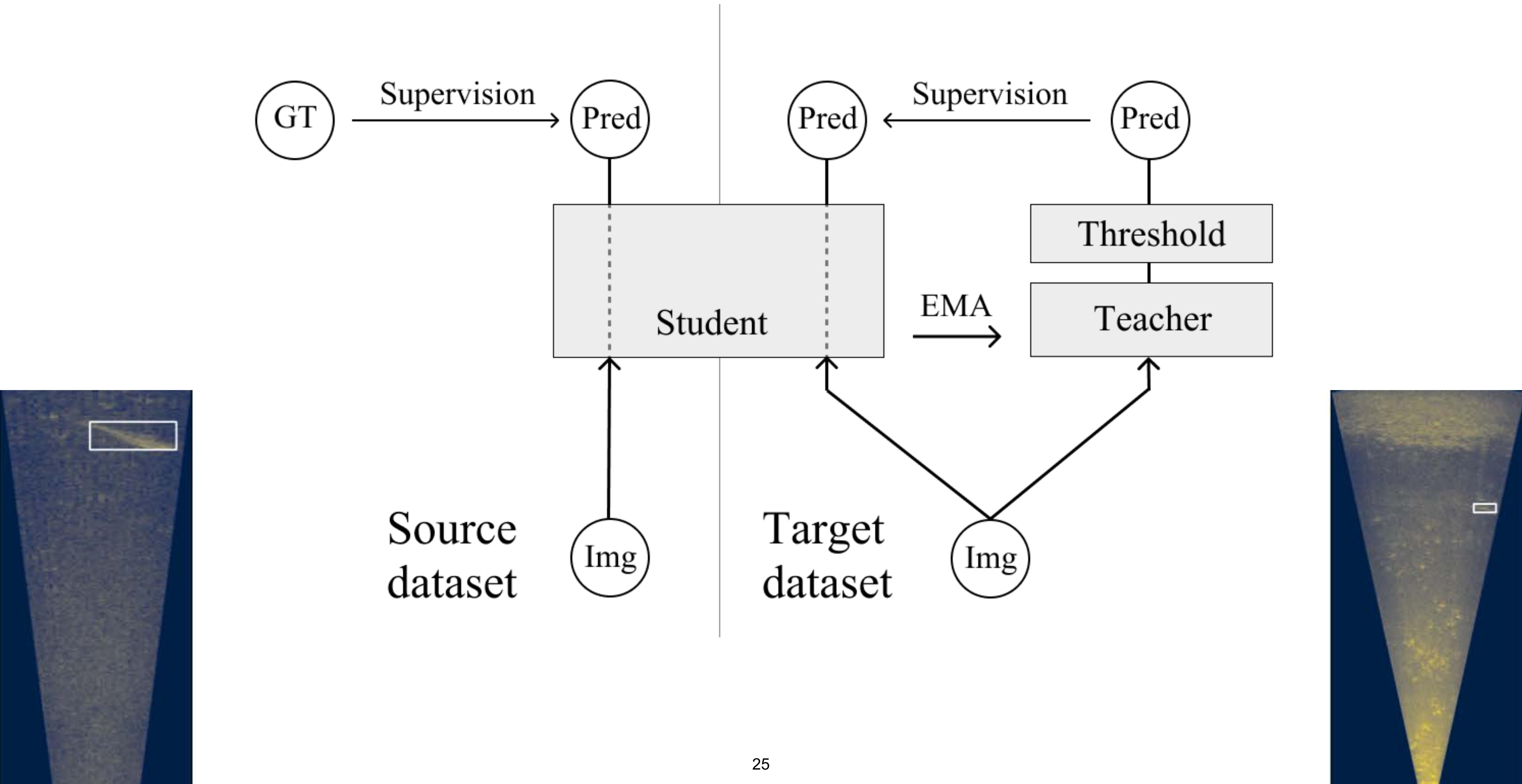


UDA
model

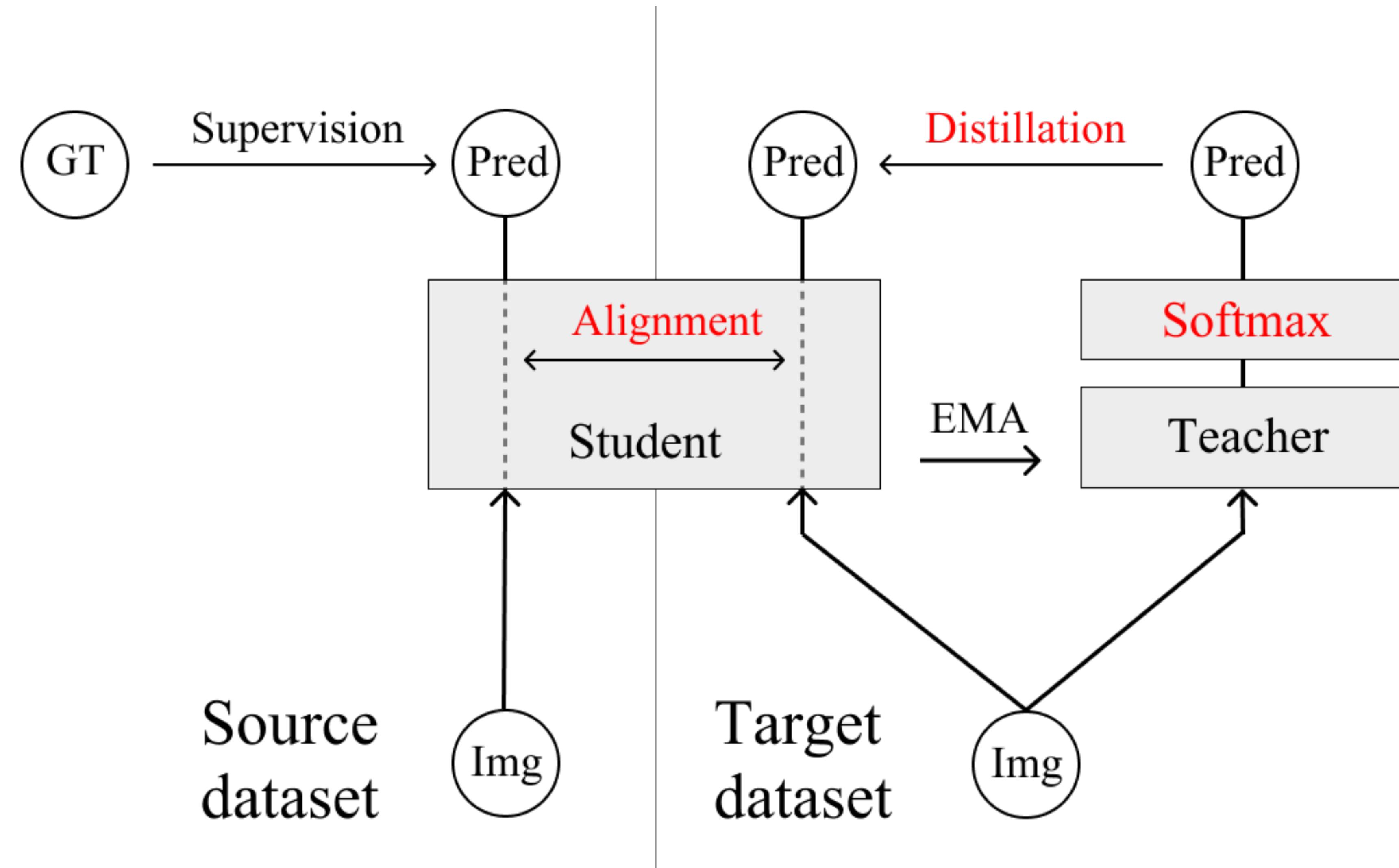
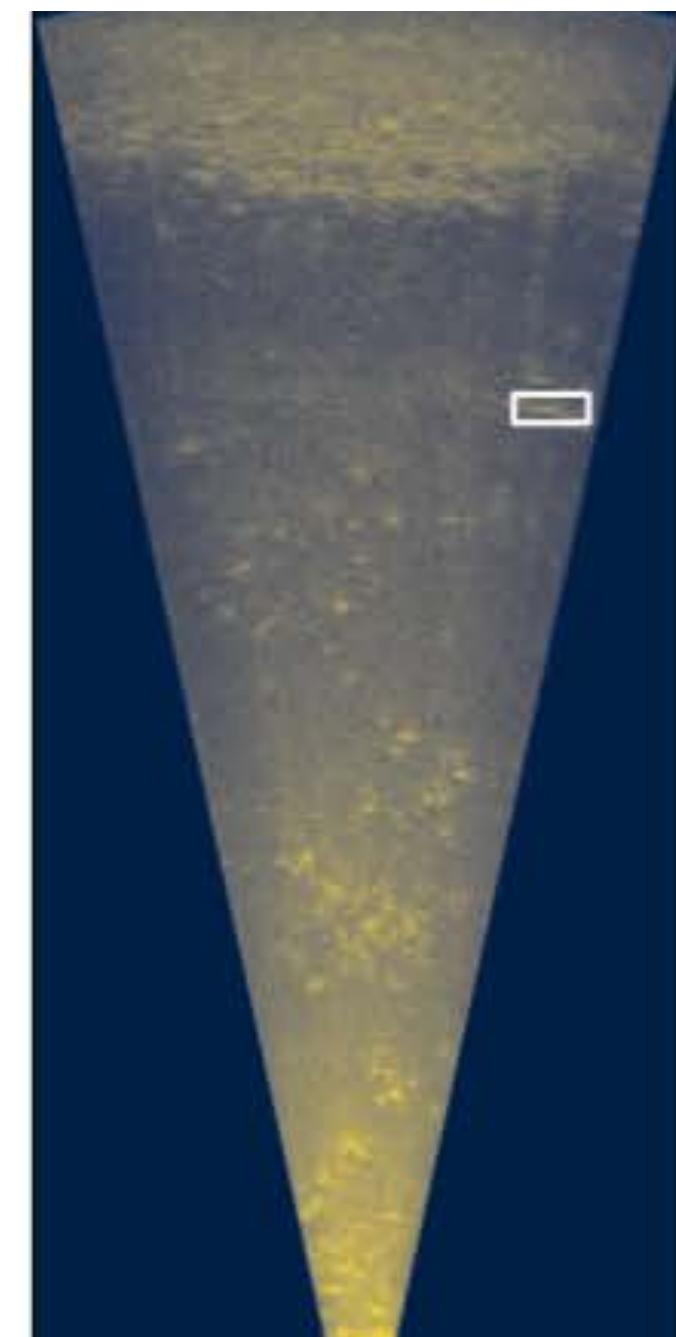




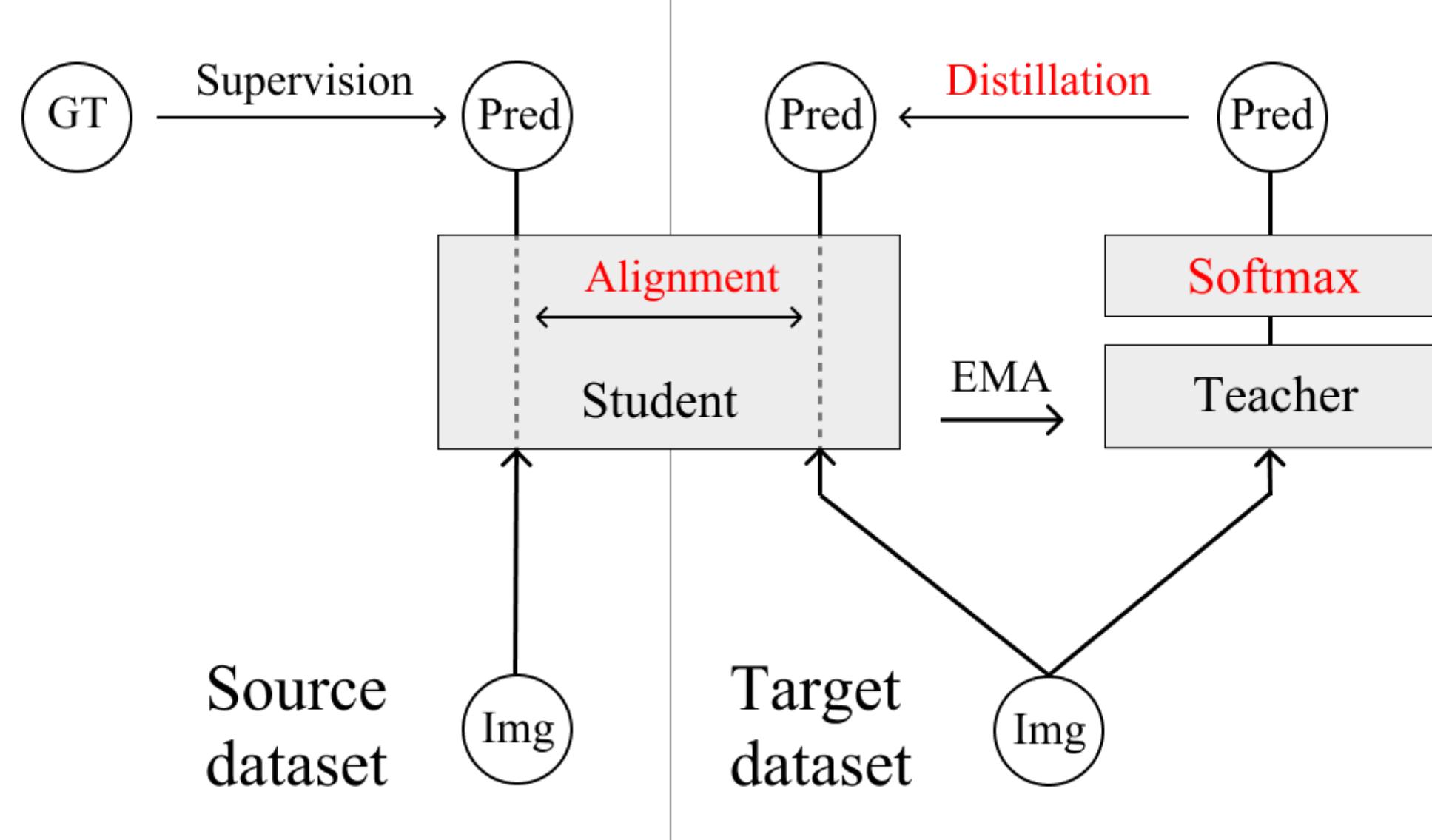
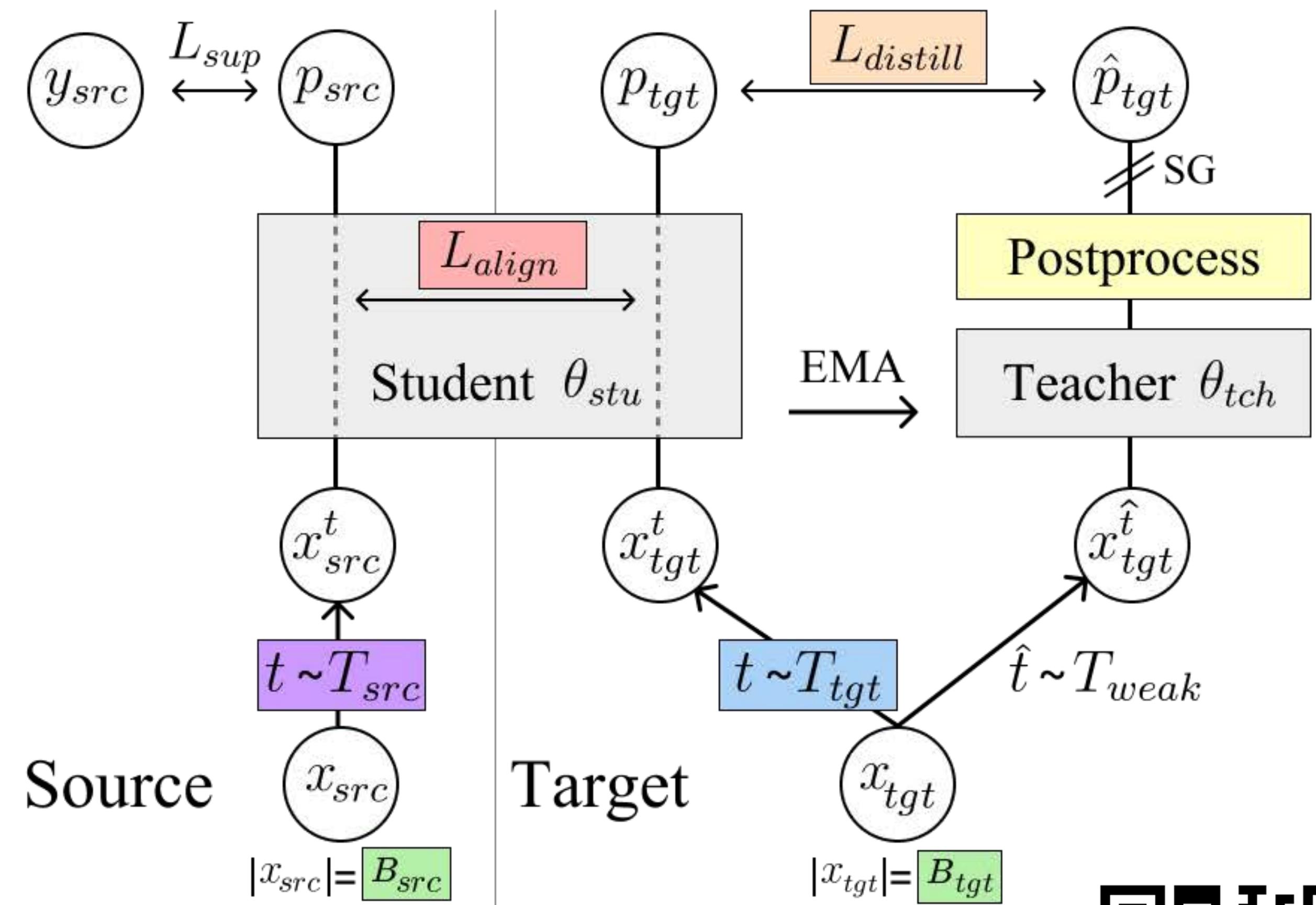




Source
dataset

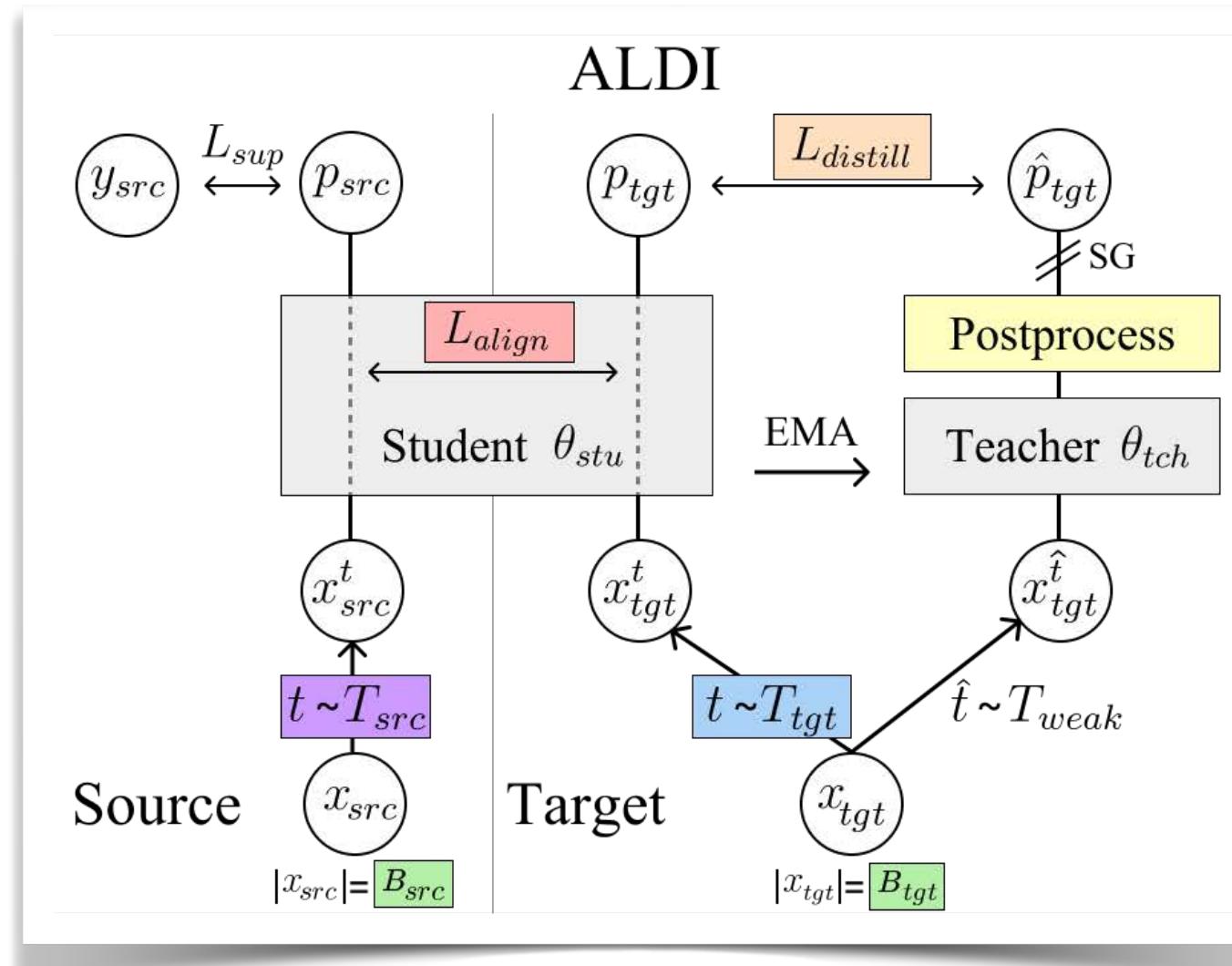
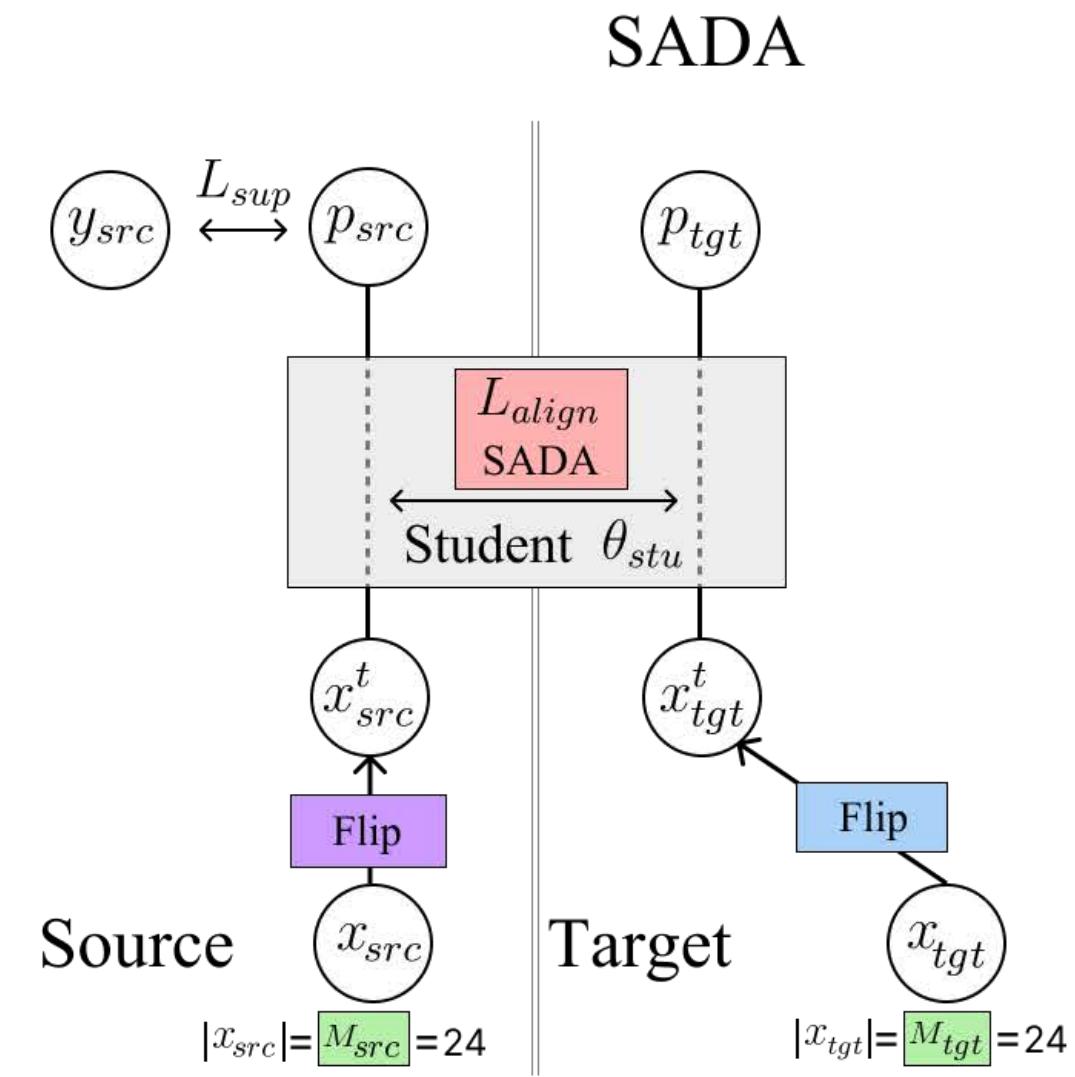
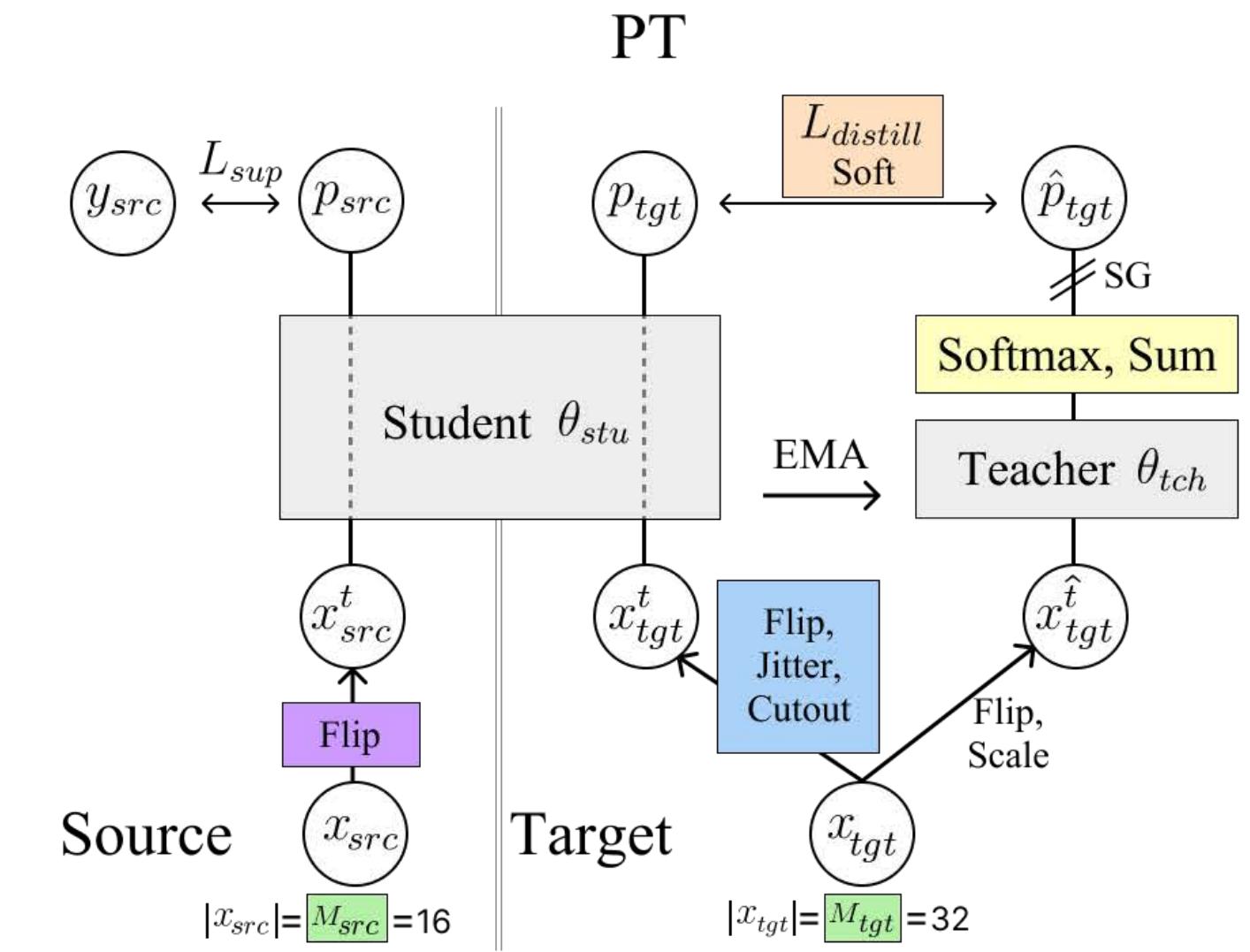
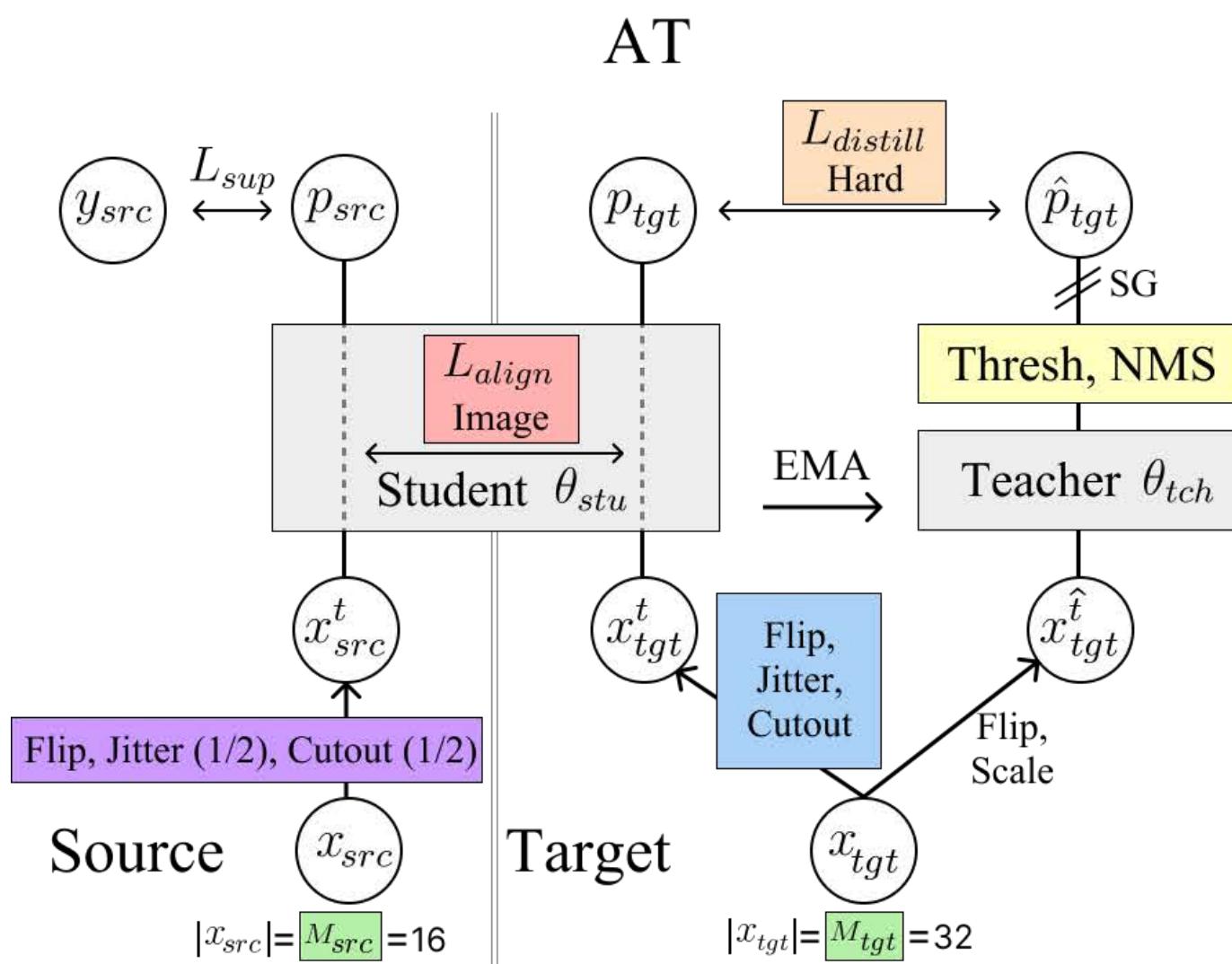
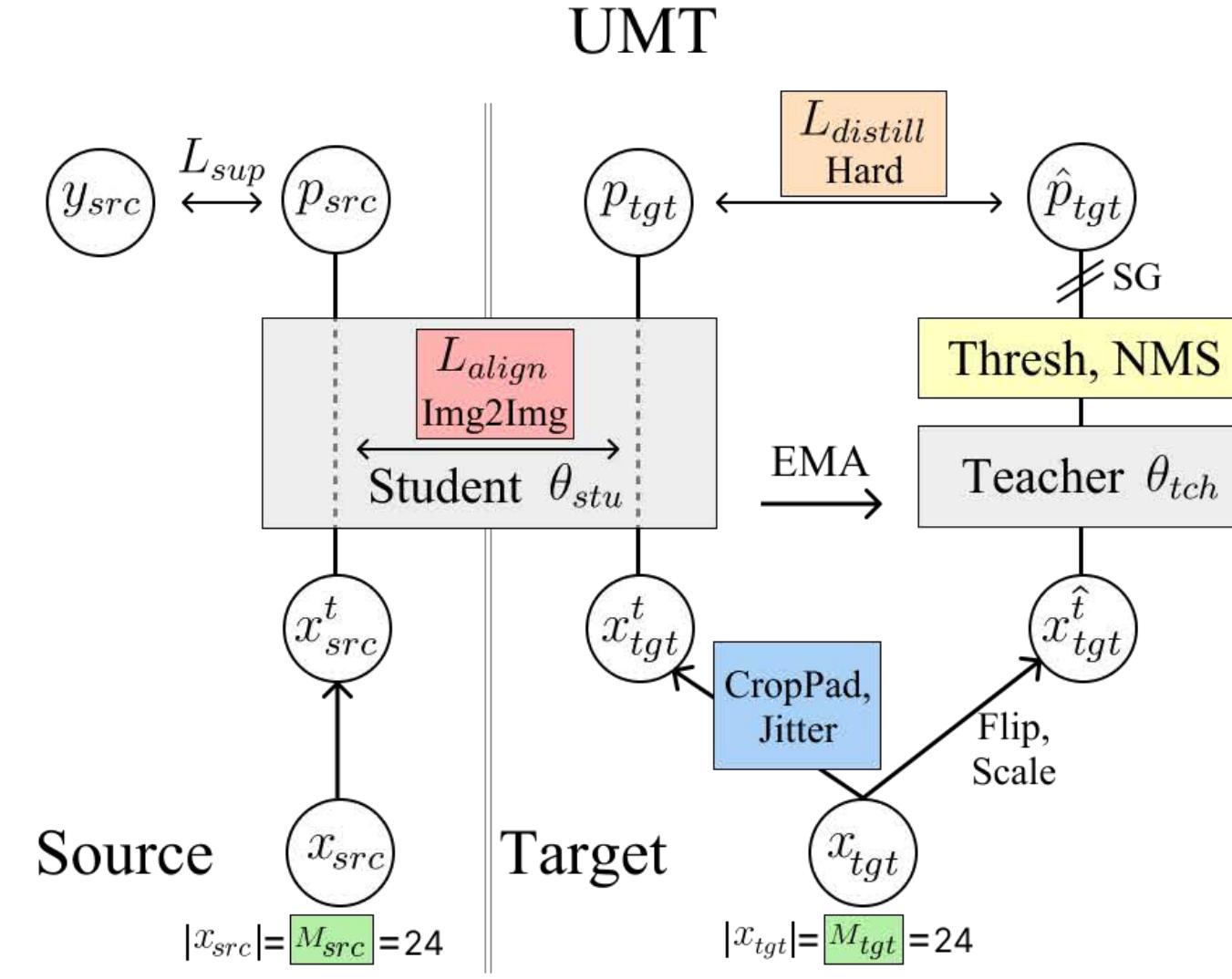
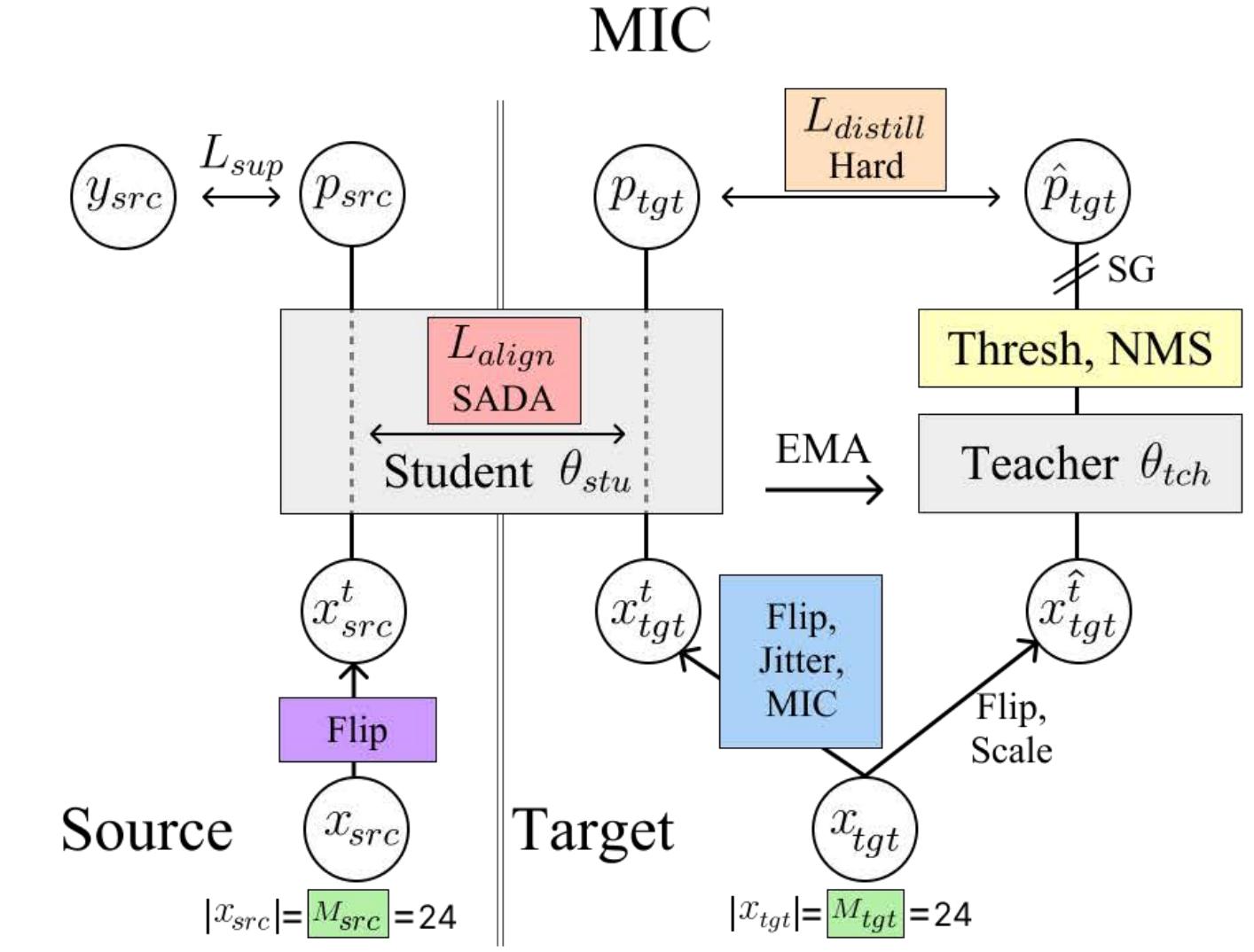


Align and Distill (ALDI)



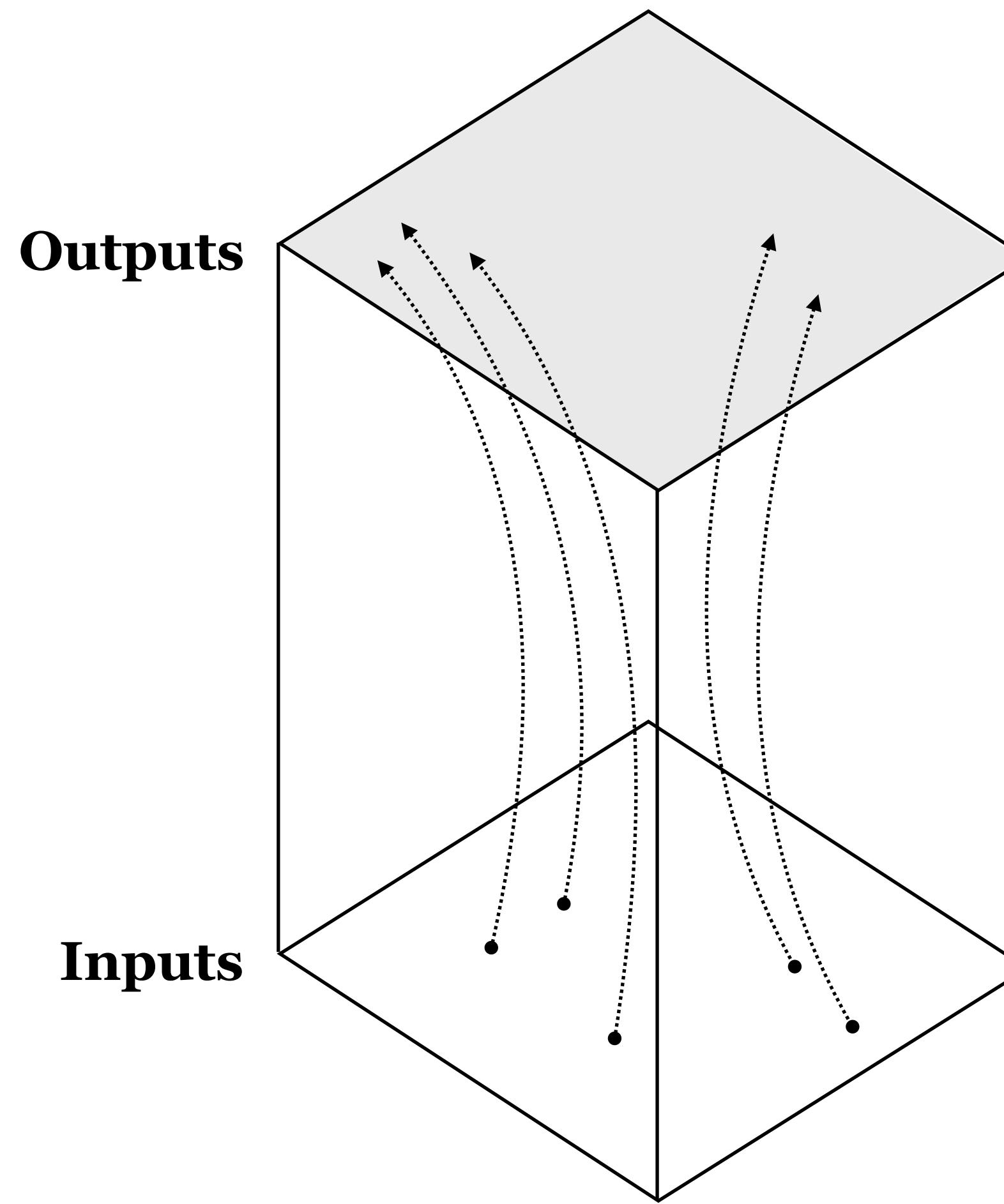
Courtesy of Kay, et al. Used under CC BY.

aldi-daod.github.io



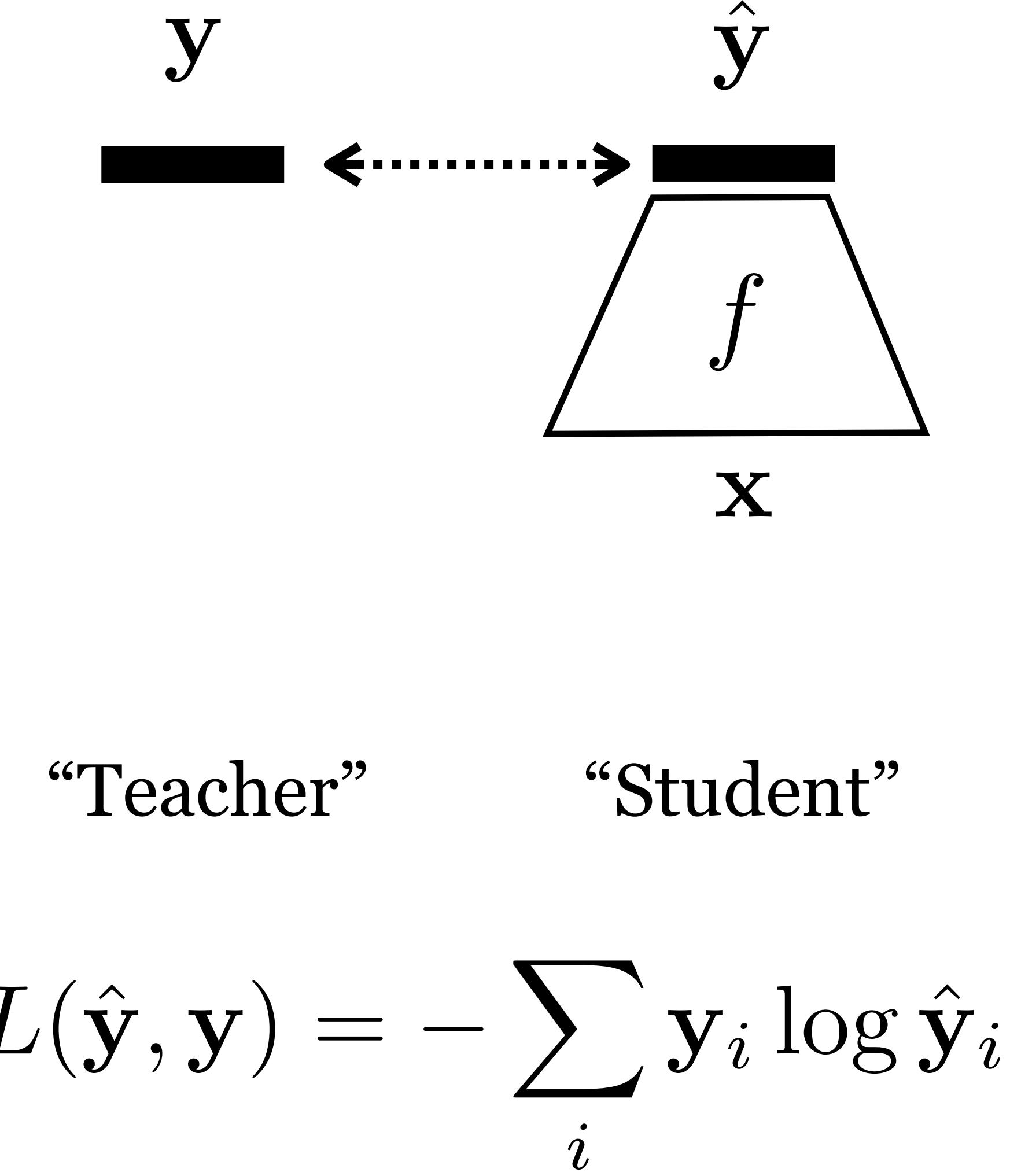
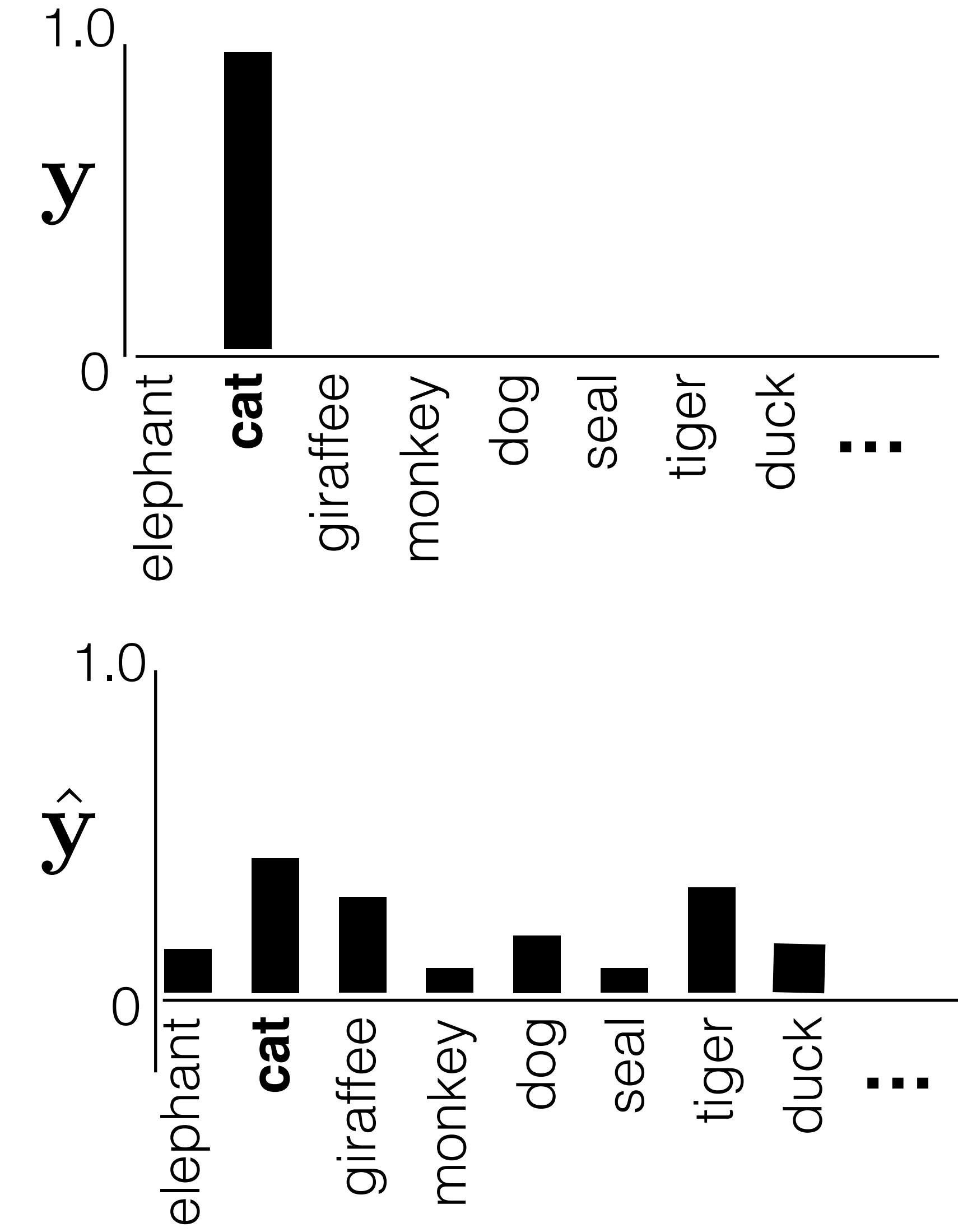
Courtesy of Kay, et al. Used under CC BY.

1. Knowledge about the mapping
2. **Knowledge about the outputs**
3. Knowledge about the inputs

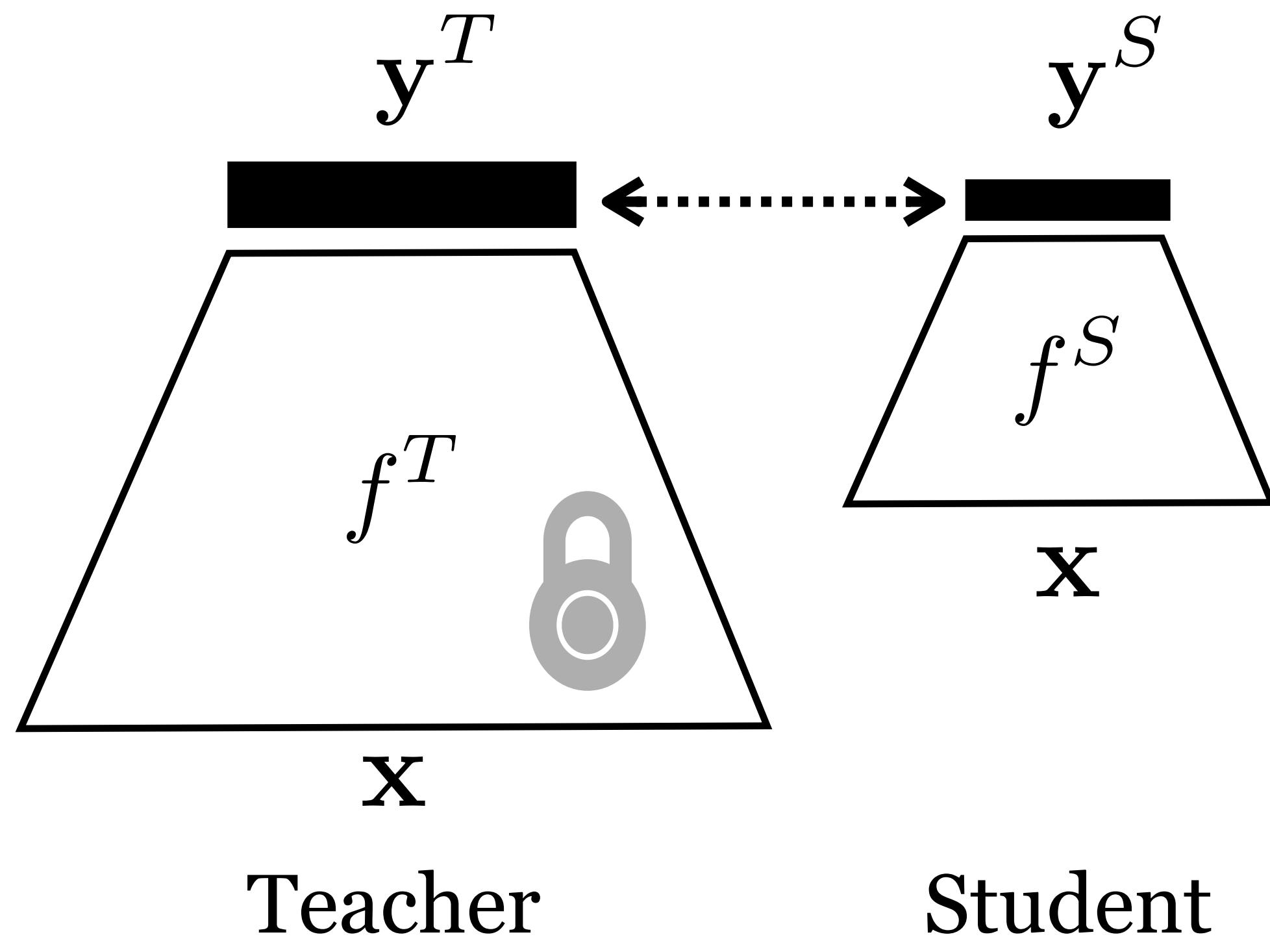


Transfer Learning

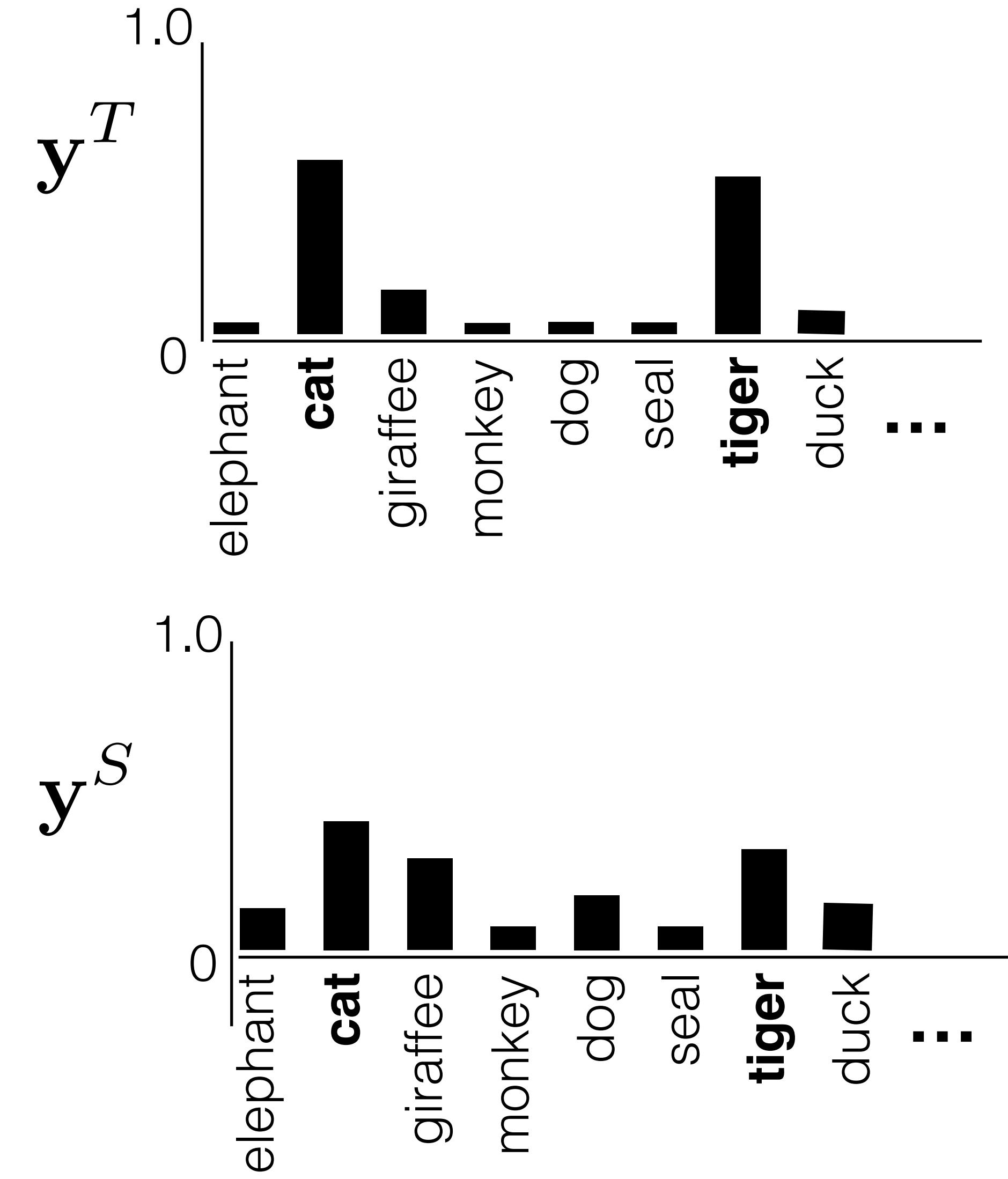
Recall: training a classifier with cross-entropy



Knowledge Distillation [Hinton, Vinyals, Dean, 2015]



$$L(\mathbf{y}^S, \mathbf{y}^T) = - \sum_i \mathbf{y}_i^T \log \mathbf{y}_i^S$$



Knowledge Distillation [Hinton, Vinyals, Dean, 2015]

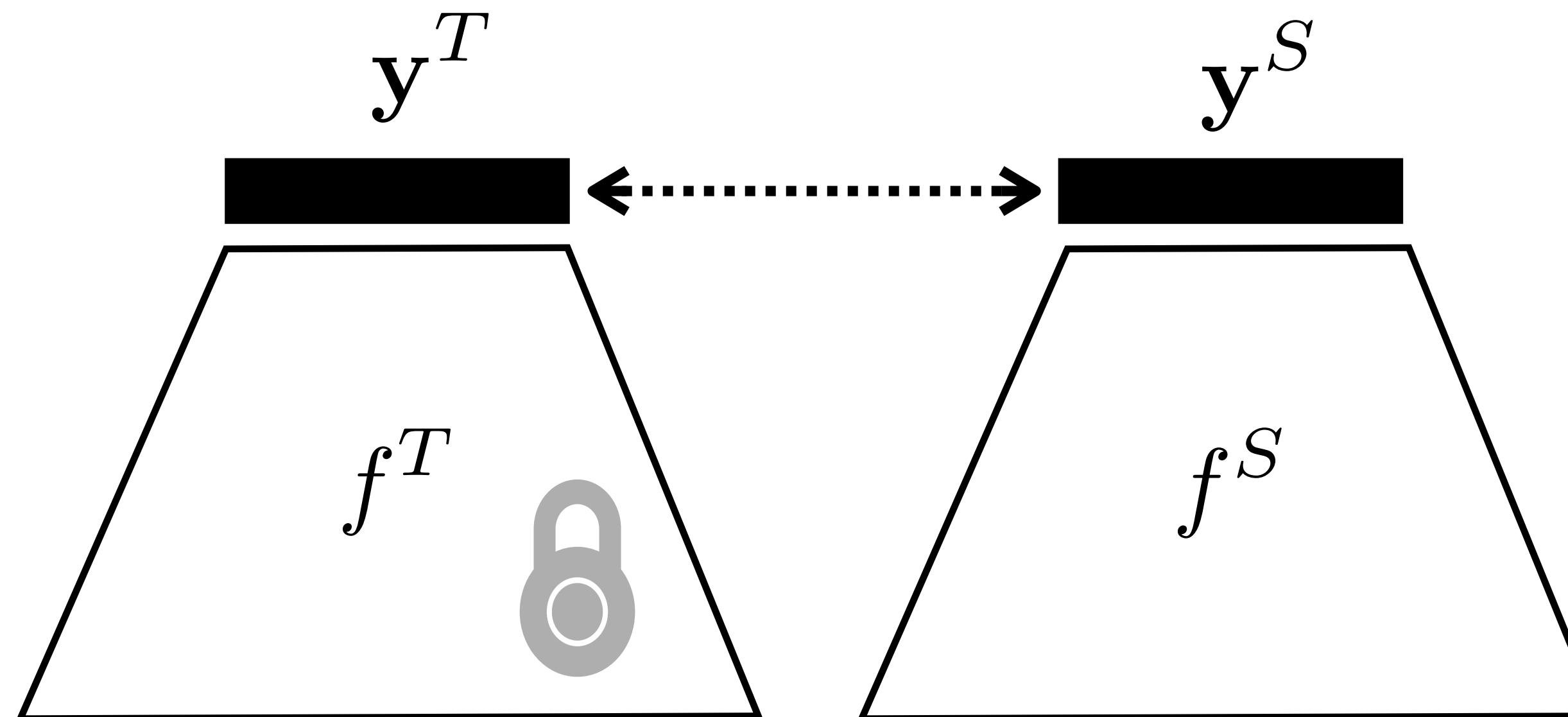
- The “label” you get for each input is more informative than just the ground truth class
- The “label” (**soft target**) says not just “this is a dog” but “this is a dog that looks a bit like a cat and very different from a bear” (so maybe it’s a small dog).

Hinton paper shows lower train accuracy but higher test accuracy on speech recognition with soft targets

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

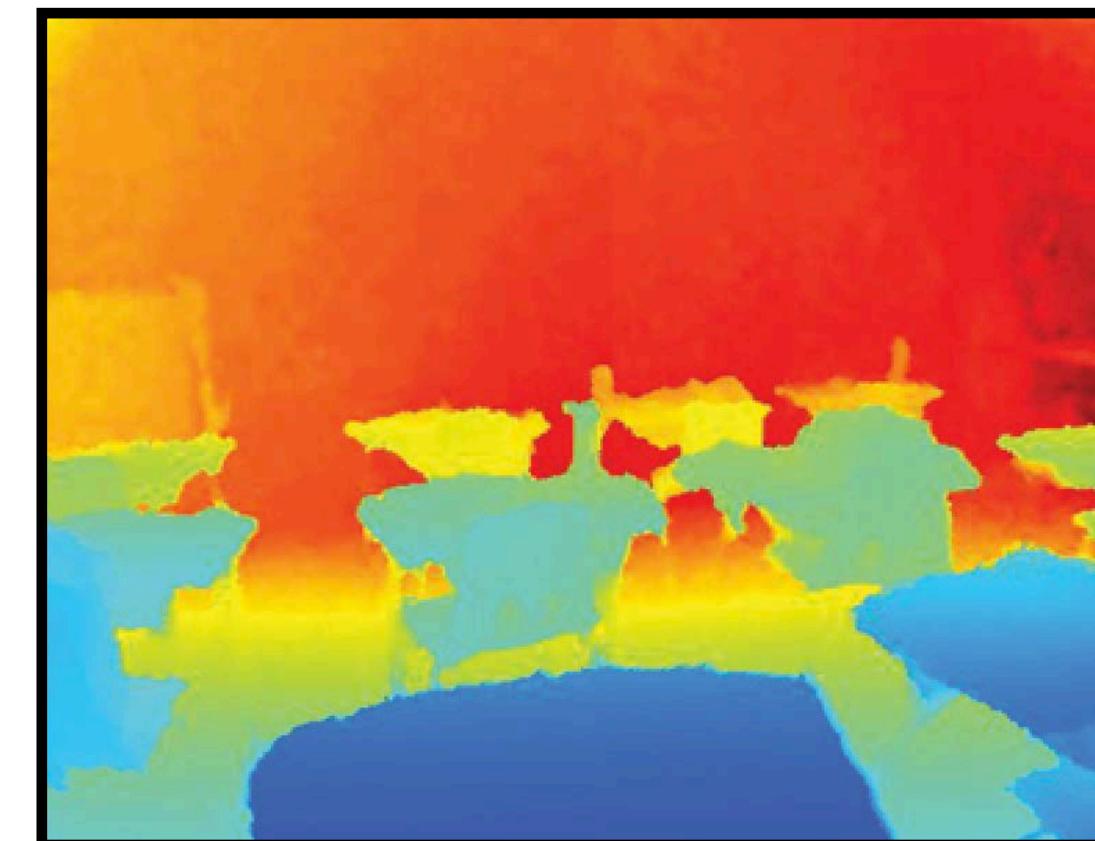
Table 5: Soft targets allow a new model to generalize well from only 3% of the training set. The soft targets are obtained by training on the full training set.

Cross-Modal Distillation [Gupta, Hoffman, Malik, 2015]



$$\mathbf{x} \in \mathcal{X}$$

Teacher



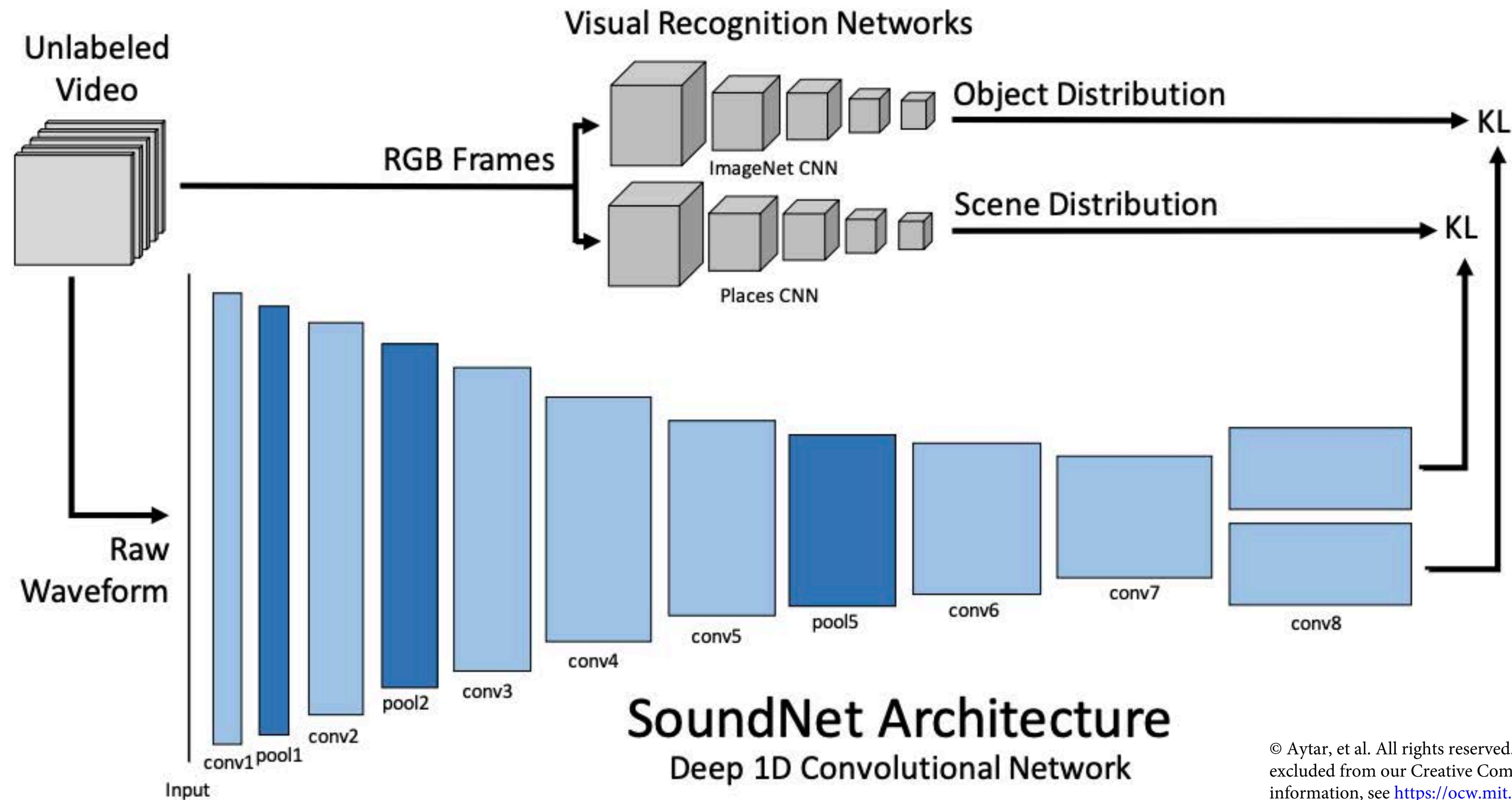
$$\mathbf{y} \in \mathcal{Y}$$

Student

Useful if you have labeled data for one domain but not the other.

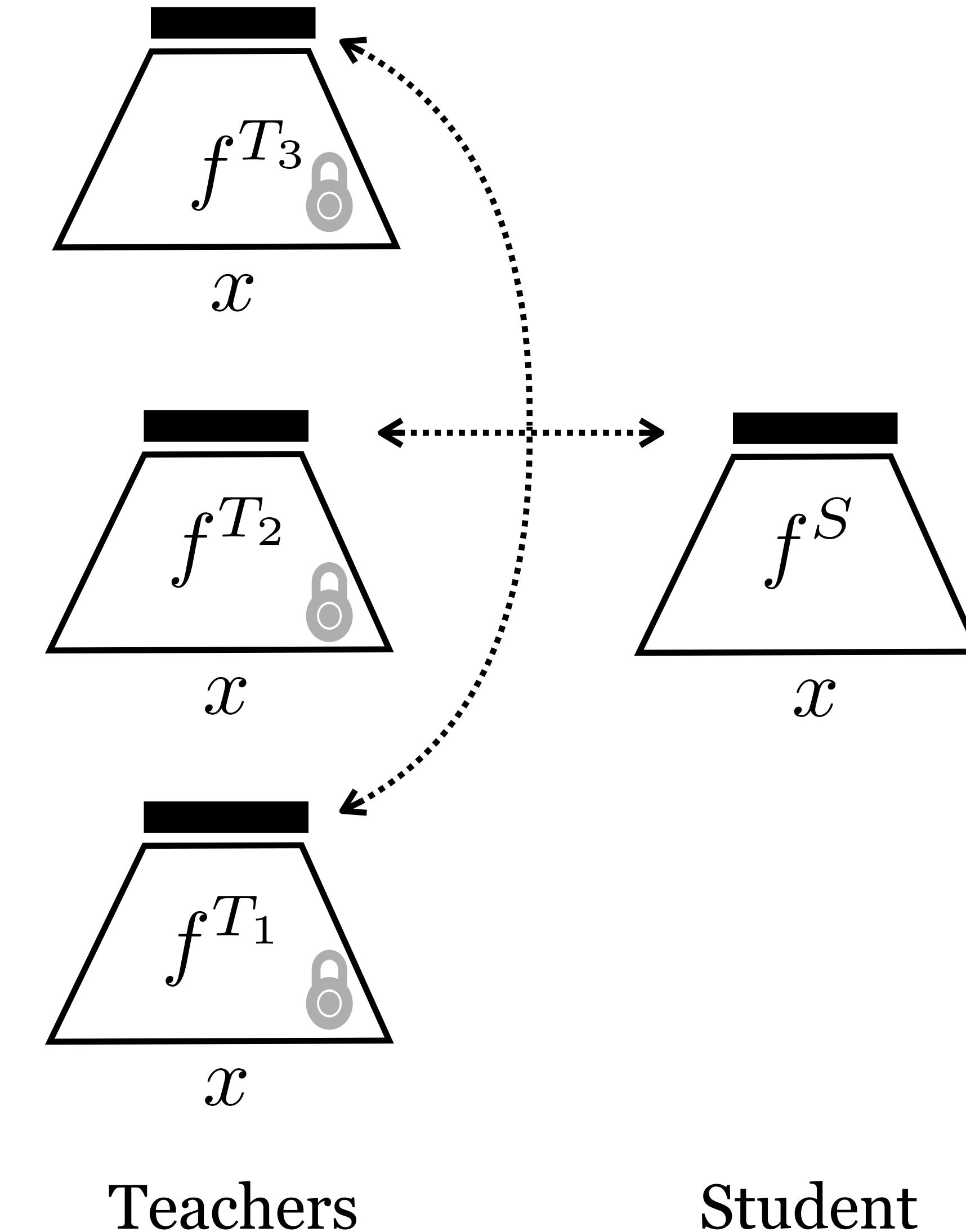
Cross-Modal Distillation: SoundNet

[Aytar*, Vondrick*, Torralba, 2016]

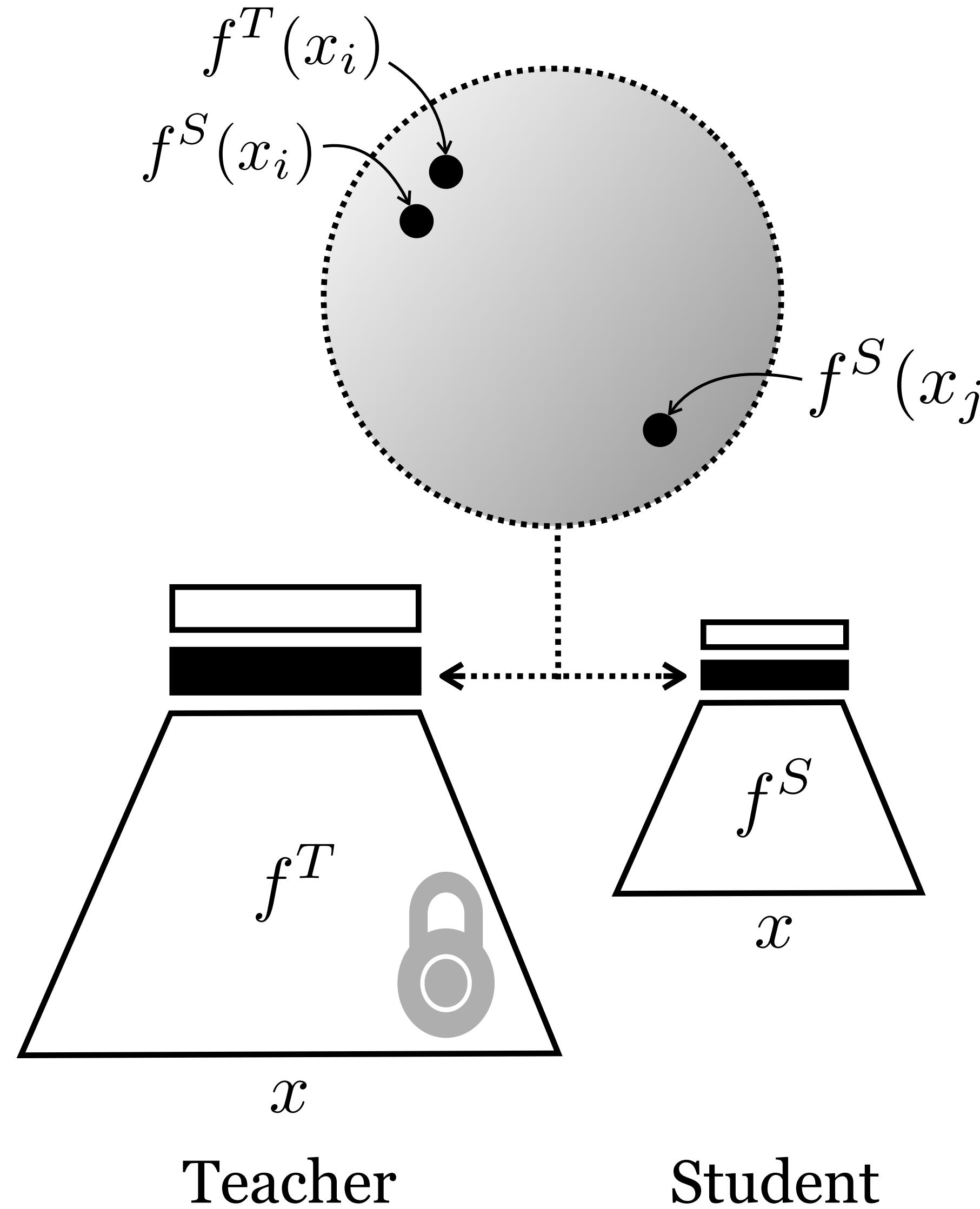


Distilling an ensemble

- Ensembling model outputs creates more accurate estimates.
- Why? Each model is imperfect in different random ways. Errors cancel out, truth is shared.
- Distill ensemble into a single model for fast inference.



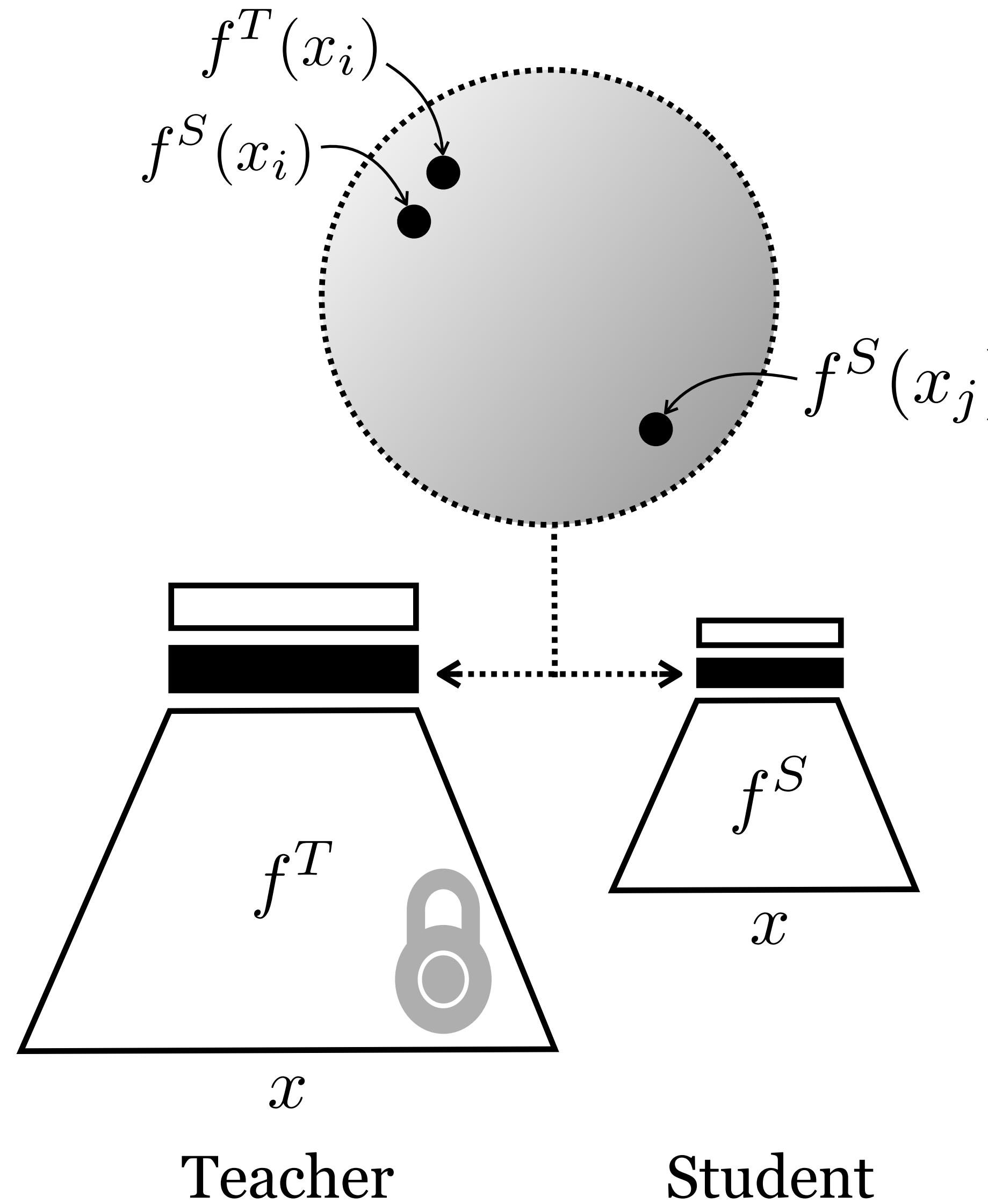
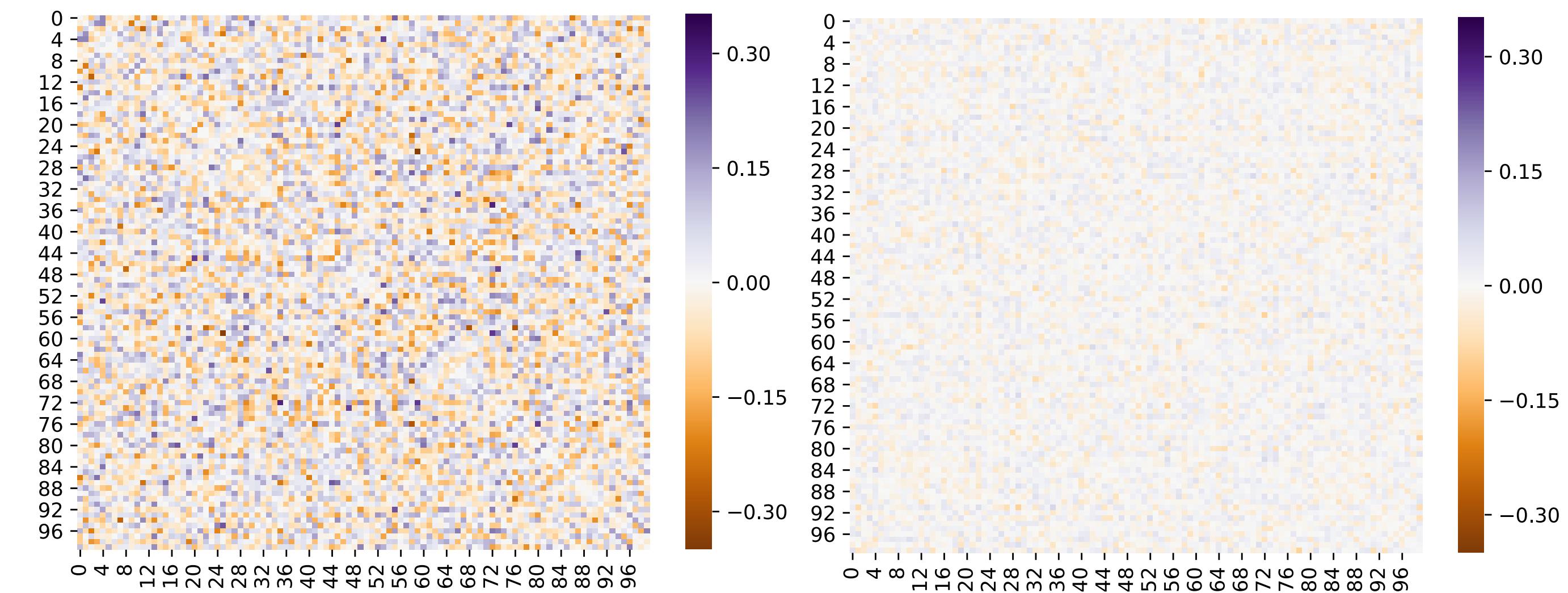
Contrastive Representation Distillation [Tian, Krishnan, Isola, 2020]



- Contrastive learning supervises embeddings to be invariant to some viewing transformation.
- The “viewing transformation” can be “teacher’s view” (big net) vs “students view” (small net).
- Then the student will output embeddings that are the same as the teacher’s.

Contrastive Representation Distillation

[Tian, Krishnan, Isola, 2020]



Correlation coefficients between class output logits
— Student's minus Teacher's
(CIFAR100: plots are 100 classes by 100 classes)

Compression vs. Distillation

- Both give us smaller models with similar accuracy to large ones
- Distillation uses SGD to train a smaller model to match characteristics of a larger one
- Compression uses **pruning** or **quantization** to reduce the computational cost of a large model

Algorithm 1 Prune $k \leq d_{\text{col}}$ weights from row \mathbf{w} with inverse Hessian $\mathbf{H}^{-1} = (2\mathbf{X}\mathbf{X}^\top)^{-1}$ according to OBS in $O(k \cdot d_{\text{col}}^2)$ time.

```

 $M = \{1, \dots, d_{\text{col}}\}$ 
for  $i = 1, \dots, k$  do
   $p \leftarrow \operatorname{argmin}_{p \in M} \frac{1}{[\mathbf{H}^{-1}]_{pp}} \cdot w_p^2$ 
   $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{H}_{:,p}^{-1} \frac{1}{[\mathbf{H}^{-1}]_{pp}} \cdot w_p$ 
   $\mathbf{H}^{-1} \leftarrow \mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{pp}} \mathbf{H}_{:,p}^{-1} \mathbf{H}_{p,:}$ 
   $M \leftarrow M - \{p\}$ 
end for

```

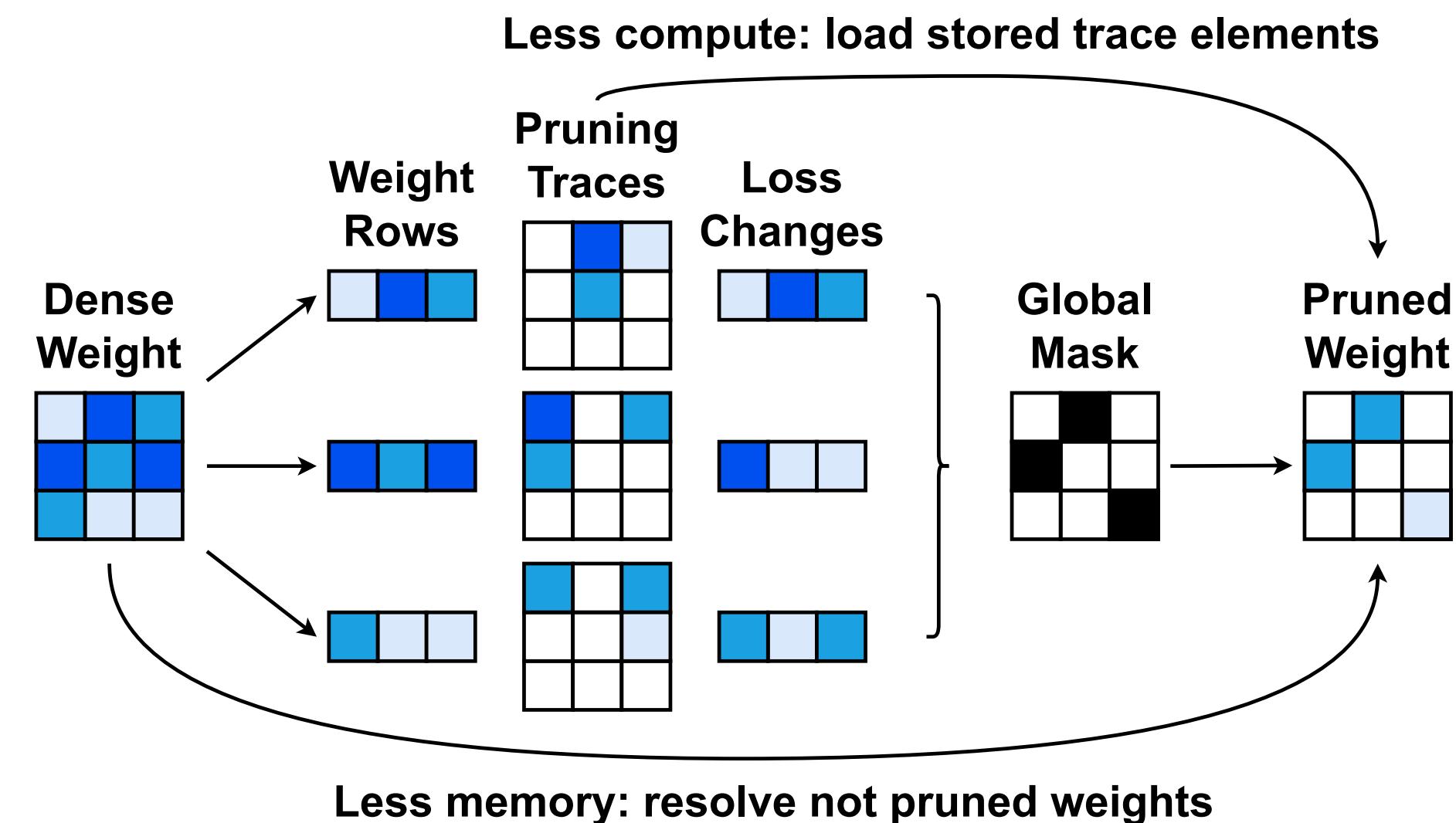
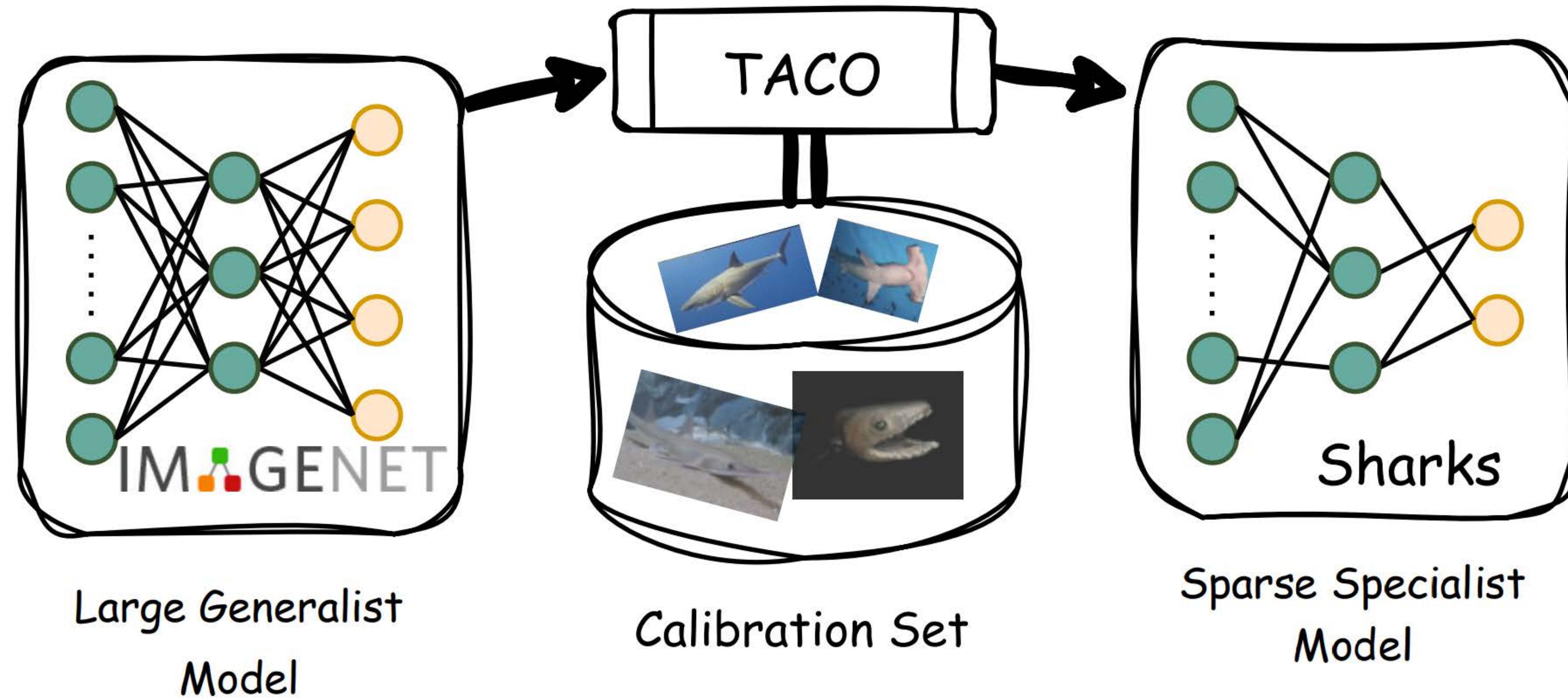


Figure 1: Efficient global OBS using the row-wise results.

Courtesy of Frantar, et al. Used under CC BY.

We almost never need a truly generalist model in practice. Specialization can enable much higher rates of compression with the same accuracy.



Courtesy of Kuznedelev, et al. Used under CC BY.

Foundation models

[Bommasani et al. 2021] <https://arxiv.org/pdf/2108.07258.pdf>

“If I have seen further
it is by standing on the
shoulders of Giants”

— Newton

[*Blind Orion Searching for the Rising Sun* by Nicolas Poussin, 1658]

Image is in the public domain.

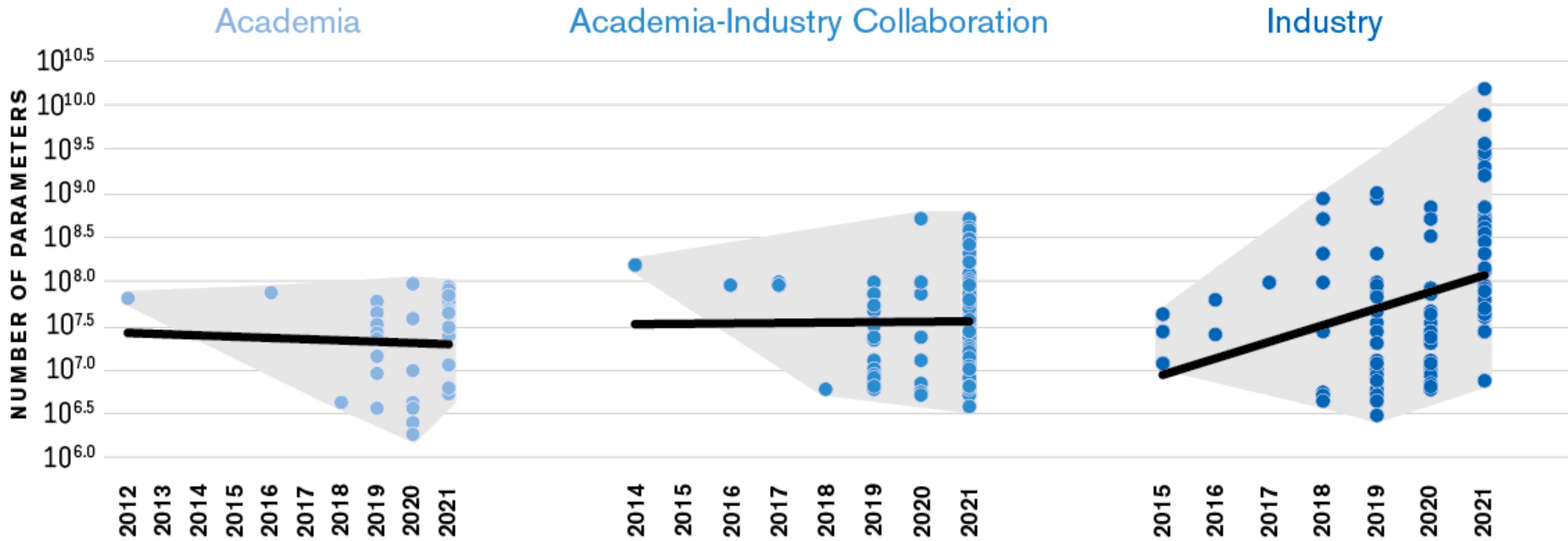
AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

The total amount of compute, in petaflop/s-days,^[2] used to train selected results that are relatively well known, used a lot of compute for their time, and gave enough information to estimate the compute used.

<https://openai.com/blog/ai-and-compute/>

D. Computing Power Usage Over Time by:

Regression



Climate cost

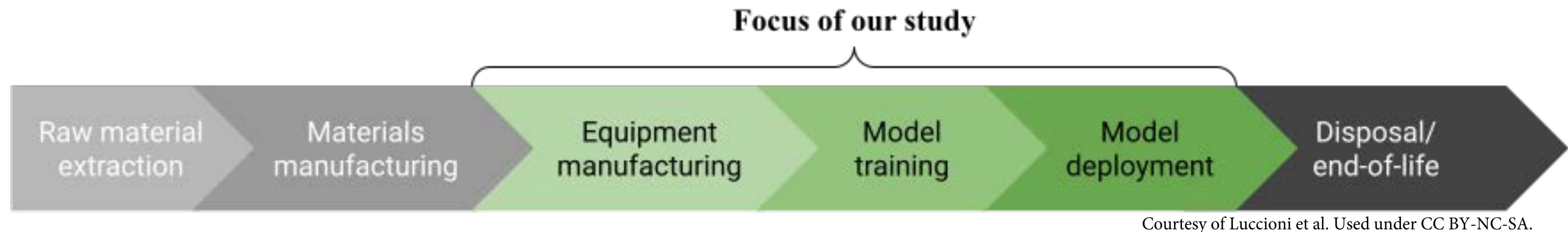


Figure 1: While the LCA approach encompasses all the stages of the product life cycle (from raw material extraction to disposal), we focus on those in green, which range from equipment manufacturing to model deployment.

Model name	Number of parameters	Datacenter PUE	Carbon intensity of grid used	Power consumption	CO ₂ eq emissions	CO ₂ eq emissions × PUE
GPT-3	175B	1.1	429 gCO ₂ eq/kWh	1,287 MWh	502 tonnes	552 tonnes
Gopher	280B	1.08	330 gCO ₂ eq/kWh	<i>1,066 MWh</i>	352 tonnes	380 tonnes
OPT	175B	<i>1.09</i> ²	<i>231 gCO₂eq/kWh</i>	<i>324 MWh</i>	70 tonnes	<i>76.3 tonnes</i> ³
BLOOM	176B	1.2	57 gCO ₂ eq/kWh	433 MWh	25 tonnes	30 tonnes

Table 4: Comparison of carbon emissions between BLOOM and similar LLMs. Numbers in *italics* have been inferred based on data provided in the papers describing the models.

Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model, Luccioni et al., 2023

Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models, Li et al., 2023

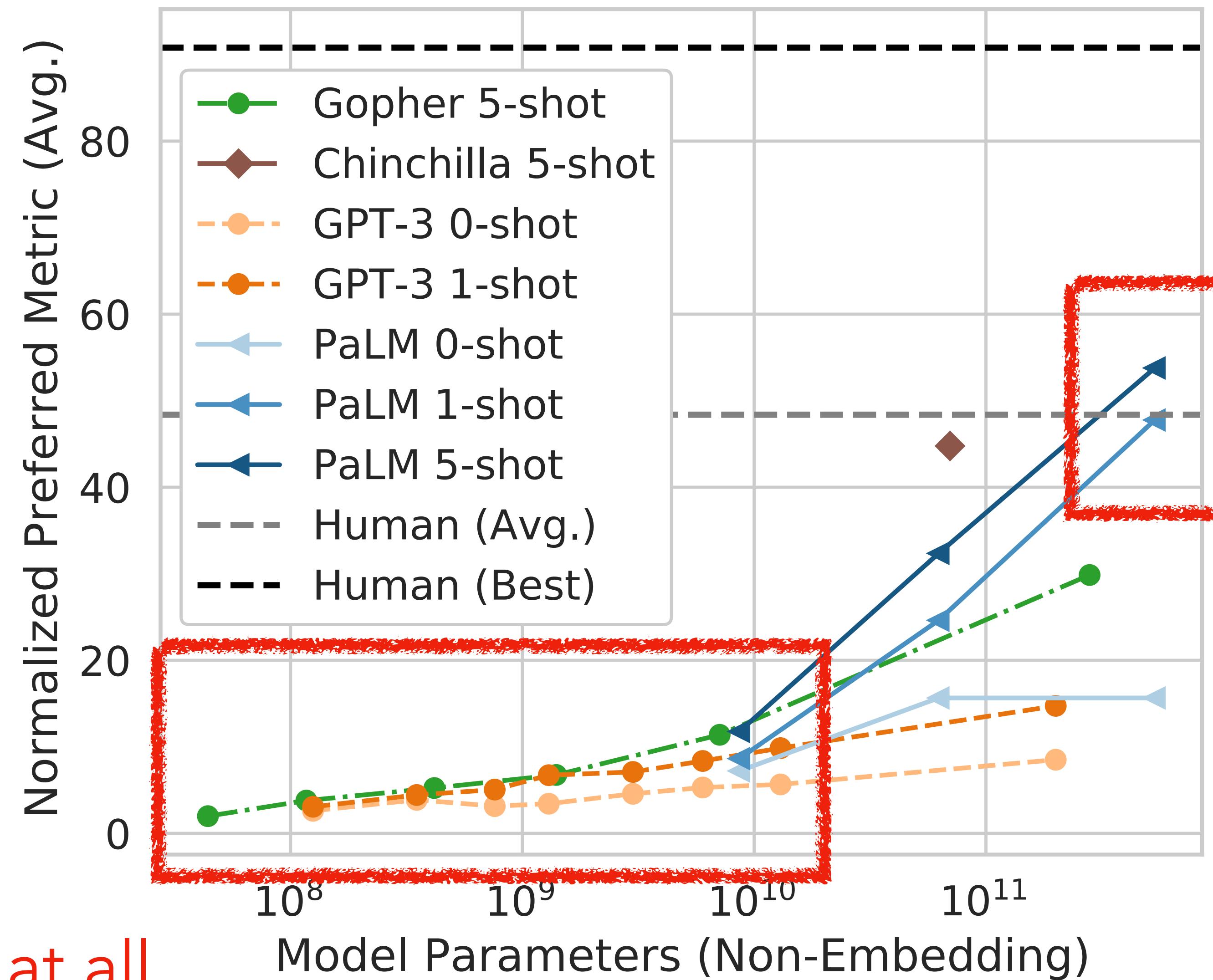
What does it take to train one of these models?

- Dalle-2: **650m training examples** (semi-curated image-text pairs)
- GPT-3: ~**\$4.6m to train once** (<https://lambdalabs.com/blog/demystifying-gpt-3/>)
- PaLM: **67 authors**

And these numbers are increasing.

But these numbers are small if we think of the result as foundational infrastructure; compare to the cost of building the interstate highway system, or the cost of developing the Mac OS X operating system.

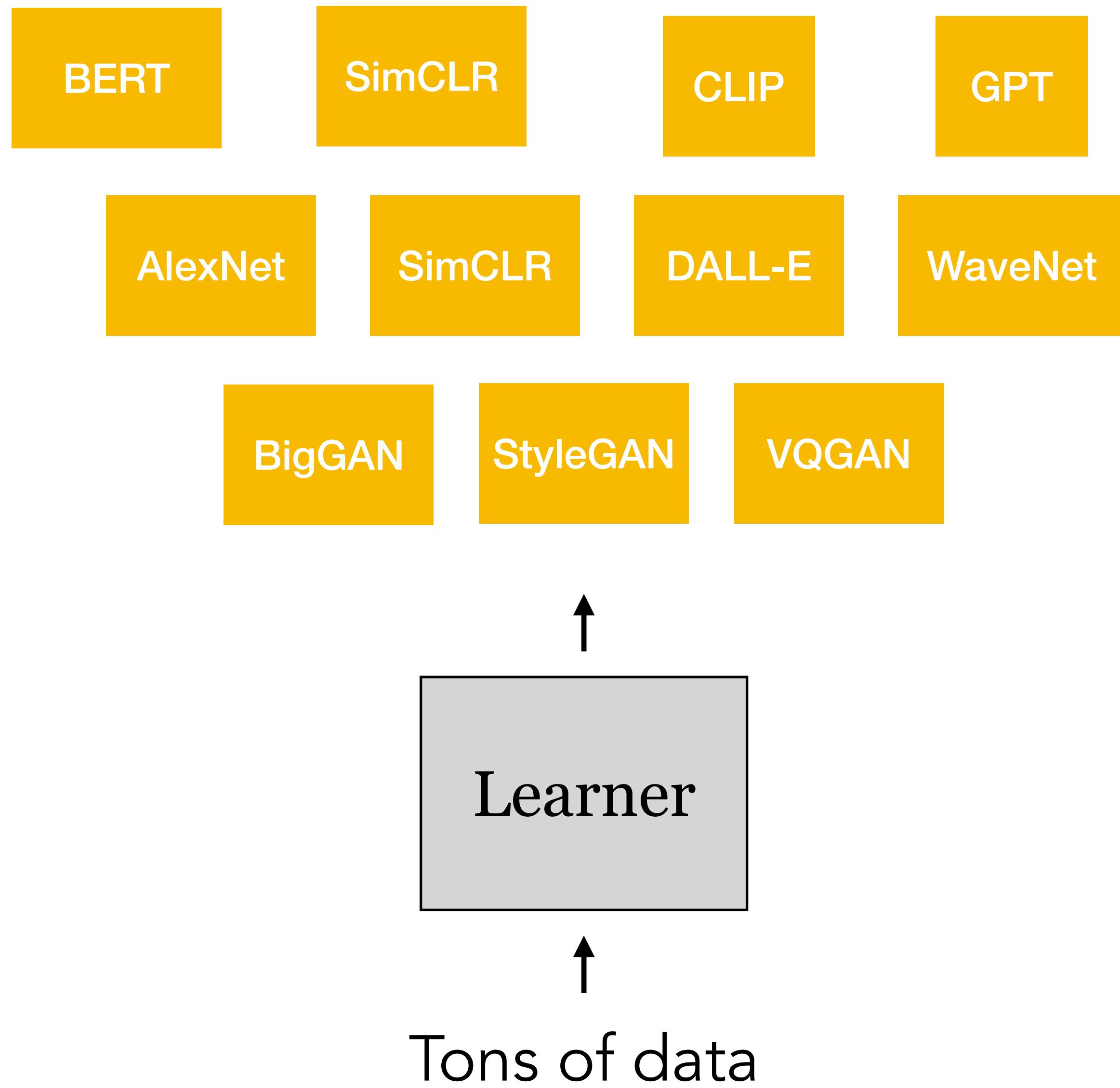
Performance on 58 Tasks



Not working at all

Working as
well as an
average
human

Learn foundation models



Use/adapt foundations
to solve new problems

New paradigm: “Deep Learning” with No Data

“Just ask”

(of course, this isn’t really machine *learning* anymore)

1. Learner: Generative Pretraining

“Colorless green
ideas sleep ____”

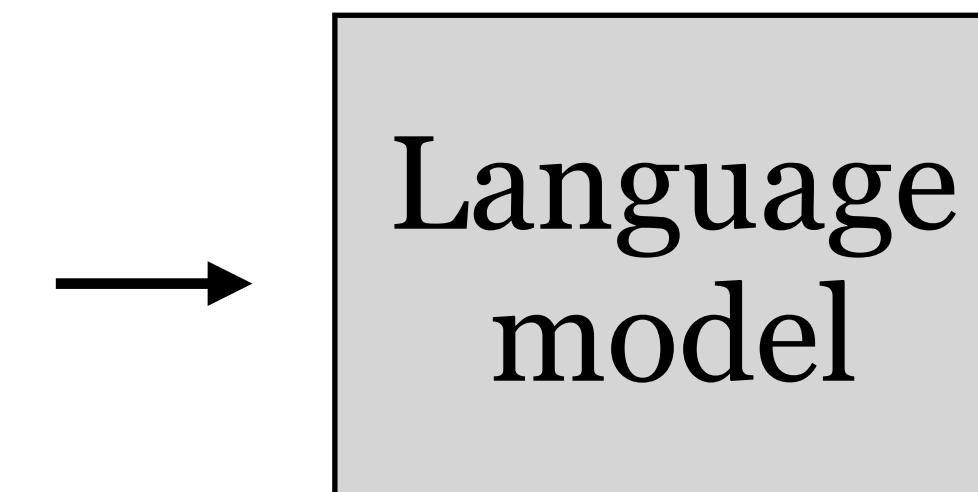
→
Language
model

→ “furiously”

(Predict next characters)

1. Adaptor: Prompt engineering

[Review] + “The
sentiment in this
review is _____”



(Predict next characters)

New capabilities by just asking

Top ten dishes at Mulan, Cambridge, MA:

New capabilities by just asking

List of prime numbers:

1. 2

2. 3

3. 5

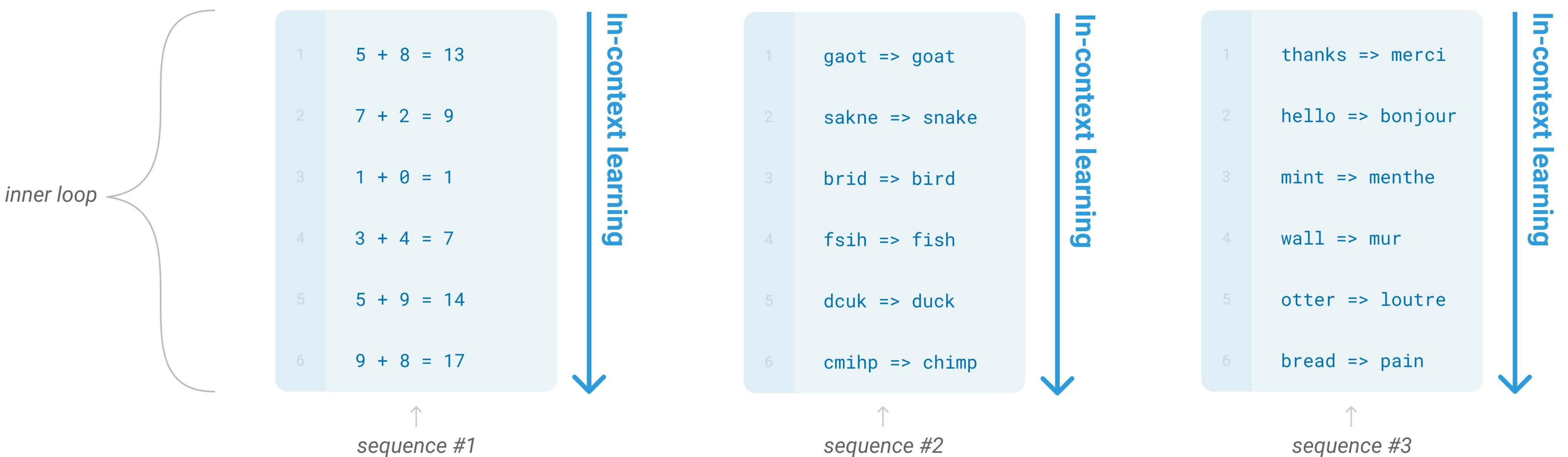
4. 7

5. 11

6. 13

Few-shot learning ability

© Brown, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



Few-shot learning ability: extrapolation

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

3.

4.

5.

6.

7.

Icons © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

English: hello

Spanish: hola

English: this tastes really good

Spanish: esto sabe muy bien

English: where is the library?

Spanish: dónde está la biblioteca?

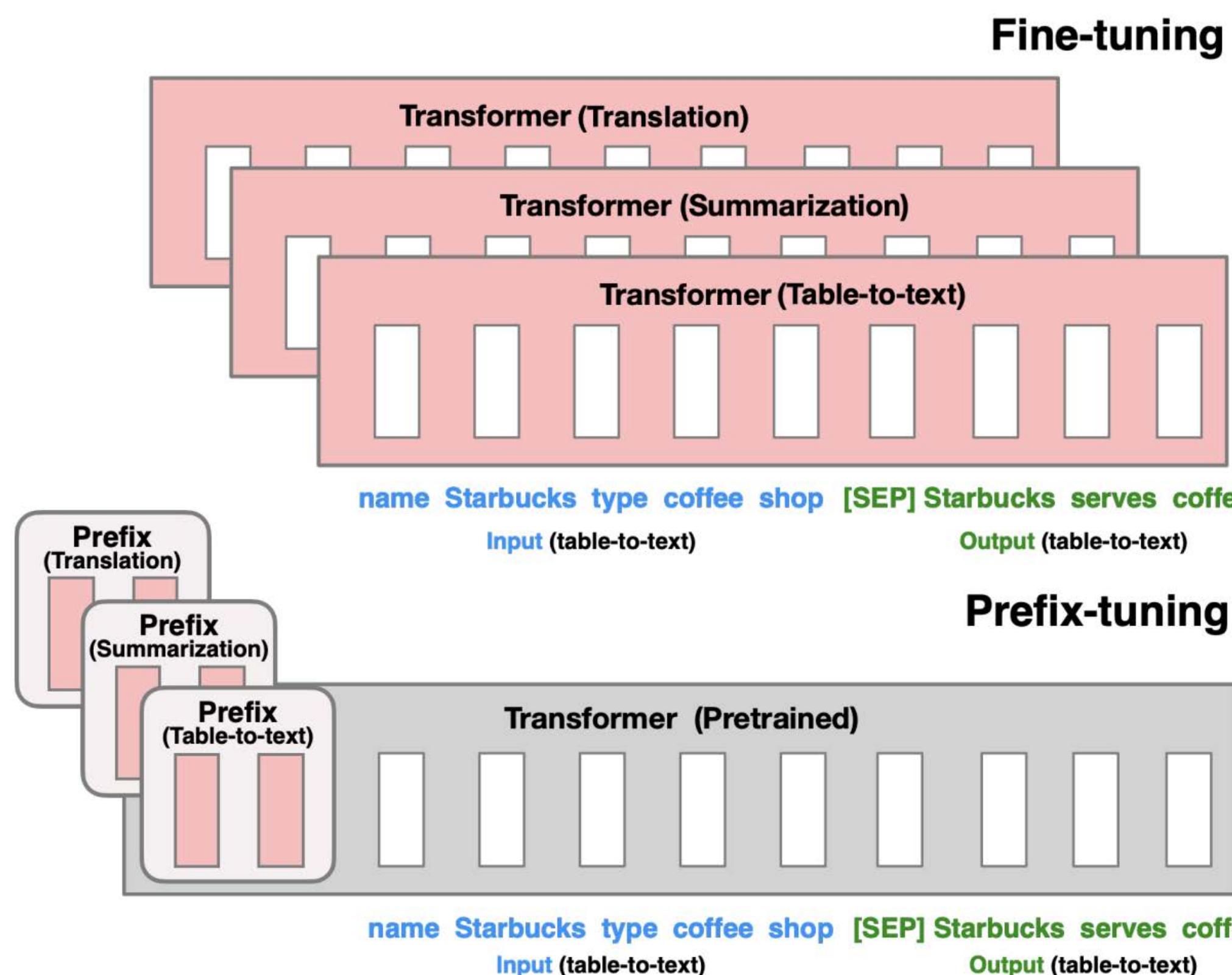
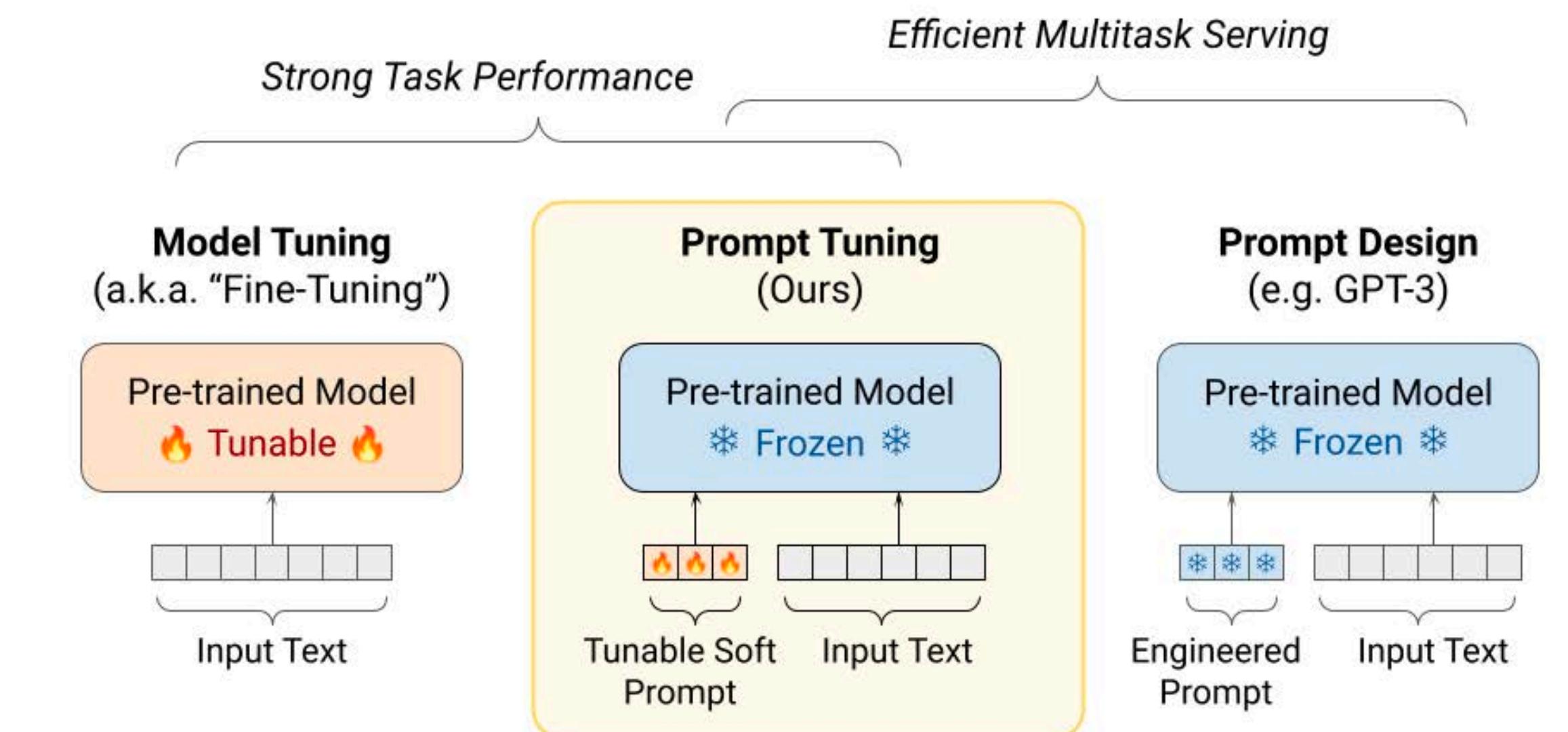
Prompting

Hand-crafting good prompts is tricky...

Template	Label words	Accuracy
SST-2 (positive/negative)	mean (std)	
< S_1 > It was [MASK] .	great/terrible	92.7 (0.9)
< S_1 > It was [MASK] .	good/bad	92.5 (1.0)
< S_1 > It was [MASK] .	cat/dog	91.5 (1.4)
< S_1 > It was [MASK] .	dog/cat	86.2 (5.4)
< S_1 > It was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning	-	81.4 (3.8)
SNLI (entailment/neutral/contradiction)	mean (std)	
< S_1 > ? [MASK] , < S_2 >	Yes/Maybe/No	77.2 (3.7)
< S_1 > . [MASK] , < S_2 >	Yes/Maybe/No	76.2 (3.3)
< S_1 > ? [MASK] < S_2 >	Yes/Maybe/No	74.9 (3.0)
< S_1 > < S_2 > [MASK]	Yes/Maybe/No	65.8 (2.4)
< S_2 > ? [MASK] , < S_1 >	Yes/Maybe/No	62.9 (4.1)
< S_1 > ? [MASK] , < S_2 >	Maybe/No/Yes	60.6 (4.8)
Fine-tuning	-	48.4 (4.8)

Soft Prompts (Prompt Tuning)

- Optimizes a small continuous task-specific vector while having language model parameters frozen



Left © Li and Liang. Right © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>.

Prefix-tuning: Optimizing continuous prompts for generation. ACL 2021.
The Power of Scale for Parameter-Efficient Prompt Tuning. EMNLP 2021.

Chain-of-thought prompting

[Wei, Wang, Schuurmans et al. 2022]

Courtesy of Wei, et al. Used under CC BY.

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

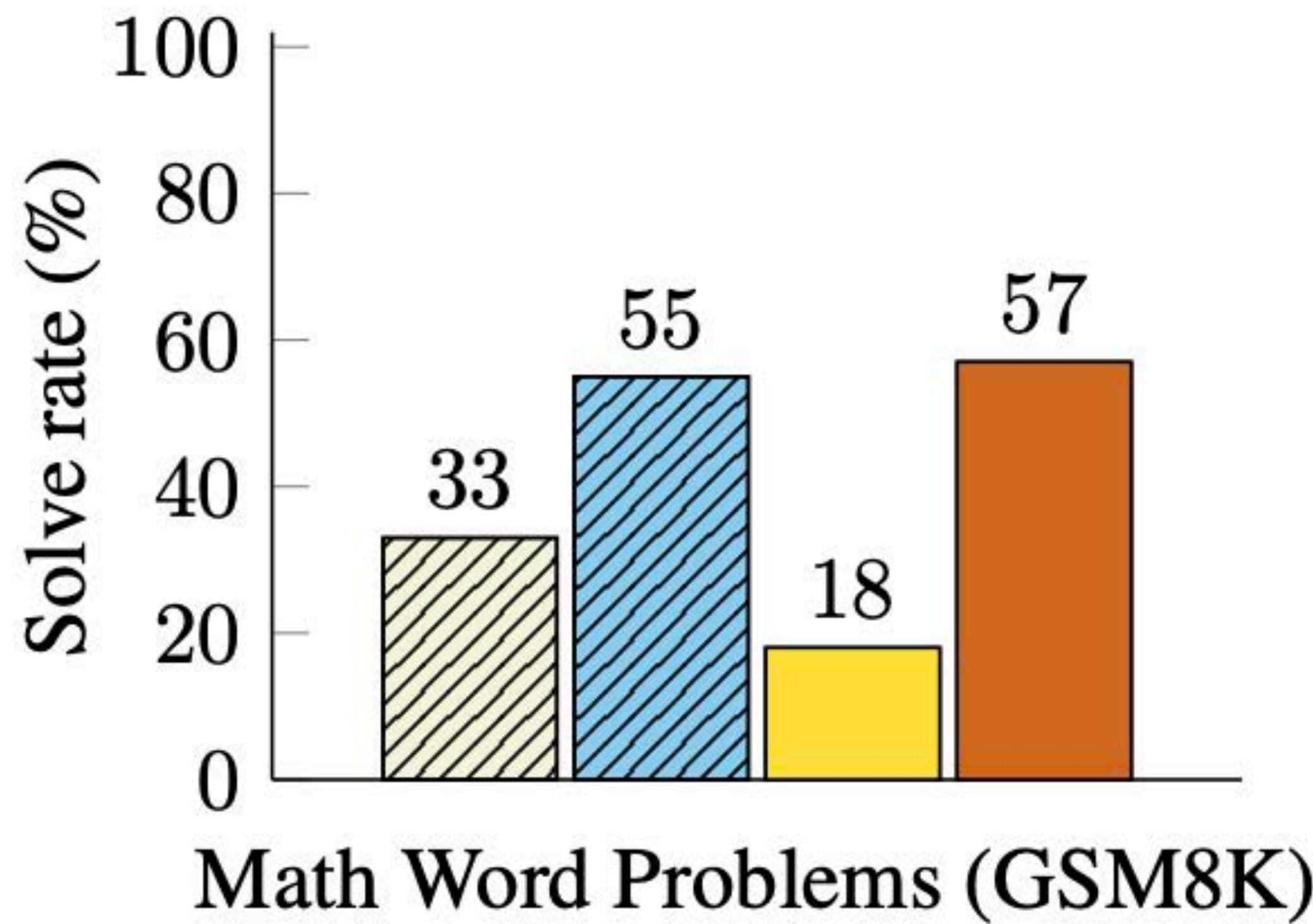
A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23 - 20 = 3$. They bought 6 more apples, so they have $3 + 6 = 9$. The answer is 9.

Chain-of-thought prompting

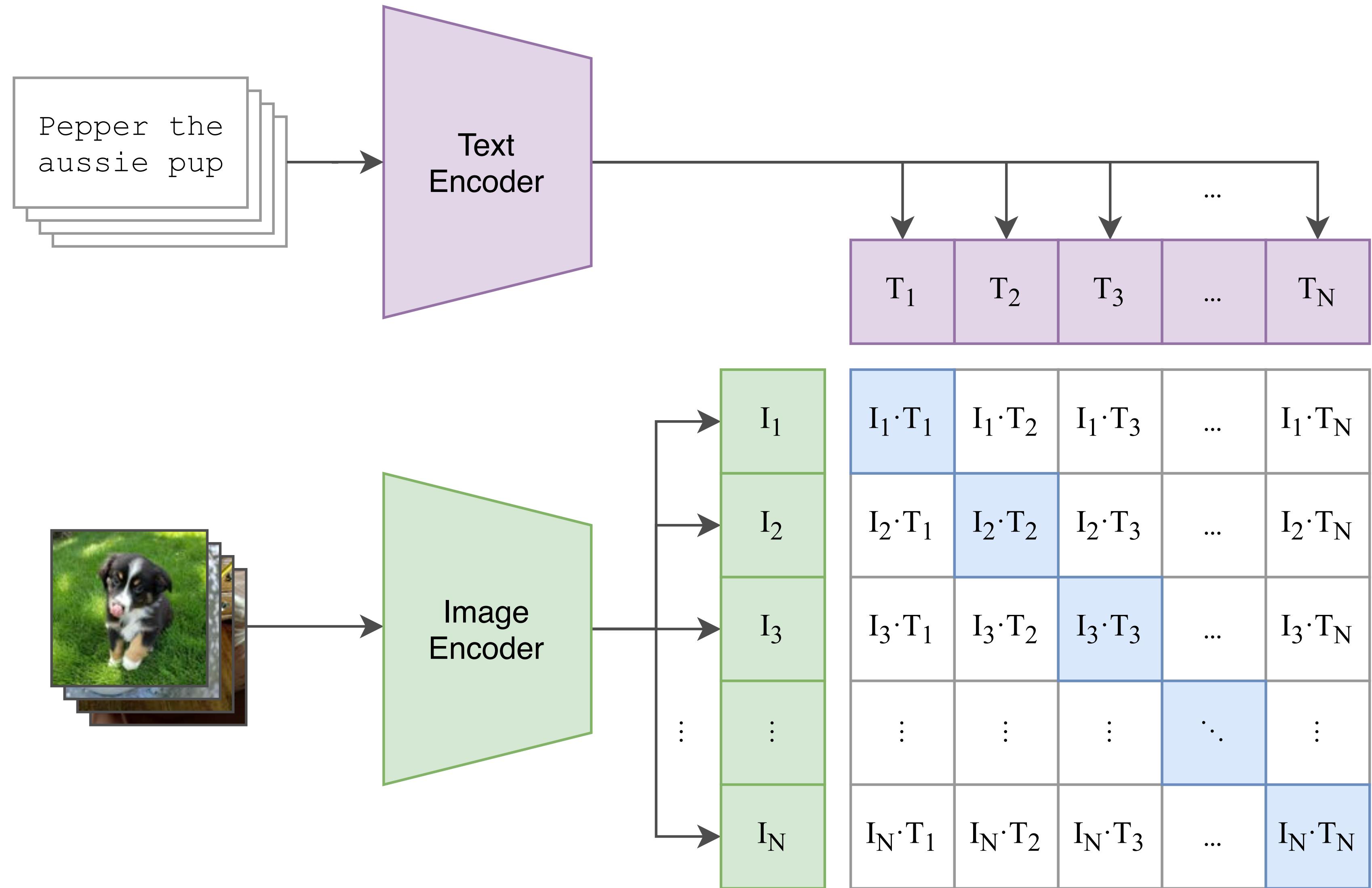
[Wei, Wang, Schuurmans et al. 2022]

Courtesy of Wei, et al. Used under CC BY.

- Finetuned GPT-3 175B
- Prior best
- PaLM 540B: standard prompting
- PaLM 540B: chain-of-thought prompting

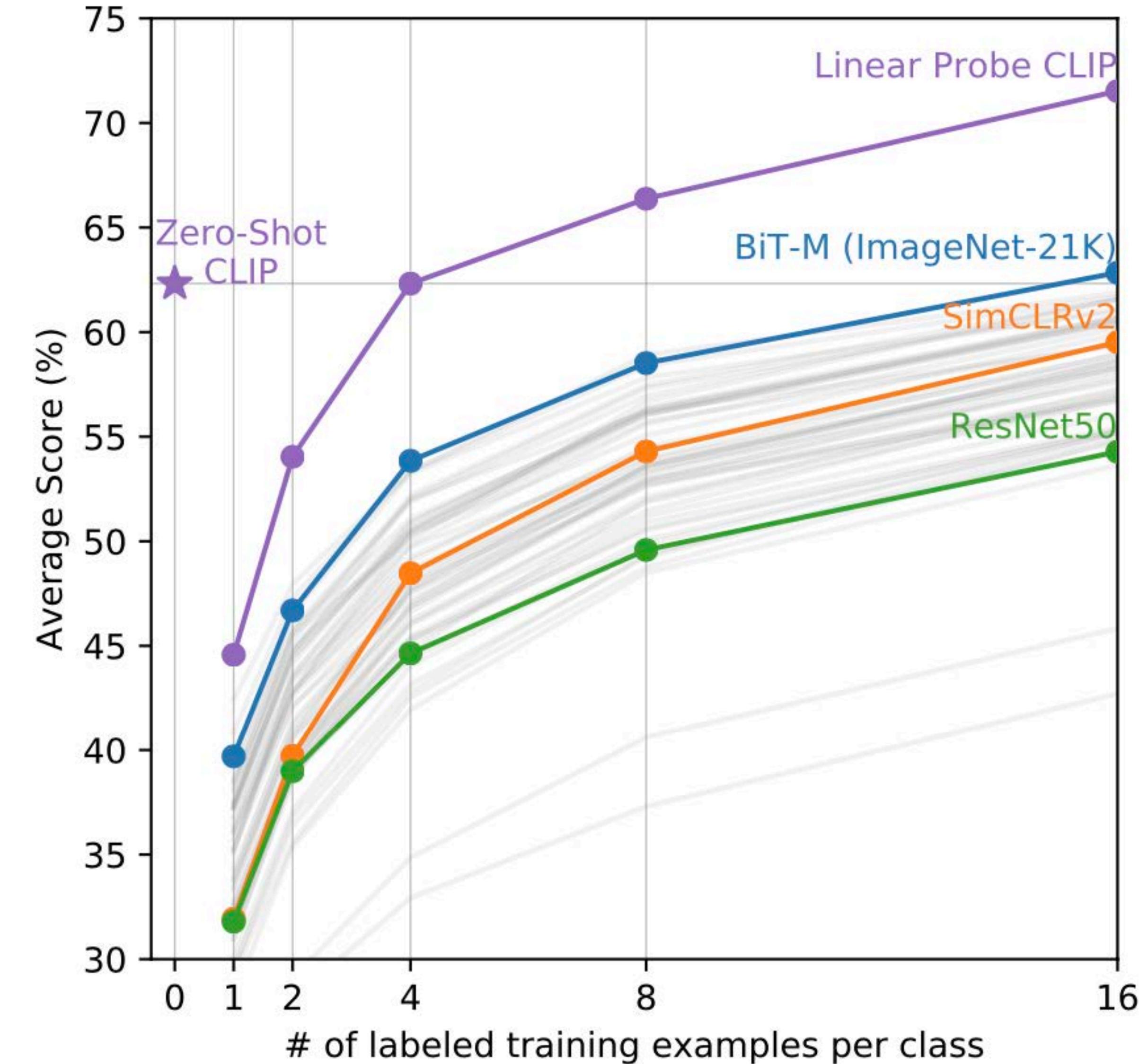


1. Learner: Contrastive Pretraining



© Radford, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>.

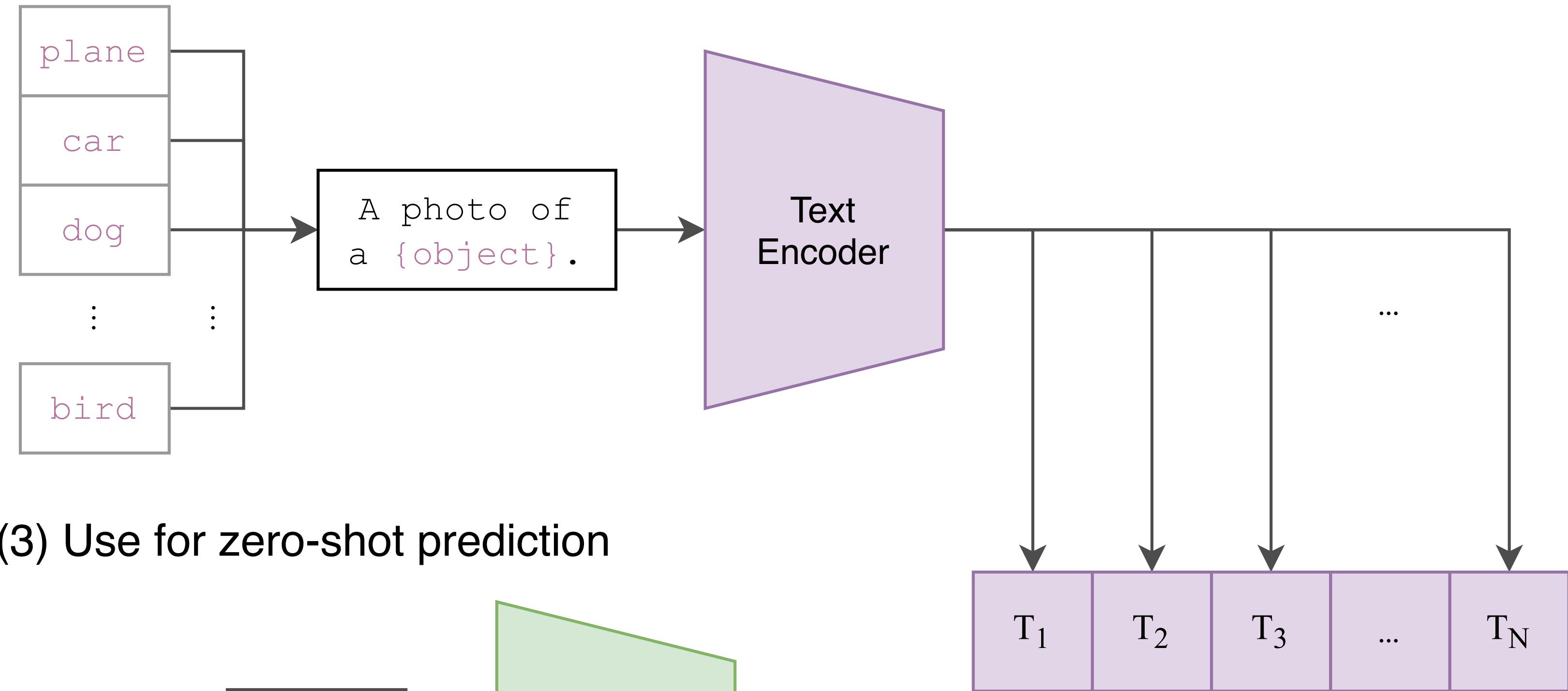
2. Adaptor: Linear classifier on top of image encodings



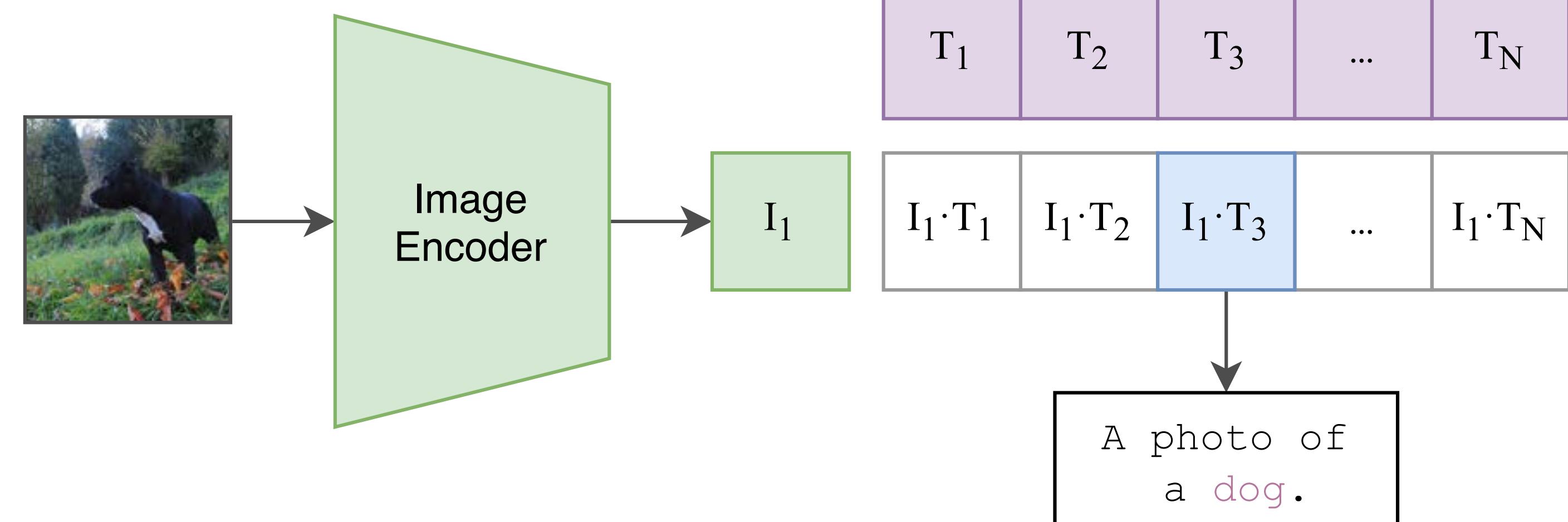
[\[https://openai.com/blog/clip/\]](https://openai.com/blog/clip/)

2. Adaptor: Just ask

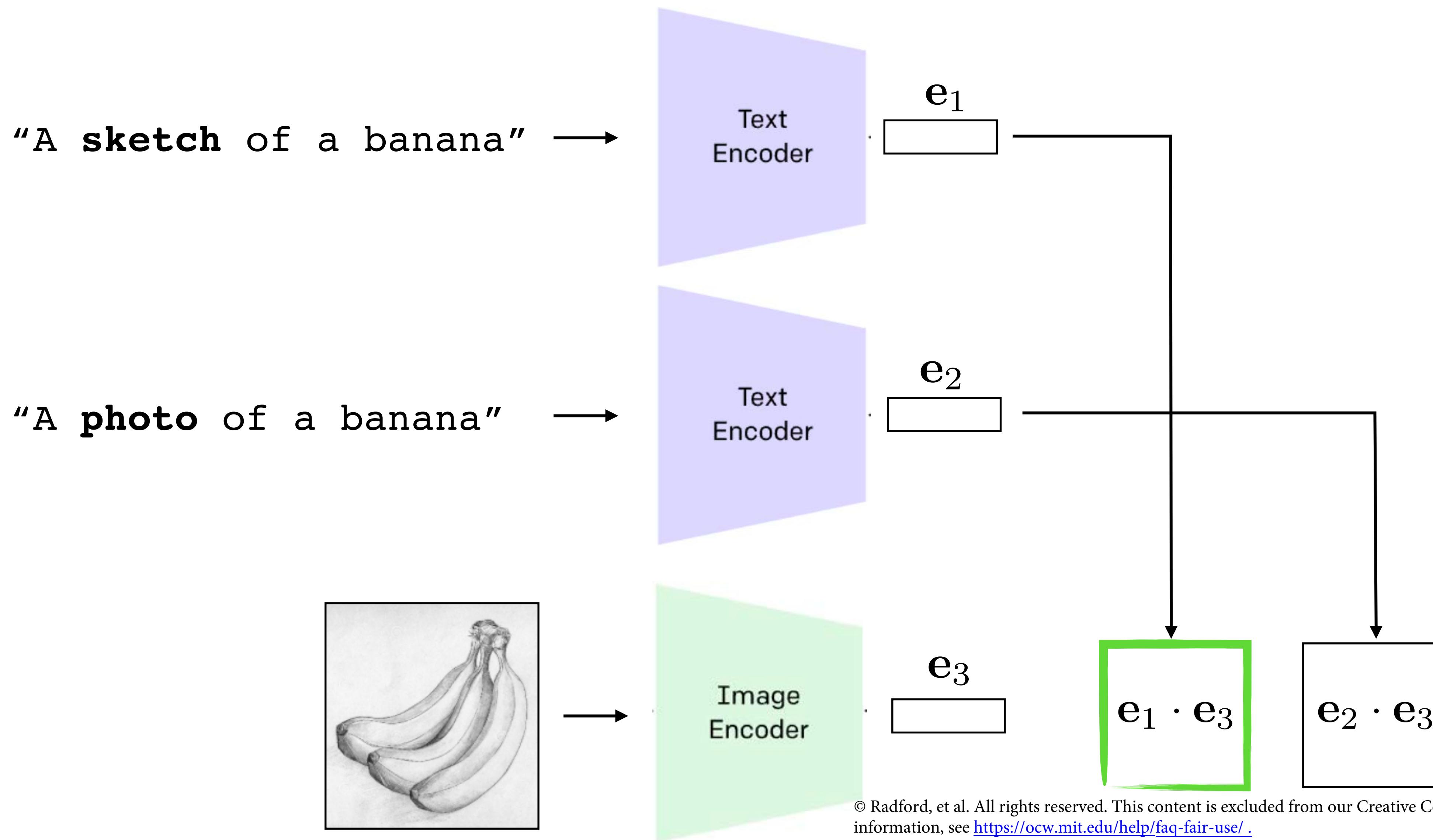
(2) Create dataset classifier from label text



(3) Use for zero-shot prediction



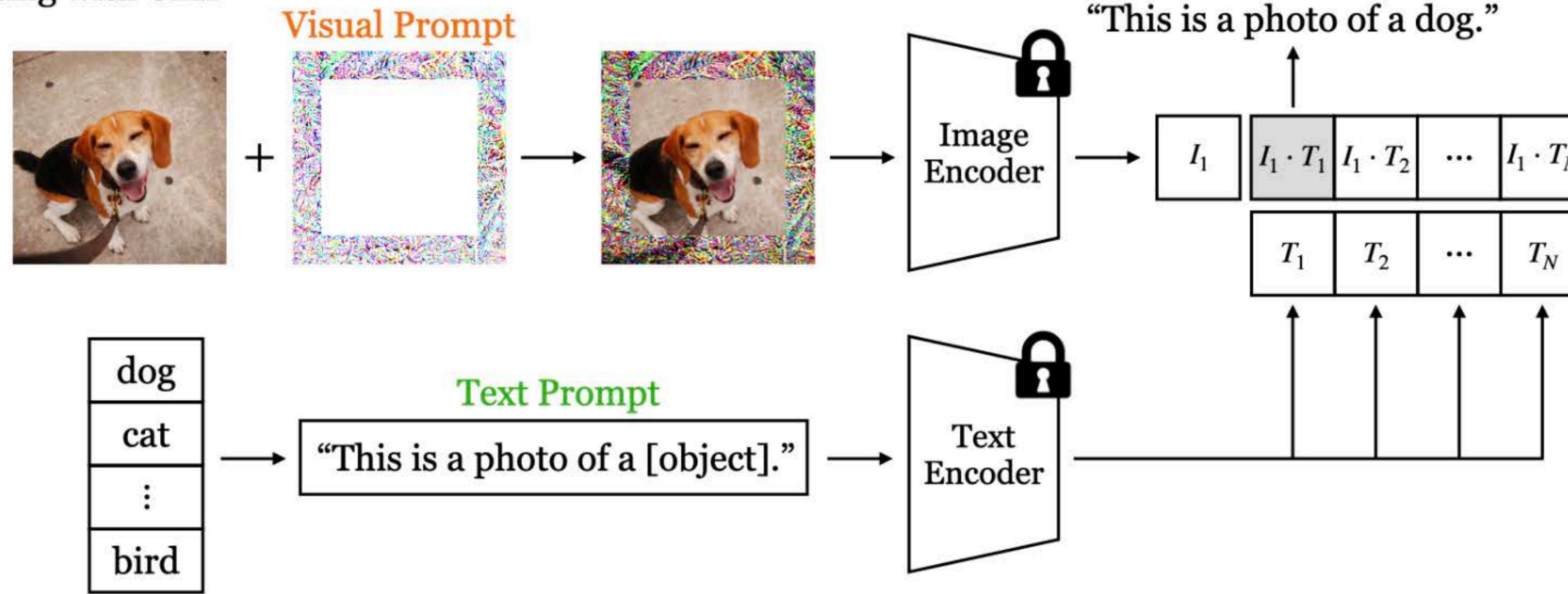
New capabilities by just asking



Prompting in other modalities

New capabilities by “visual prompting”

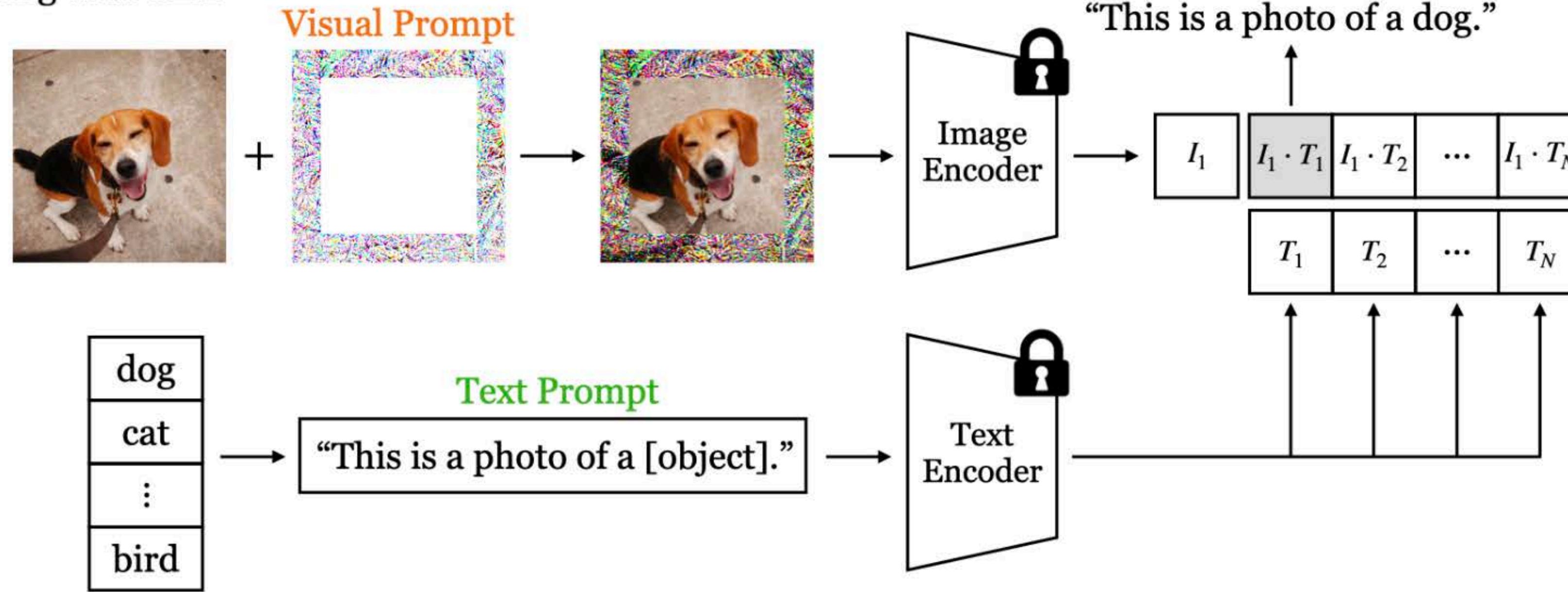
(a) Prompting with CLIP



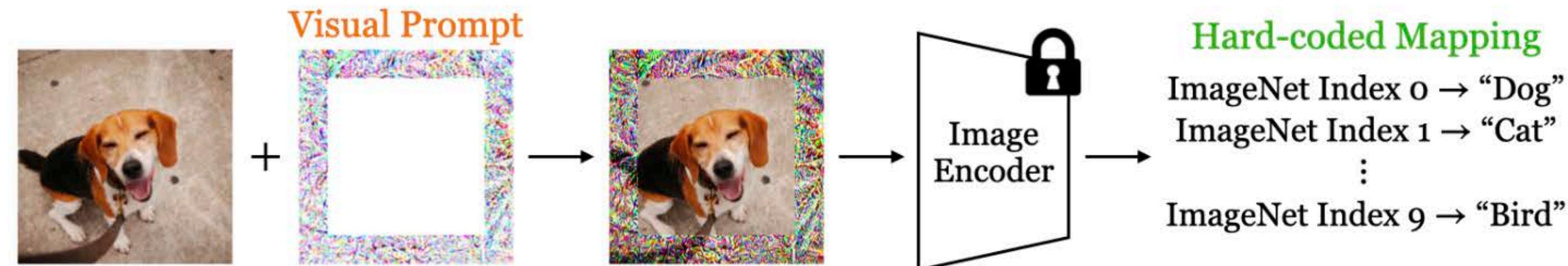
Courtesy of Bahng, et al. Used under CC BY.

New capabilities by “visual prompting”

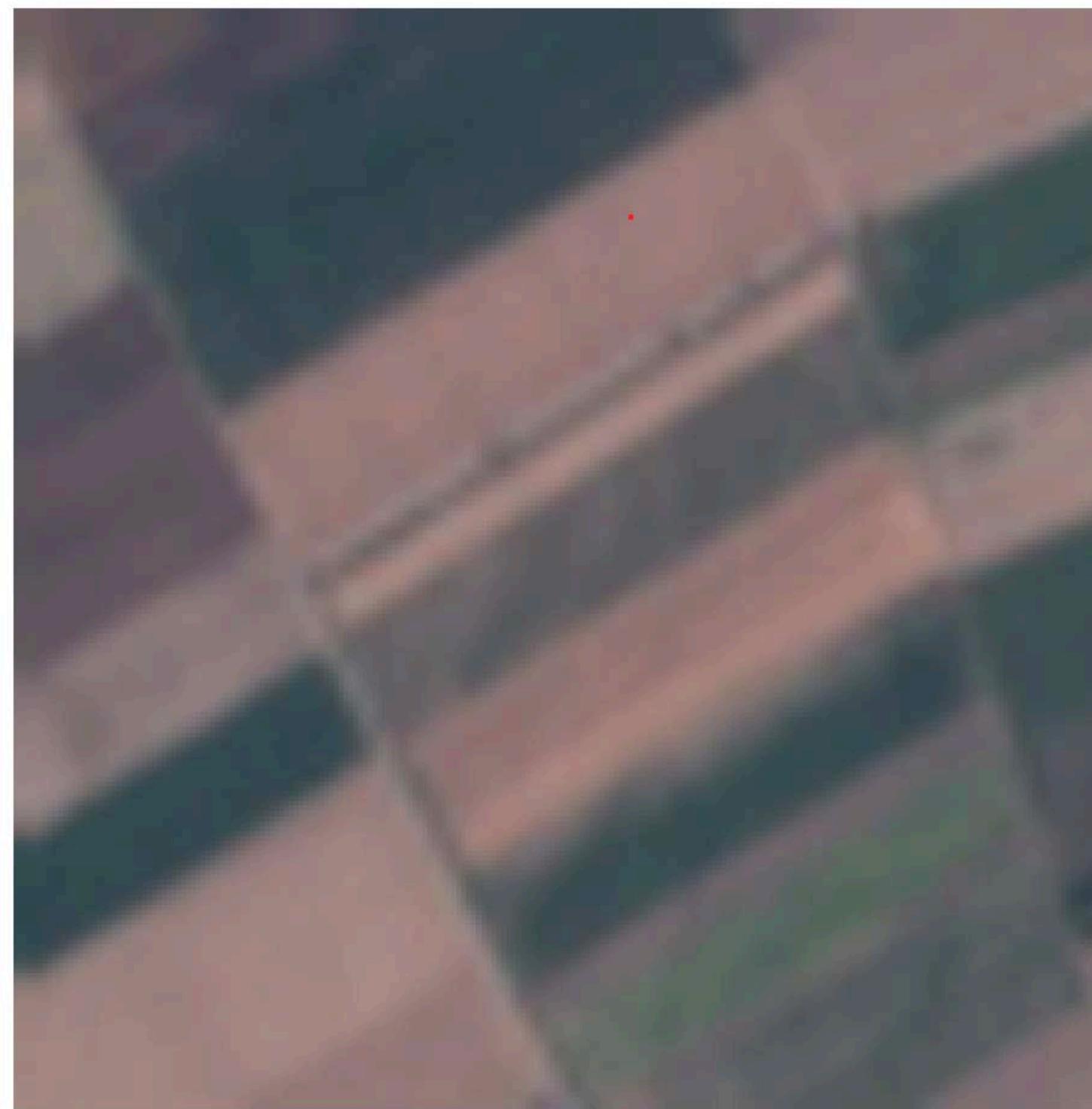
(a) Prompting with CLIP



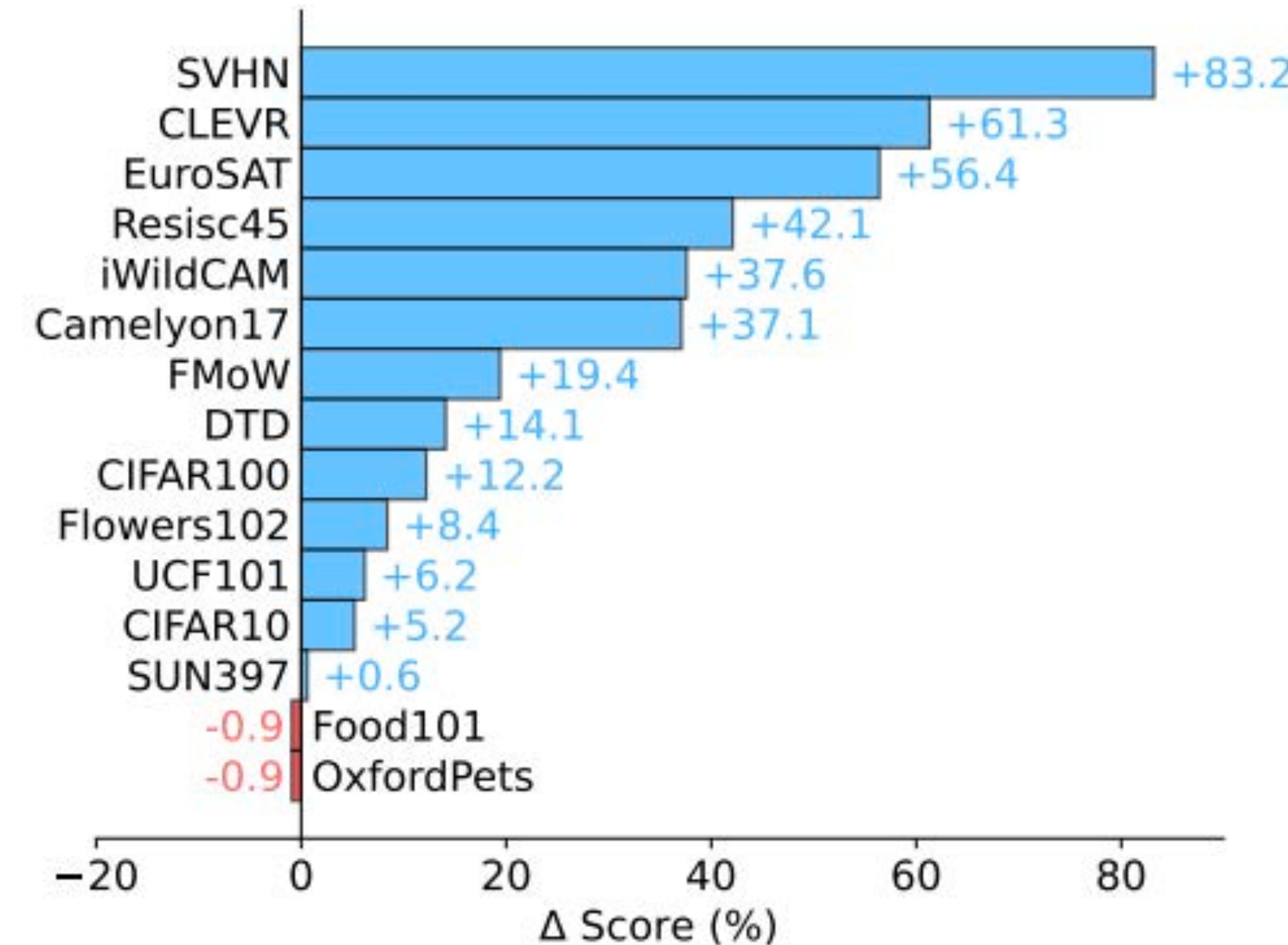
(b) Prompting (adversarial reprogramming) with vision models



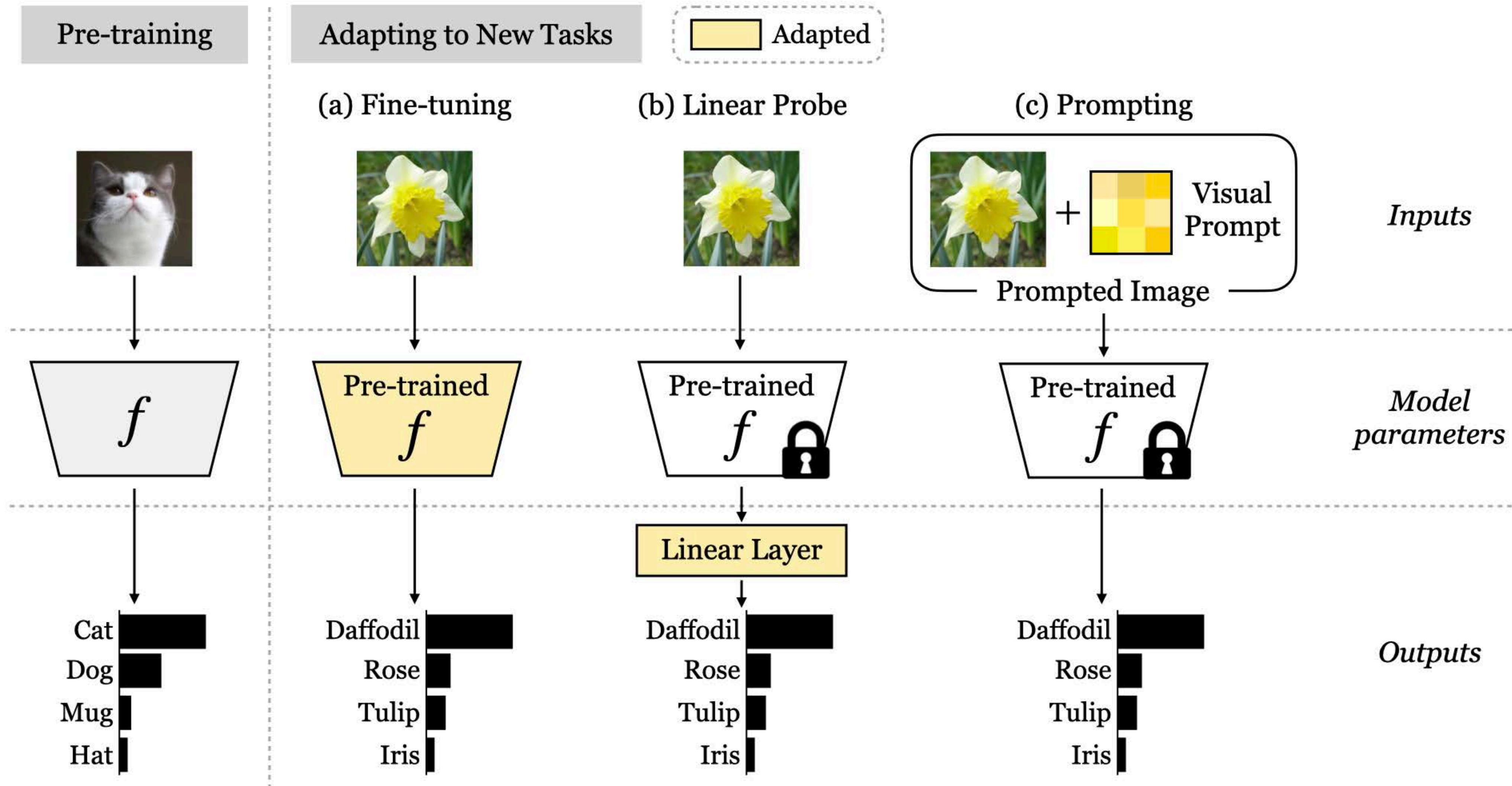
New capabilities by “visual prompting”



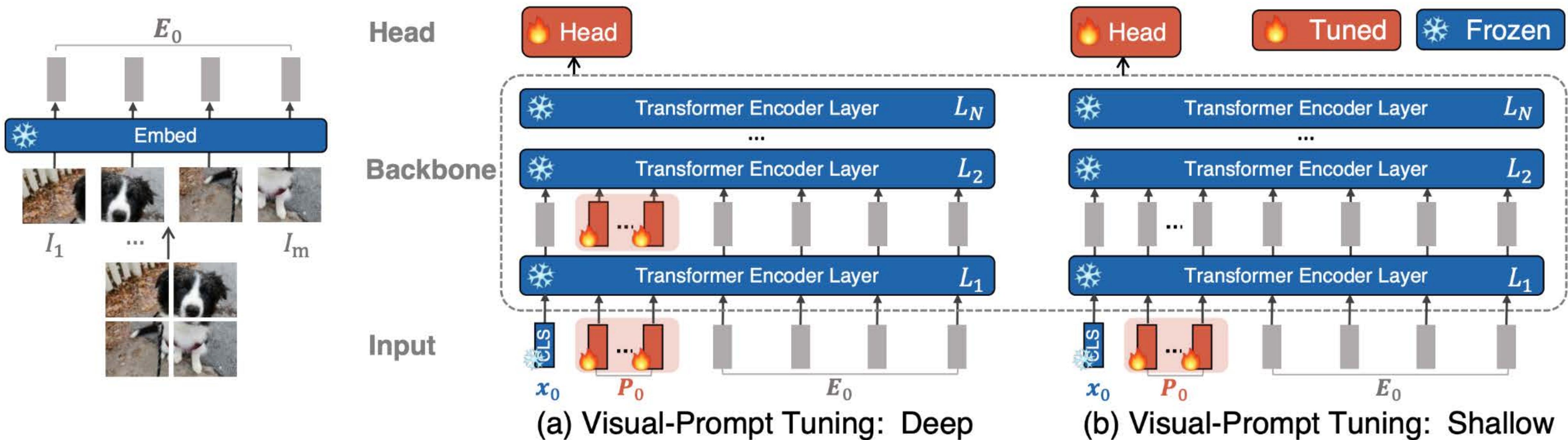
Adding a single pink pixel gives
+3% acc boost



Adaptation can occur on inputs, mapping, or outputs

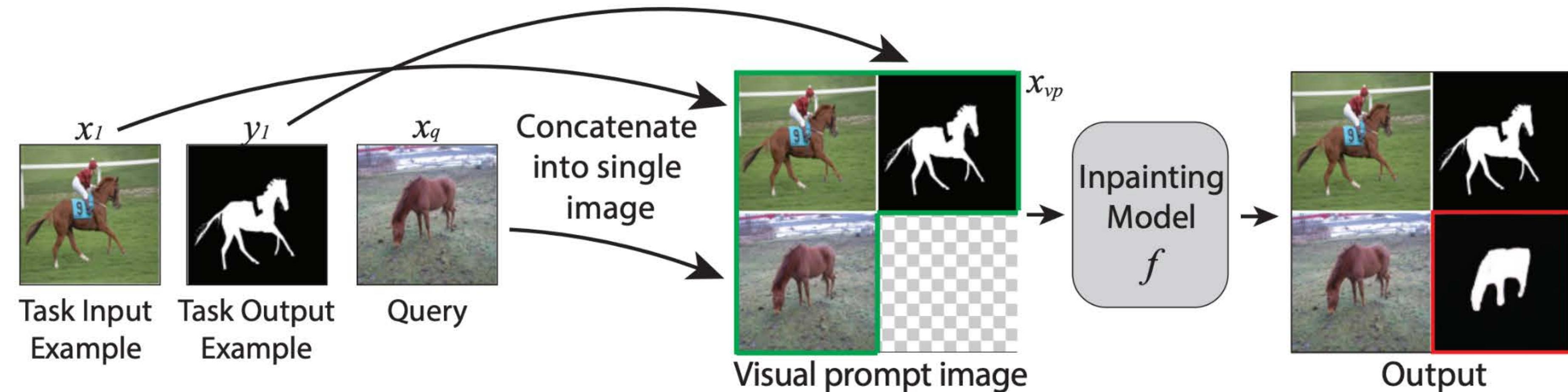


Visual Prompt Tuning (Input Encodings)



© Jia, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>.

Visual Prompting via Image Inpainting



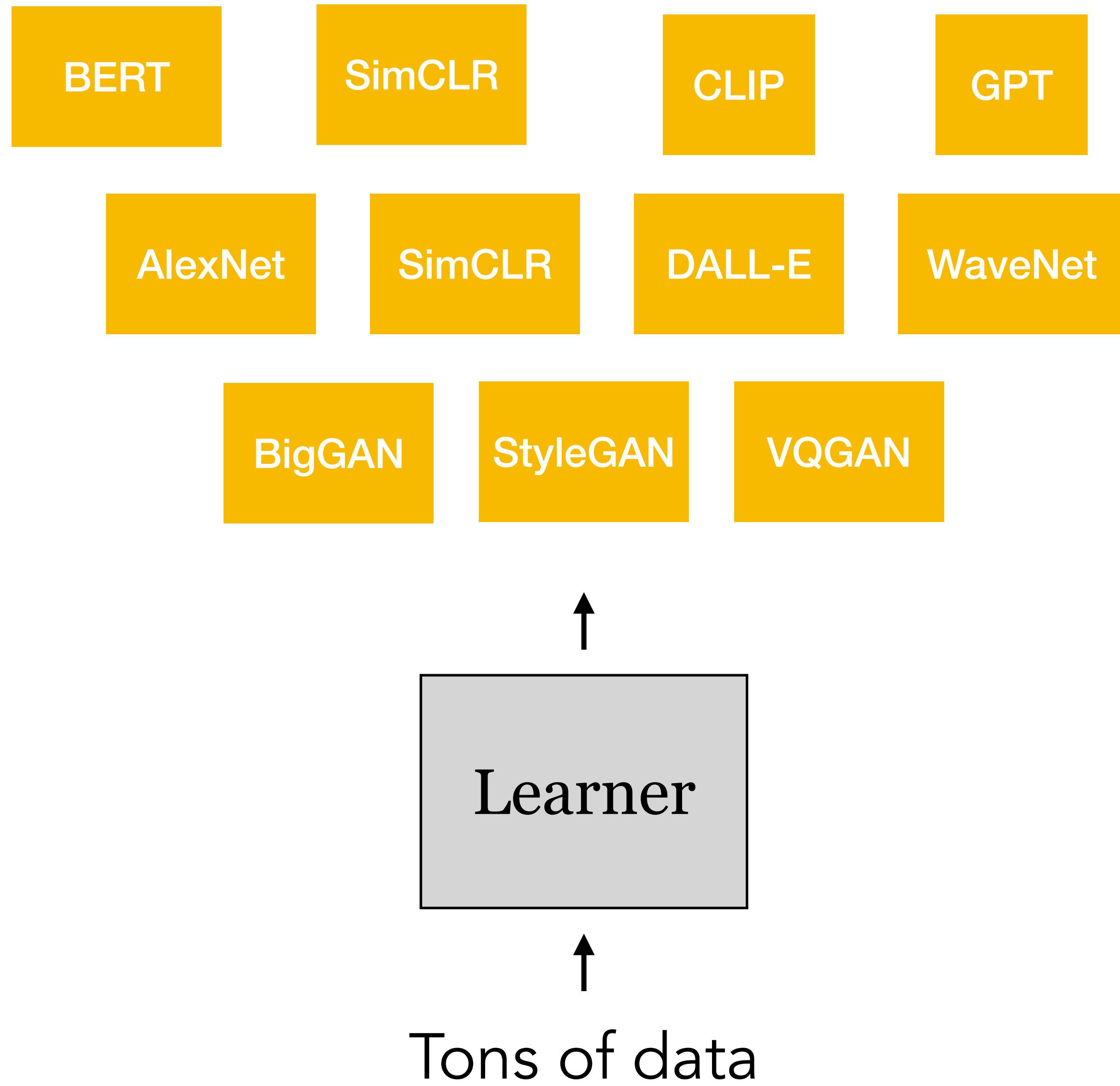
Courtesy of Bar et al. Used under CC BY.

Good Resources

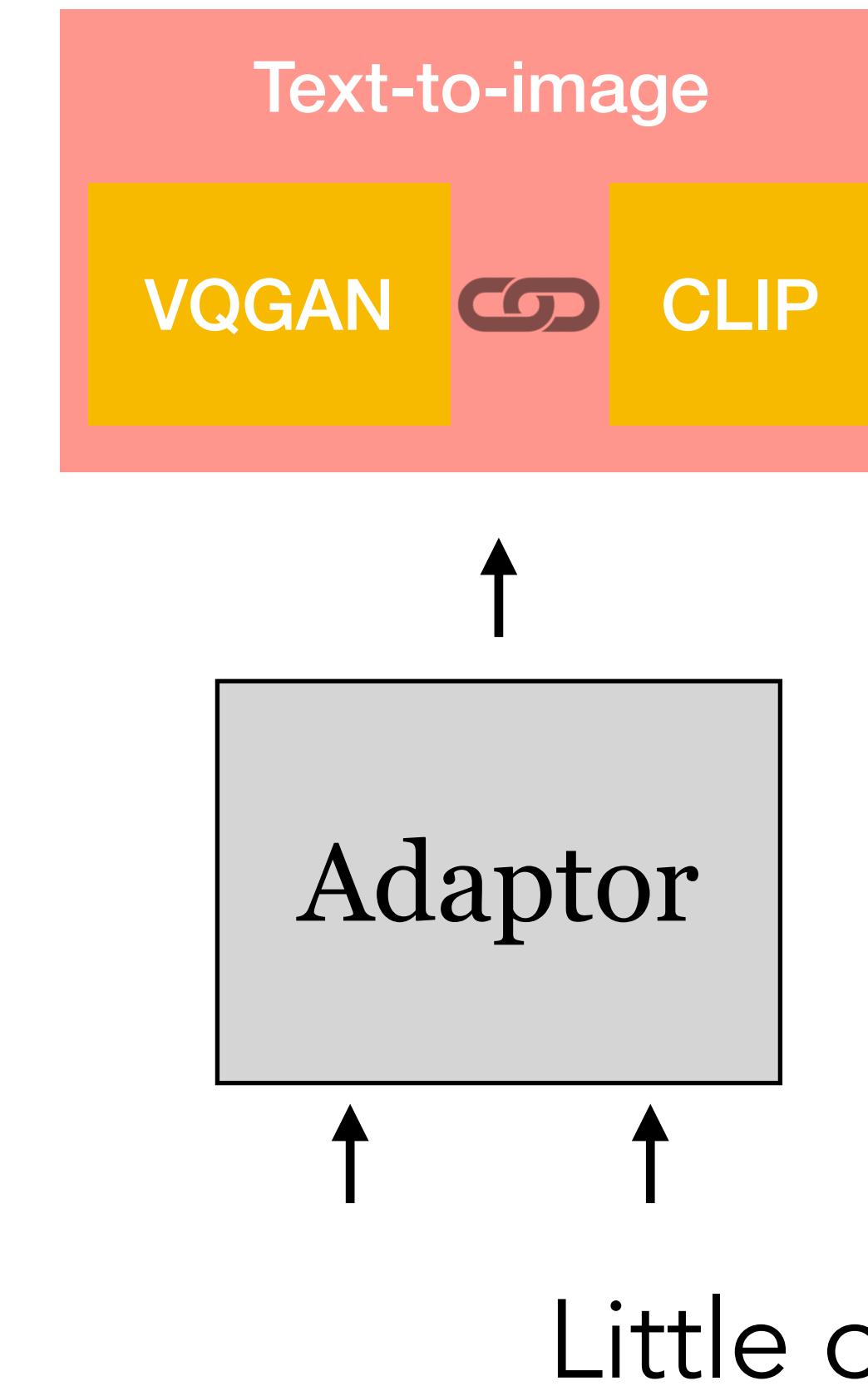
- <https://github.com/thunlp/PromptPapers>
- <https://thegradient.pub/prompting/>

Combining Foundation Models

Learn foundation models



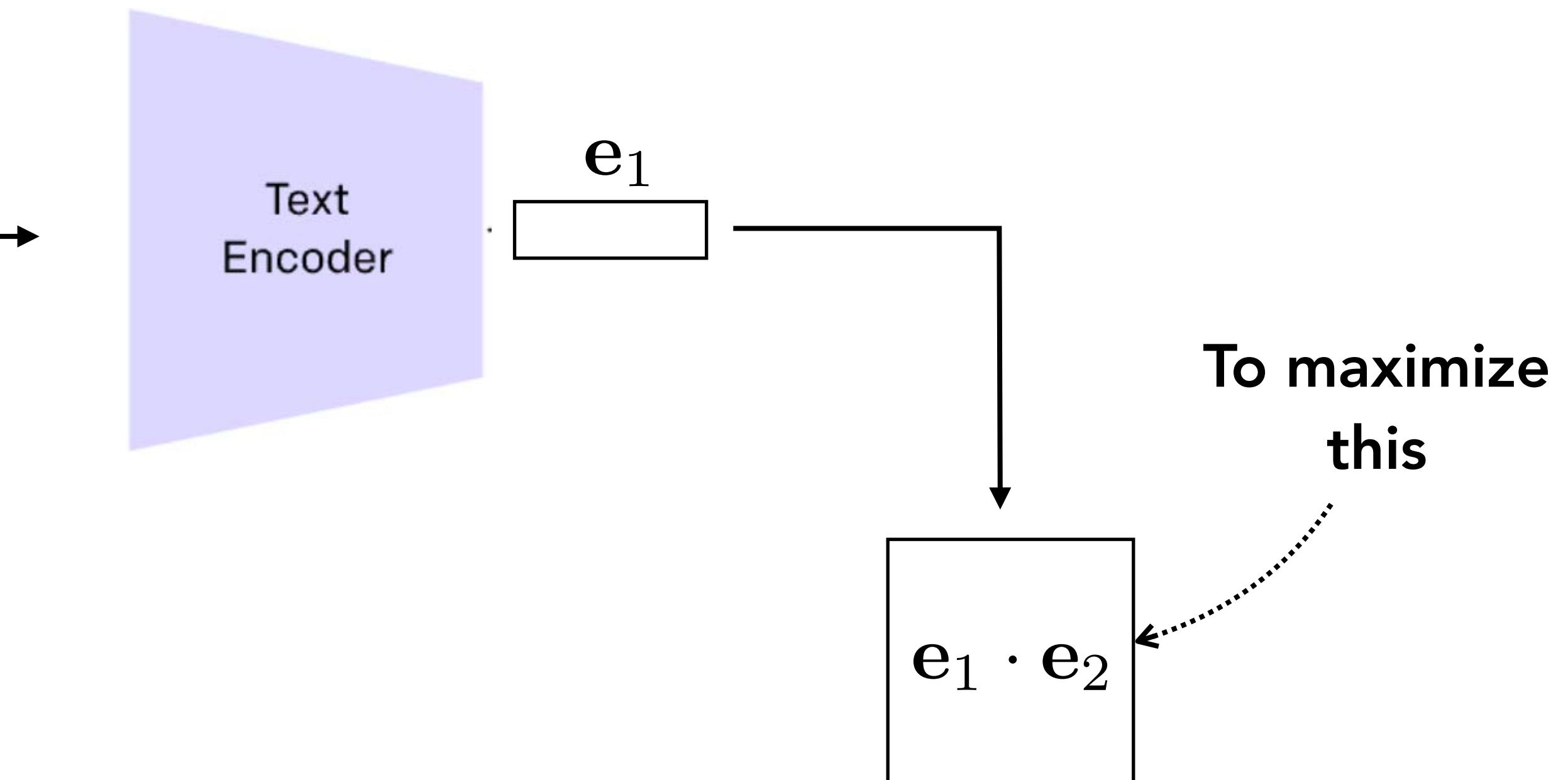
Use/adapt foundations to solve new problems



New capabilities by plugging pretrained models together: CLIP+GAN

INPUT:

"What is the answer to the
ultimate question of life, the
universe, and everything?"

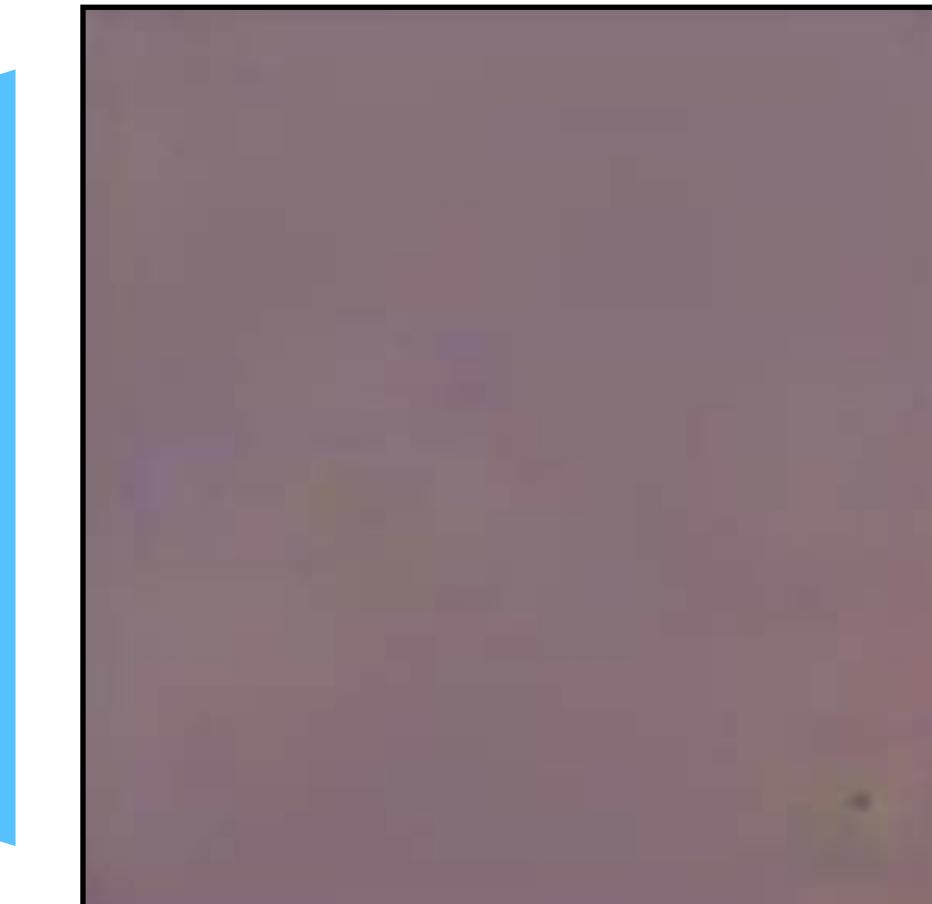
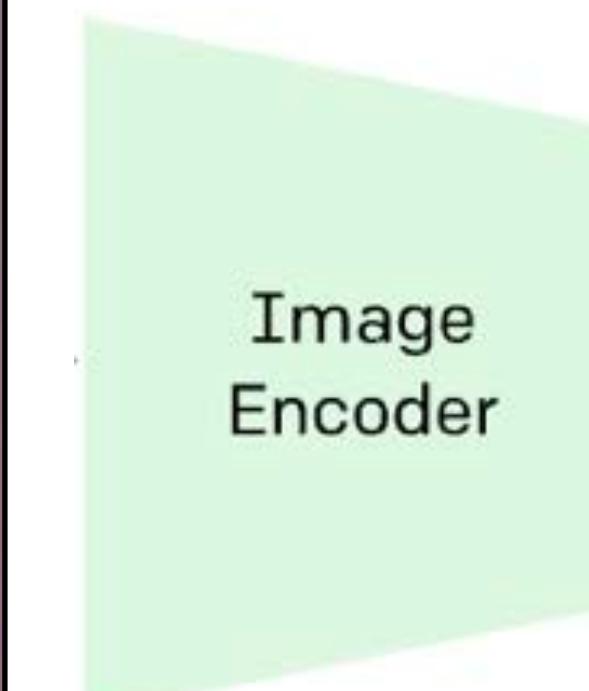


OUTPUT:

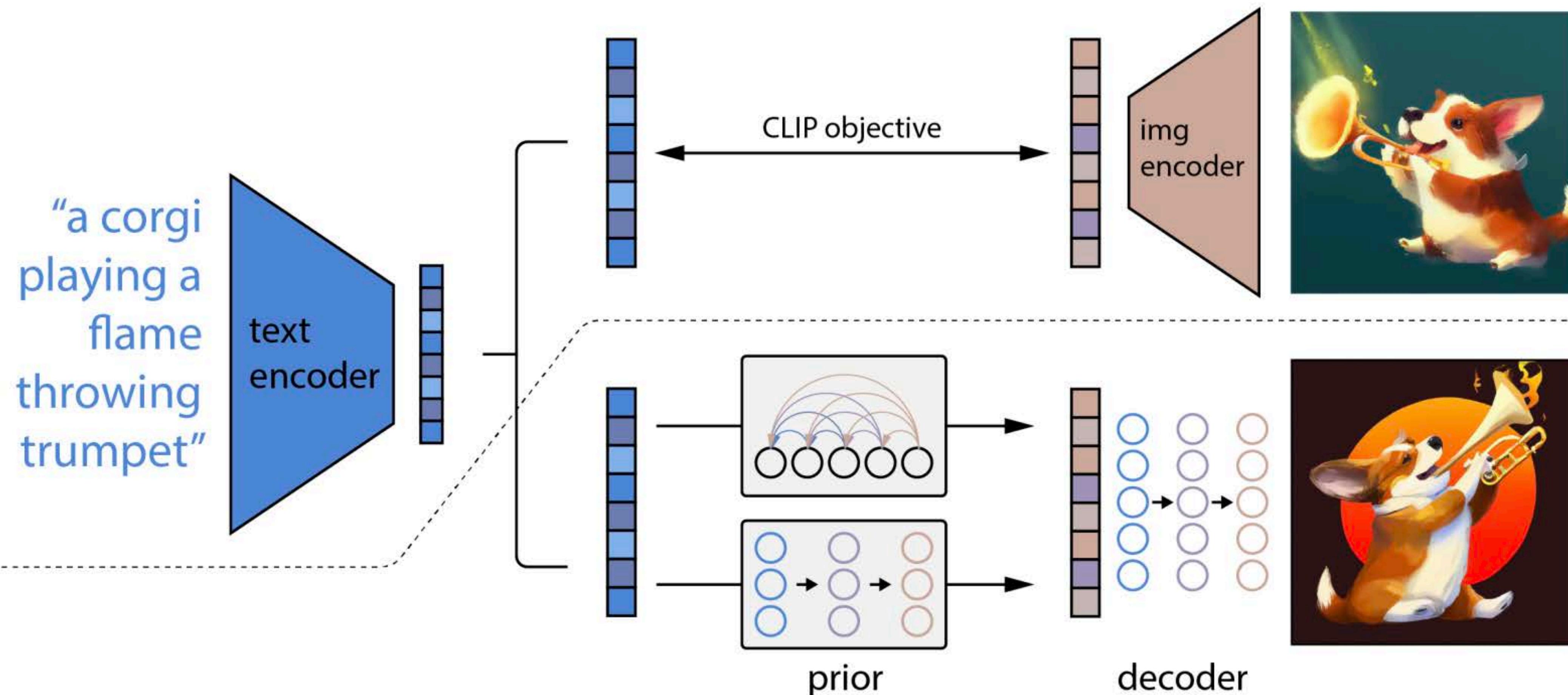
Optimize this

z

Image
Generator



DALL-E 2



Courtesy of Ramesh et al. Used under CC BY.

[Ramesh et al. 2022]

Transfer Learning I

- Learning with little data
- Transferring knowledge about the mapping
 - Finetuning
 - Domain adaptation
- Transferring knowledge about the outputs
 - Knowledge distillation
- Foundation models

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>